329
Views
0
CrossRef citations to date
0
Altmetric
Editorials

A role for bioenergetic abnormalities in the pathophysiology of schizophrenia

, PhD. , M.D. (Associate Professor of Psychiatry)
Pages 289-293 | Published online: 08 Nov 2016

References

  • Fusar-Poli P, Borgwardt S, Bechdolf A, Addington J, Riecher-Rössler A, Schultze-Lutter F, et al. The psychosis high-risk state: a comprehensive state-of-the-art review. JAMA Psychiatry 2013; 70(1): 107–20.
  • Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995; 52(12): 998–1007.
  • Goff DC, Coyle JT. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 2001; 158(9): 1367–77.
  • Coyle JT. NMDA receptor and schizophrenia: a brief history. Schizophr Bull 2012; 38(5): 920–6.
  • Basu AC, Tsai GE, Ma CL, Ehmsen JT, Mustafa AK, Han L, et al. Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 2009; 14(7): 719–27.
  • Coyle JT. The GABA-glutamate connection in schizophrenia: which is the proximate cause? Biochem Pharmacol 2004; 68(8): 1507–14.
  • Conn PJ, Lindsley CW, Jones CK. Activation of metabotropic glutamate receptors as a novel approach for the treatment of schizophrenia. Trends Pharmacol Sci 2009; 30(1): 25–31.
  • Hashimoto, K. Glycine transport inhibitors for the treatment of schizophrenia. Open Med Chem J 2010; 4: 10–9.
  • Fusar-Poli P, Radua J, McGuire P, Borgwardt S. Neuroanatomical Maps of Psychosis Onset: Voxel-wise Meta- Analysis of Antipsychotic-Naive VBM Studies. Schizophr Bull 2012; 38(6): 1297–307.
  • Öngür D, Haddad S, Prescot AP, Jensen JE, Siburian R, Cohen BM, et al. Relationship between genetic variation in the glutaminase gene GLS1 and brain glutamine/glutamate ratio measured in vivo. Biol Psychiatry 2011; 70(2): 169–74.
  • Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci USA 1998; 95(1): 316–21.
  • Shen J, Petersen KF, Behar KL, Brown P, Nixon TW, Mason GF, et al. Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci USA 1999; 96(14): 8235–40.
  • Shulman RG, Rothman DL, Behar KL, Hyder F. Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci 2004; 27(8): 489–95.
  • Du F, Zhu XH, Zhang Y, Friedman M, Zhang N, Ugurbil K, et al. Tightly coupled brain activity and cerebral ATP metabolic rate. Proc Natl Acad Sci USA 2008; 105(17): 6409–14.
  • Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 2001; 21(10): 1133–45.
  • Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 1997; 77(3): 731–58.
  • Wallimann T, Hemmer W. Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem 1994; 133–134: 193–220.
  • Saks VA, Ventura-Clapier R, Aliev MK. Metabolic control and metabolic capacity: two aspects of creatine kinase functioning in the cells. Biochim Biophys Acta 1996; 1274(3): 81–8.
  • Kemp GJ. Non-invasive methods for studying brain energy metabolism: what they show and what it means. Dev Neurosci 2000; 22(5–6): 418–28.
  • Weinberger DR, Berman KF. Speculation on the meaning of cerebral metabolic hypofrontality in schizophrenia. Schizophr Bull 1988; 14(2): 157–68.
  • P Pettegrew JW, Keshavan MS, Panchalingam K, Strychor S, Kaplan DB, Tretta MG, et al. Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Arch Gen Psychiatry 1991; 48(6): 563–8.
  • Smesny S, Rosburg T, Nenadic I, Fenk KP, Kunstmann S, Rzanny R, et al. Metabolic mapping using 2D 31P-MR spectroscopy reveals frontal and thalamic metabolic abnormalities in schizophrenia. Neuroimage 2007; 35(2): 729–37. Epub 2006 Dec 29.
  • Ben-Shachar D, Karry R. Sp1 expression is disrupted in schizophrenia; a possible mechanism for the abnormal expression of mitochondrial complex I genes, NDUFV1 and NDUFV2. PLoS One 2007; 2(9): e817.
  • Ben-Shachar D, Laifenfeld D. Mitochondria, synaptic plasticity, and schizophrenia. Int Rev Neurobiol 2004; 59: 273–96.
  • Du F, Zhu XH, Qiao H, Zhang X, Chen W. Efficient in vivo 31P magnetization transfer approach for noninvasively determining multiple kinetic parameters and metabolic fluxes of ATP metabolism in the human brain. Magn Reson Med 2007; 57(1): 103–14.
  • Du F, Cooper A, Lukas SE, Cohen BM, Ongür D. Creatine kinase and ATP synthase reaction rates in human frontal lobe measured by (31)P magnetization transfer spectroscopy at 4T. Magn Reson Imaging 2013; 31(1): 102–8.
  • Tkac I, Henry PG, Zacharoff L, Wedel M, Gong W, Deelchand DK, et al. Homeostatic adaptations in brain energy metabolism in mouse models of Huntington disease. J Cereb Blood Flow Metab 2012; 32(11): 1977–88.
  • Mulcrone J, Whatley SA, Ferrier IN, Marchbanks RM. A study of altered gene expression in frontal cortex from schizophrenic patients using differential screening. Schizophr Res 1995; 14(3): 203–13.
  • Siegel BV Jr, Buchsbaum MS, Bunney WE Jr, Gottschalk LA, Haier RJ, Lohr JB, et al. Cortical-striatal-thalamic circuits and brain glucose metabolic activity in 70 unmedicated male schizophrenic patients. Am J Psychiatry 1993; 150(9): 1325–36.
  • Mulcrone J, Whatley SA, Marchbanks R, Wildenauer D, Altmark D, Daoud H, et al. Genetic linkage analysis of schizophrenia using chromosome 11q13-24 markers in Israeli pedigrees. Am J Med Genet 1995; 60(2): 103–8.
  • Whatley SA, Curti D, Marchbanks RM. Mitochondrial involvement in schizophrenia and other functional psychoses. Neurochem Res 1996; 21(9): 995–1004.
  • Stanley JA, Williamson PC, Drost DJ, Carr TJ, Rylett RJ, Malla A, et al. An in vivo study of the prefrontal cortex of schizophrenic patients at different stages of illness via phosphorus magnetic resonance spectroscopy. Arch Gen Psychiatry 1995; 52(5): 399–406.
  • Volz HP, Rzanny R, May S, Hegewald H, Preussler B, Hajek M, et al. 31P magnetic resonance spectroscopy in the dorsolateral prefrontal cortex of schizophrenics with a volume selective technique—preliminary findings. Biol Psychiatry 1997; 41(6): 644–8.
  • Volz HP, Rzanny R, Rössger G, Hübner G, Kreitschmann-Andermahr I, Kaiser WA, et al. Decreased energy demanding processes in the frontal lobes of schizophrenics due to neuroleptics? A 31P-magneto-resonance spectroscopic study. Psychiatry Res 1997; 76(2–3): 123–9.
  • Kato T, Shioiri T, Murashita J, Hamakawa H, Inubushi T, Takahashi S. Lateralized abnormality of high-energy phosphate and bilateral reduction of phosphomonoester measured by phosphorus-31 magnetic resonance spectroscopy of the frontal lobes in schizophrenia. Psychiatry Res 1995; 61(3): 151–60.
  • Blüml S, Tan J, Harris K, Adatia N, Karme A, Sproull T, et al. Quantitative proton-decoupled 31P MRS of the schizophrenic brain in vivo. J Comput Assist Tomogr 1999; 23(2): 272–5.
  • Deicken RF, Calabrese G, Merrin EL, Meyerhoff DJ, Dillon WP, Weiner MW, et al. 31Phosphorus magnetic resonance spectroscopy of the frontal and parietal lobes in chronic schizophrenia. Biol Psychiatry 1994; 36(8): 503–10.
  • Fukuzako H. Neurochemical investigation of the schizophrenic brain by in vivo phosphorus magnetic resonance spectroscopy. World J Biol Psychiatry 2001; 2(2): 70–82.
  • Maddock RJ, Buonocore MH. MR Spectroscopic Studies of the Brain in Psychiatric Disorders. Curr Top Behav Neurosci 2012 Feb 1. doi:10.1007/7854_2011_197.
  • Stanley JA, Pettegrew JW, Keshavan MS. Magnetic resonance spectroscopy in schizophrenia: methodological issues and findings-part I. Biol Psychiatry 2000; 48(5): 357–68.
  • Keshavan MS, Stanley JA, Pettegrew JW. Magnetic resonance spectroscopy in schizophrenia: methodological issues and findings—part II. Biol Psychiatry 2000; 48(5): 369–80.
  • Smesny S, Langbein K, Rzanny R, Gussew A, Burmeister HP, Reichenbach JR, et al. Antipsychotic drug effects on left prefrontal phospholipid metabolism: a follow-up 31P-2D- CSI study of haloperidol and risperidone in acutely ill chronic schizophrenia patients. Schizophr Res 2012; 138(2–3): 164–70.
  • Tomasi D, Wang GJ, Wang R, Backus W, Geliebter A, Telang F, et al. Association of body mass and brain activation during gastric distention: implications for obesity. PLoS One 2009; 4(8): e6847. doi: 10.1371/journal.pone.0006847.
  • Laursen TM, Munk-Olsen T, Vestergaard M. Life expectancy and cardiovascular mortality in persons with schizophrenia. Curr Opin Psychiatry 2012; 25(2): 83–8.
  • Meyer JM, Stahl SM. The metabolic syndrome and schizophrenia. Acta Psychiatr Scand 2009; 119(1): 4–14.
  • Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci USA 2007; 104(31): 12587–94.
  • Zhu XH, Zhang Y, Tian RX, Lei H, Zhang N, Zhang X, et al. Development of (17)O NMR approach for fast imaging of cerebral metabolic rate of oxygen in rat brain at high field. Proc Natl Acad Sci USA 2002; 99(20): 13194–9.
  • Chen W, Zhu XH, Gruetter R, Seaquist ER, Adriany G, Ugurbil K. Study of tricarboxylic acid cycle flux changes in human visual cortex during hemifield visual stimulation using (1) H-[(13)C] MRS and fMRI. Magn Reson Med 2001; 45(3): 349–55.
  • Gruetter R, Seaquist ER, Kim S, Ugurbil K. Localized in vivo 13C-NMR of glutamate metabolism in the human brain: initial results at 4 tesla. Dev Neurosci 1998; 20(4–5): 380–8.
  • Hyder F, Chase JR, Behar KL, Mason GF, Siddeek M, Rothman DL, et al. Increase tricarboxylic acid cycle flux in rat brain during forepaw stimulation detected with 1H-{13C} NMR. Proc Natl Acad Sci USA 1996; 93(15): 7612–7.
  • van Zijl PC, Rothman D. NMR study of brain C-13-glucose uptake and metabolism—present status. Magn Reson Imaging 1995; 13(8): 1213–21.
  • Rothman DL, Novotny EJ, Shulman GI, Howseman AM, Petroff OA, Mason G, et al. 1H-{13C} NMR measurements of [4-13C] glutamate turnover in human brain. Proc Natl Acad Sci USA 1992; 89(20): 9603–6.
  • Fox PT, Raichle ME, Mintun MA, Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science 1988; 241(4864): 462–4.
  • Zhu XH, Zhang N, Zhang Y, Zhang X, Ugurbil K, Chen W. In vivo 17O NMR approaches for brain study at high field. NMR Biomed 2005; 18(2): 83–103.
  • Shulman RG, Rothman DL. Metabolomics by in vivo NMR. West Susex:John Wiley & Sons; 2005.
  • Shulman RG, Rothman DL. Brain energetics and neuronal activity: applications to fMRI and medicine. West Susex:John Wiley & Sons; 2004.
  • Lei H, Ugurbil K, Chen W. Measurement of unidirectional Pi to ATP flux in human visual cortex at 7 T by using in vivo 31P magnetic resonance spectroscopy. Proc Natl Acad Sci USA 2003; 100(24): 14409–14.
  • Speck O, Scheffler K, Hennig J. Fast 31P chemical shift imaging using SSFP methods. Magn Reson Med 2002; 48(4): 633–9.
  • Joubert F, Mazet JL, Mateo P, Hoerter JA. 31P NMR detection of subcellular creatine kinase fluxes in the perfused rat heart: contractility modifies energy transfer pathways. J Biol Chem 2002; 277(21): 18469–76.
  • Hetherington HP, Pan JW, Spencer DD. 1H and 31P spectroscopy and bioenergetics in the lateralization of seizures in temporal lobe epilepsy. J Magn Reson Imaging 2002; 16(4): 477–83.
  • Jeneson JA, Westerhoff HV, Kushmerick MJ. A metabolic control analysis of kinetic controls in ATP free energy metabolism in contracting skeletal muscle. Am J Physiol Cell Physiol 2000; 279(3): C813–32.
  • Mora BN, Narasimhan PT, Ross BD. 31P magnetization transfer studies in the monkey brain. Magn Reson Med 1992; 26(1): 100–15.
  • Bottomley PA, Hardy CJ, Roemer PB, Weiss RG. Problems and expediencies in human 31P spectroscopy. The definition of localized volumes, dealing with saturation and the technique-dependence of quantification. NMR Biomed 1989; 2(5–6): 284–9.
  • El-Sharkawy AM, Schär M, Ouwerkerk R, Weiss RG, Bottomley PA. Quantitative cardiac 31P spectroscopy at 3 Tesla using adiabatic pulses. Magn Reson Med 2009; 61(4): 785–95.
  • Du F, Zhang Y, Iltis I, Marjanska M, Zhu XH, Henry PG, et al. In vivo proton MRS to quantify anesthetic effects of pentobarbital on cerebral metabolism and brain activity in rat. Magn Reson Med 2009; 62(6): 1385–93.
  • Chaumeil MM, Valette J, Guillermier M, Brouillet E, Boumezbeur F, Herard AS, et al. Multimodal neuroimaging provides a highly consistent picture of energy metabolism, validating 31P MRS for measuring brain ATP synthesis. Proc Natl Acad Sci USA 2009; 106(10): 3988–93.
  • Du F, Cooper AJ, Thida T, Sehovic S, Lukas SE, Cohen BM, et al. In Vivo Evidence for Cerebral Bioenergetic Abnormalities in Schizophrenia Measured Using 31P Magnetization Transfer Spectroscopy. J JAMA Psychiatry 2013 Nov 6. doi: 10.1001/jamapsychiatry.2013.2287.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.