501
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Modeling forest biomass using Very-High-Resolution data—Combining textural, spectral and photogrammetric predictors derived from spaceborne stereo images

, , , , , & show all
Pages 245-261 | Received 25 Dec 2014, Accepted 28 Apr 2015, Published online: 17 Feb 2017

References

  • Anaya J.A., Chuvieco E., Palacios-Orueta A. (2009)—Aboveground biomass assessment in Colombia: A remote sensing approach. Forest Ecology and Management, 257 (4): 1237–1246. doi: http://dx.doi.org/10.1016/j.foreco.2008.11.016.
  • Andersen H.E., Reutebuch S.E., McGaughey R.J. (2005)—Accuracy of an IFSAR-derived digital terrain model under a conifer forest canopy. Canadian Journal of Remote Sensing, 31 (4): 283–288. doi: http://dx.doi.org/10.5589/m05-016.
  • Anderson J.E., Plourde L.C., Martin M.E., Braswell B.H., Smith M.L., Dubayah R.O., Hofton M.A., Blair J.B. (2008)—Integrating waveform LiDAR with hyperspectral imagery for inventory of a northern temperate forest. Remote Sensing Environment, 112: 1856–1870. doi: http://dx.doi.org/10.1016/j.rse.2007.09.009.
  • Annighöfer P., Mölder I., Zerbe S., Kawaletz H., Terwei A., Ammer C. (2012)—Biomass functions for the two alien tree species Prunus serotina Ehrh. and Robinia pseudoacacia L. in floodplain forests of Northern Italy. European Journal of Forest Research, 131 (5): 1619–1635. doi: http://dx.doi.org/10.1007/s10342-012-0629-2.
  • Balzter H., Rowland C.S., Saich P. (2007)—Forest canopy height and carbon estimation at Monks Wood National Nature Reserve, UK, using dual-wavelength SAR interferometry. Remote Sensing of Environment, 108 (3): 224–239. doi: http://dx.doi.org/10.1016/j.rse.2006.11.014.
  • Becker D.R., Skog K., Hellman A., Halvorsen K.E., Mace T. (2009)—An outlook for sustainable forest bioenergy production in the Lake States. Energy Policy, 37 (12): 5687–5693. doi: http://dx.doi.org/10.1016/j.enpol.2009.08.033.
  • Borra S., Di Ciaccio A. (2010)—Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods. Computational Statistics & Data Analysis, 54 (12): 2976–2989 doi: http://dx.doi.org/10.1016/j.csda.2010.03.004.
  • Breiman L. (2001)—Random Forests. Machine Learning, 45 (1): 5–32. doi: http://dx.doi.org/10.1023/A:1010933404324.
  • Carleer A., Wolff E. (2004)—Exploitation of very high resolution satellite data for tree species identification. Photogrammetric Engineering & Remote Sensing, 70 (1): 135–140. doi: http://dx.doi.org/10.14358/PERS.70.L135.
  • Cheriyadat A., Bruce L.M. (2003)—Why principal component analysis is not an appropriate feature extraction method for hyperspectral data. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 6: 3420–3422. doi: http://dx.doi.org/10.1109/IGARSS.2003.1294808.
  • Clark M.L., Roberts D.A., Ewel J.J., Clark D.B. (2011)—Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors. Remote Sensing of Environment, 115: 2931–2942. doi: http://dx.doi.org/10.1016/j.rse.2010.08.029.
  • Corvalán P., Galleguillos M., Hernández J. (2014)—Presencia, abundancia y asociatividad de Citronella mucronata en bosques secundarios de Nothofagus obliqua en la precordillera de Curicó, región del Maule, Chile. Bosque, 35 (3): 257–479.
  • Eastman J.R., Fulk M. (1993)—Long sequence time series evaluation using standardised principal components. Photogrammetric Engineering and Remote Sensing, 59: 991–996.
  • Eckert S. (2012)—Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data. Remote sensing, 4 (4): 810–829. doi: http://dx.doi.org/10.3390/rs4040810.
  • Efron B., Tibshirani R. (1997)—Improvements on cross-validation: the 632+ bootstrap method. Journal of the American Statistical Association, 92 (438): 548–560. doi: http://dx.doi.org/10.1080/01621459.1997.10474007.
  • Fassnacht F.E., Hartig F., Latifi H., Berge, C., Hernández J., Corvalán P., Koch B. (2014)—Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment, 154: 102–114. doi: http://dx.doi.org/10.1016/j.rse.2014.07.028.
  • Garcia-Gutierrez J., Gonzalez-Ferreiro E., Mateos-Garcia D., Riquelme-Santos J.C, Miranda D. (2011)—A Comparative Study between Two Regression Methods on LiDAR Data: A Case Study. Proceedings of 6th International Conference on Hybrid Artificial Intelligent Systems, May 23–25, Wroclaw, Poland, (II): 311–318. doi: http://dx.doi.org/10.1007/978-3-642-21222-2_38.
  • Huaguo H.U.A.N.G., Biao C. (2011)—Experiment on extracting forest canopy height from WorldView-2. In: 8th International Conference on Fuzzy Systems and Knowledge Discovery, 4: 2614–2617. doi: http://dx.doi.org/10.1109/FSKD.2011.6019949.
  • Kattenborn T., Maack J., Faßnacht F., Enßle F., Ermert J., Koch B. (2015)—Mapping forest biomass from space—Fusion of hyperspectral EOl-hyperion data and Tandem-X and WorldView-2 canopy height models. International Journal of Applied Earth Observation and Geoinformation, 35: 359–367. doi: http://dx.doi.org/10.1016/jjag.2014.10.008.
  • Koch B. (2010)—Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS Journal of Photogrammetry and Remote Sensing, 65: 581–590. doi: http://dx.doi.org/10.1016/j.isprsjprs.2010.09.001.
  • Latifi H., Nothdurft A., Koch B. (2010)—Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors. Forestry, 83 (4): 395–407. doi: http://dx.doi.org/10.1093/forestry/cpq022.
  • Lefsky M.A., Cohen W.B., Harding D.J., Parker G.G., Acker S.A., Gower S.T. (2002)—Lidar remote sensing of above-ground biomass in three biomes. Global Ecology and Biogeography, 11: 393–399. doi: http://dx.doi.org/10.1046/j.1466-822x.2002.00303.x.
  • Liaw A., Wiener M. (2002)—Classification and regression by random Forest. R news, 2 (3): 18–22. doi: http://dx.doi.org/10.1016/j.rse.2009.01.003.
  • Lu D. (2006)—The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27: 1297–1328. doi: http://dx.doi.org/10.1080/01431160500486732.
  • Lu D., Batistella M., Moran E. (2005)—Satellite estimation of aboveground biomass and impacts of forest stand structure. Photogrammetric Engineering & Remote Sensing, 71 (8): 967–974. doi: http://dx.doi.org/10.14358/PERS.71.8.967.
  • Næsset E., Gobakken T., Solberg S., Gregoire T.G., Nelson R., Stahl G., Weydahl D. (2011)—Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: A case study from a boreal forest area. Remote Sensing of Environment, 115: 3599–3614. doi: http://dx.doi.org/10.1016/j.rse.2011.08.021.
  • Nelson R., Kimes D., Salas W.A. Routhier M. (2000)—Secondary forest age and tropical forest biomass estimation using thematic mapper imagery. Bioscience, 50: 419–431. doi: http://dx.doi.org/10.1641/0006-3568(2000)050[0419:SFAATF]2.0.CO.
  • Neigh C.S., Masek J.G., Bourget P., Cook B., Huang C., Rishmawi K., Zhao F. (2014)—Deciphering the precision of stereo IKONOS canopy height models for US forests with G-LiHT airborne LiDAR. Remote Sensing, 6 (3): 1762–1782. doi: http://dx.doi.org/10.3390/rs6031762#sthash.Js7cifNh.dpuf.
  • Ozdemir I., Karnieli A. (2011)—Predicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel. International Journal of Applied Earth Observation and Geoinformation, 13 (5): 701–710. doi: http://dx.doi.org/10.1016/j.jag.2011.05.006.
  • R Core Team (2009)—Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available on line at: http://www.R-project.org.
  • Shamsoddini A., Trinder J.C., Turner R. (2013)—Pine plantation structure mapping using WorldView-2 multispectral image. International Journal of Remote Sensing, 34 (11): 3986–4007. doi: http://dx.doi.org/10.1080/01431161.2013.772308.
  • St-Onge B., Hu Y., Vega C. (2008)—Mapping the height and above-ground biomass of a mixed forest using lidar and stereo Ikonos images. International Journal of Remote Sensing, 29 (5): 1277–1294. doi: http://dx.doi.org/10.1080/01431160701736505.
  • Straub C., Tian J., Seitz R., Reinartz P. (2013)—Assessment of Cartosat-1 and WorldView- 2 stereo imagery in combination with a LiDAR-DTM for timber volume estimation in a highly structured forest in Germany. Forestry, 86 (4): 463–473. doi: http://dx.doi.org/10.1093/forestry/cpt017.
  • Waser L.T., Küchler M., Jütte K., Stampfer T. (2014)—Evaluating the Potential of World View- 2 Data to Classify Tree Species and Different Levels of Ash Mortality. Remote Sensing, 6 (5): 4515–4545. doi: http://dx.doi.org/10.1093/forestry/cpt01710.3390/rs6054515.
  • Weinacker H., Koch B., Weinacker R. (2004)—Treesvis-a software system for simultaneous 3d-real-time visualisation of dtm, dsm, laser raw data, multispectral data, simple tree and building models. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36: 90–95. Available on line at: http://www.isprs.org/proceedings/XXXVI/8-W2/WEINACKER2.pdf.
  • Zell J. (2008)—Methoden für die Ermittlung, Modellierung und Prognose der Kohlenstoffspeicherung in Wäldern auf Grundlage permanenter Großrauminventuren. PhD Dissertation, 152. Available on line at: http://www.freidok.uni-freiburg.de/volltexte/5400/pdf/zell_diss.pdf.
  • Zianis D., Muukkonen P., Mäkipää R., Mencuccini M. (2005)—Biomass and Stem Volume Equations for Tree Species in Europe. Silva Fennica, 4 (63). Available on line at: http://www.metla.fi/silvafennica/full/smf/smf004.pdf.
  • Zolkos S.G., Goetz S.J., Dubayah R. (2013)—A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sensing of Environment, 128: 289–298. doi: http://dx.doi.org/10.1016/j.rse.2012.10.017.