116
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Increased Salinity Tolerance of Cowpea Plants by Dual Inoculation of an Arbuscular Mycorrhizal Fungus Glomus clarum and a Nitrogen-fixer Azospirillum brasilense

, &
Pages 51-60 | Received 18 Jan 2005, Published online: 22 Jun 2018

References

  • Adiku, G., Renger, M., Wessolek, G., Facklam, M. and Hech-Bucholtz, C. 2001. Stimulation of dry matter production and seed yield of common beans under varying soil water and salinity conditions. Agric. Water Manag. 47: 55-68.
  • Al-Karaki, G. N., Hammad, R. and Rusan, M. 2001. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11: 41-47.
  • Allen, S. F., Grimshaw, H. F. and Rowl, A. B. 1984. Chemical analysis. In: Methods in plant ecology. Pp. 185-344. Eds. Moore P. D. and Chapman, S. B. Blackwell Oxford.
  • Bayuelo-Jimenez, J., Debouck, D. G. and Lynch, J. P. 2003. Growth, gas exchange, water relations and ion composition of Phaseolus species grown under saline conditions. Field Crop Res. 80: 207-222.
  • Biro, B., Koves-Péchy, K., Voros, I., Takacs, T., Eggenberger, P. and Strasser, R. J. 2000. Interrelations between Azospirillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions App. Soil Ecol. 15: 159-168.
  • Bohrer, G., Kagan-Zur, V, Roth-Bejerano, N., Ward, D., Beck, G. and Bonifacio, E. 2003. Effects of different Kalahari-desert VA mycorrhizal communities on mineral acquisition and depletion from the soil by host plants. J. Arid Environ. 55: 193-208.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing theprincipal of proteindye binding. Annal Biochem. 72: 248-254.
  • Burke, D. J., Hamerlynck, E. P. and Hahn, D. 2003. Interactions between the salt marsh grass Spartina patens, arbuscular mycorrhizal fungi and sediment bacteria during the growing season. Soil Biol. Biochem. 35: 501-511.
  • Copeman, R. H., Martin, C. A. and Stutz, J. C. 1996. Tomato growth in response to salinity and mycorrhizal fungi from saline or nonsaline soil. Hort. Sci. 31: 341-344.
  • Cordovilla, M. P, Ligero, F. and Lluch, C. 1994. The effect of salinity on N fixation and assimilation in Vicia faba. J. Exp. Bot. 45: 1483-1488.
  • Cordovilla, M. P., Ocana, A., Ligero, F. and Lluch, C. 1995. Salinity effects on growth analysis and nutrient composition in four grain legumes-Rhizobium symbiosis. J. Plant Nutr. 18: 1595-1609.
  • Csonka, L. N. and Hanson, A. D. 1991. Prokaryotic osmoregulation: genetics and physiology. Annu. Rev. Plant Physiol. 45: 569-606.
  • Delgado, M. J., Ligero, F. and Lluch, C. 1994. Effects of salt stress on growth and nitrogen fixation by pea, faba-bean, common bean and soybean plants. Soil. Biol. Biochem. 26: 371-376.
  • Dobereiner, J. 1978. Influence of environmental factor on the occurrence of S. lipoferum in soil and roots. In: Environmental role of N2 nfixing blue green algae and symbiotic bacteria. Ecol. Bull. (Stockholm) 26: 343-352.
  • El-Mokadem, M. T., Helemish, F. A., Abdel-Wahab, S. M. and Abou-El-Nour. M. M. 1991. Salt response of clover and alfalfa inoculated with salt tolerant strains of Rhizobium. Ain Shams Sci. Bull. 28B: 441-468.
  • Feng, G., Zhang, F. S., Li, X. L., Tian, C. Y, Tang, C. and Rengel, Z. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12: 185-190.
  • Fischer, S., Elizabeth, Miguel M. J. and Mori, G. B. 2003. Effect of root exudates on the exopolysaccharide composition and the lipopolysaccharide profile of Azospirillum brasilense Cd under saline stress. FEMS Microbiol. Lett. 219: 53-62.
  • Georgiev, G. I. and Atkias, C. A. 1993. Effects of salinity on N2 fixation, nitrogen metabolism and export and diffusive conductance of cowpea root nodules. Symbiosis 15: 239-255.
  • Gianinazzi-Pearson, V. and Gianinazzi, S. 1976. Enzymatic studies on the metabolism on Vesicular arbuscular mycorrhiza, Effect of mycorrhiza formation and phosphorus nutrition on soluble phosphatase activities in onion roots. Physiol. Veg. 14: 833-841.
  • Giller, K. E. and Cadish, G. 1995. Future benefits from biological nitrogen fixation: an approach to agriculture. Plant Soil 174: 255-277.
  • Glenn, E. P, Brown, J. J. and Blumwald, E. 1999. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 18: 227255.
  • Hardy, R., Bums, R. and Holsten, R. 1973. Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol. Biochem. 5: 47-81.
  • Hirrel, M. C. 1981. The effect of sodium and chloride salts on the germination of Gigaspora margaria. Mycology 43: 610-617.
  • Jackson, M. L. 1967. Soil chemical Analysis. Prence Hall of India Ltd, New Delhi, India.
  • Jackson, N. F., Miller, R. H. and Forkiln, R. E. 1973. Soil chemical analysis. Prentic-Hall of India Private & Ltd. New Delhi, 2nd Indian Rep.
  • Jha, D. K., Sharma, G. D. and Mishra, R. R. 1993. Mineral nutrition in the tripartite interaction between Frankia, Glomus and Alnus at different soil phosphorus regimes. New Phytol. 123: 307-311.
  • Johansson, J. F., Paul, L. R. and Finlay, R. D. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture FEMS Microbiol. Ecol. 48: 1-13.
  • Juniper, S. and Abbott, L. 1993. Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 44: 45-57.
  • Khan, M. and Unger, I. 2000. Effect of salinity on growth water relation and ion accumulation of subtropical perennial Halophyte, Atriplex graffithii Var. stocksii. Annals of Bot. 85: 225-232.
  • Lesueur, D, Ingleby, K., Odee, D., Chamberlain, J. Wilson, J., Manga, T. T., Sarrailh, J. M. and Pottinger, A. 2001. Improvement of forage production in Calliandra calothyrsus: methodology for the identification of an effective inoculum containing Rhizobium strains and arbuscular mycorrhizal isolates. J. Biotech. 91: 269-282.
  • Maayhuis, F. J. M. and Amtmann, A. 2004. K+ Nutrition and Na+ toxicity: The basic of cellular K+/Na+ ratios. Annals Botany. 84: 123-133.
  • Marschner, H. 1995. Saline soil. Pp. 567-680. IN: Mineral nutrition of higher plants. Academic press, New York.
  • McMillen, B. G., Juniper, S. and Abbott, L. K. 1998. Inhibition of hyphal growth of a vesicularnarbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol. Biochem. 30: 1639-1646.
  • Minerdi, D., Fani, R., Gallo, R., Boarino, A., Bonfante, P. and Munns, R. 1993. Physiological processes limiting plant growth in saline soils some dogmas and hypotheses. Plant Cell Environ. 16: 1524.
  • Minerdi, D., Fani, R., Gallo, R., Boarino, A. and Munns, R. 2000. Nitrogen Fixation genes in an endosymbiotic Burkholderia strain. Appl. Environ. Microbiol. 67: 725-732.
  • Muscolo, A., Panuccio, M. R. and Sidari, M. 2003. Effects of salinity on growth, carbohydrate metabolism and nutritive properties of KiKuyu grass (Pennisetum clandestinum Hochst). Plant science 164: 1103-1110.
  • Naidoo, G. and Naidoo, Y. 2001. Effect of salinity and nitrogen on growth, ion relations and proline accumulation in Triglochin bulbosa. WetlandEcol. Managem. 9: 491-497.
  • Netondo, G. W., Onyango, J. C. and Beck, E. 2004. Sorghum and salinity. Crop Science 44: 797-805.
  • Okon, Y. and Vanderleyden, J. 1997 Root-associated Azospirillum species can stimulate plants. ASM News 63: 366-370.
  • Pfeiffer, C. M. and Bloss, H. E. 1988. Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicularnarbuscular mycorrhiza andphosphorus fertilization. New Phytol. 108: 315-321.
  • Phillips, J. and Hayman, D. 1970. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55: 158-161.
  • Piper, C. S. 1950. Soil and plant analysis. Inter. Sci. Publ., New York.
  • Puppi, G., Azcon, R. and Hoflich, G. 1994. Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. pp. 201-215. In: Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. Gianinazzi, S. and Schouepp, H., Eds.
  • Rabie, G. H. and Al-Humiany, A. 2004. Role of VA-mycorrhiza on the growth of cowpea plant and their associative effect with N2-fixing and P-solubilizing bacteria as biofertilizers in calcareous soil . Food, Agric. Environ. 2: 185-191.
  • Rabie, G. H. 2005. Influence of VA-mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza (in press).
  • Rao, D. L. N. 1998. Biological amelioration of salt-affected soils. Pp. 21-238. In: Microbial Interactions in Agriculture and Forestry, vol. 1. Science Publishers, Enfield, USA.
  • Rao, A. V. and Tak, R. 2002. Growth of different tree species and their nutrition uptake in limestone mine spoil as influenced by arbuscular mycorrhizal (AM) fungi in India arid zone. J Arid Environ. 51: 113-119.
  • Ruiz-Lozano, J. M., Azcon, R. and Gomez, M. 1996. Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol. Plant. 98: 767-772.
  • Saini, V. K., Bhandari, S. C. and Tarafdar, J. C. 2004. Comparison of crop yield, soil microbial C, N and P, N-fixation, nodulation and mycorrhizal infection in inoculated and non-inoculated sorghum and chickpea crops. Field Crops Res. 89: 39-47.
  • Singh, R. P, Choudhary, A., Gulati, A., Dahiya, H. C., Jaiwal, P. K. and Sengar, R. S. 1997. Response of plants to salinity in interaction with other a biotic and factors. Pp. 25-39. In: Jaiwal, P. K., Singh, R. P, Gulati, A. Eds. Strategies for Improving Salt tolerance in Higher Plants. Science Publishers, Enfield, USA.
  • Steel, R. G. D. and Torrie, I. H. 1960. Principals and procedures of statistics. McGraw Hill, New York.
  • Tian, C., He, X., Zhong, Y. and Chen, J. 2002. Effects of VA mycorrhizae and Frankia dual inoculation on growth and nitrogen fixation of Hippophae tibetana. Forest Ecol. Managem. 170: 307-312.
  • Tain, C. Y, Feng, G., Li, X. L. and Zhang, F. S. 2004. Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants Appl. Soil Ecol. 26: 143-148.
  • Tomar, O. S., Minhas, P. S., Sharma, V. K. and Gupt, R. J. K. 2003. Response of nine forage grasses to saline irrigation and its schedules in a semi-arid climate of north-west India. J. Arid Environ. 55: 533-544.
  • Trouvelot, A., Kough, J. and Gianinazzi-Pearson, V. 1986. Measure des taux de mycorhization VA d UN system radiculaire. Recherche de methode d, estimation ayant une signification fonctionnelle. In: Netical aspects of mycorrhizae. Pp. 217-221. Institut National de la Recherche Agronomique. Press, Paris.
  • Valdes, M. and Sanchez-Francia, D. 1996. Response of Alnus and Casuarina to endomycorrhizal inoculation. Rev. Mexicana Microbiol. 12: 65-67.
  • Veatch, M. E., Smith, S. E. and Vandemark, F. 2004. Shoot biomass productions of Medicago truncatula Exposed to NaCl. Crop Sci. 44: 1008-1013.
  • Yano-Melo, A. M., Saggin, O. J. and Maia, L. C. 2003. Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric. Ecosyst. Environ. 95: 343-348.
  • Zahran, H. H. and Abu-Gharbia, M. A. 1995. Development and structure of bacterial root-nodules of two Egyptian cultivars of Vicia faba L. under salt and water stresses. Bull. Fac. Sci. Assiut Univ. 24: 1-10.
  • Zahran, H. H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Molecular Biol Rev. 63: 968-989.
  • Zandavalli, R. B., Dillenburg, L. R. and Paulo, V. D. 2004. Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with the mycorrhizal fungus Glomus clarum. Appl. Soil Ecol. 25(3): 245-255.
  • Zou, N., Dort, P. J. and. Marcar, N. E. 1995. Interaction of salinity and rhizobial strains on growth and N2 fixation by Acacia ampliceps. Soil Biol. Biochem. 27: 409-413.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.