491
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of ALS based models for estimating aboveground biomass in three types of Mediterranean forest

, , , , &
Pages 185-204 | Received 13 Aug 2015, Accepted 24 Mar 2016, Published online: 17 Feb 2017

References

  • Asner G.P., Mascara J., Muller-Landau H.C., Vieilledent G., Vaudry R., Rasamoelina M., Hall J.S., Van Breugel M. (2012)—A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia, 168: 1147–1160. doi: http://dx.doi.org/10.1007/s00442-011-2165-z.
  • Belsley D.A., Kuh E., Welsch R.E. (2005)—Regression diagnostics: Identifying influential data and sources of collinearity. John Wiley & Sons, New Jersey, pp. 310. doi: http://dx.doi.org/10.1002/0471725153.
  • Bouvier M., Durrieu S., Fournier R.A., Renaud J.P. (2015)—Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data. Remote Sensing of Environment, 156: 322–334. doi: http://dx.doi.org/10.1016/).rse.2014.10.004.
  • Cao L., Coops N., Hermosilla T., Innes J., Dai J., She G. (2014)—Using Small-Footprint Discrete and Full-Waveform Airborne LiDAR Metrics to Estimate Total Biomass and Biomass Components in Subtropical Forests. Remote Sensing, 6: 7110–7135. doi: http://dx.doi.org/10.3390/rs6087110.
  • Chirici G., McRoberts R.E., Fattorini L., Mura M., Marchetti M. (2016)—Comparing echo-based and canopy height model-based metrics for enhancing estimation of forest aboveground biomass in a model-assisted framework. Remote Sensing of Environment, 174: 1–9. doi: http://dx.doi.org/10.1016/j.rse.2015.11.010.
  • Corona P., Cartisano R., Salvati R., Chirici G., Floris A., Di Martino P., Marchetti M., Scrinzi G., Clementel F., Travaglini D., Torresan C. (2012)—Airborne Laser Scanning to support forest resource management under alpine, temperate and Mediterranean environments in Italy. European Journal of Remote Sensing, 45: 27–37. doi: http://dx.doi.org/10.5721/EuJRS20124503.
  • Dyer D.W. (2006)—Watchmaker Framework for Evolutionary Computation. Available online at: http://watchmaker.uncommons.org/examples/biomorphs.php (Accessed 18 June 2006).
  • García-Gutiérrez J., González-Ferreiro E., Riquelme-Santos J.C., Miranda D., Diéguez-Aranda U., Navarro-Cerrillo R.M. (2014)—Evolutionary feature selection to estimate forest stand variables using LiDAR. International Journal of Applied Earth Observation and Geoinformation, 26: 119–131. doi: http://dx.doi.org/10.1016/jjag.2013.06.005.
  • García M., Riaño D., Chuvieco E., Danson F.M. (2010)—Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sensing of Environment, 114: 816–830. doi: http://dx.doi.org/10.1016/).rse.2009.11.021.
  • Gleason C.J., Im J. (2012)—Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sensing of Environment, 125: 80–91. doi: http://dx.doi.org/10.1016/j.rse.2012.07.006.
  • Görgens E.B., Packalen P., da Silva A.G.P., Alvares C.A., Campo O.C., Stape J.L., Rodriguez L.C.E. (2015)—Stand volume models based on stable metrics as from multiple ALS acquisitions in Eucalyptus plantations. Annals of Forest Science, 72: 489–498. doi. http://dx.doi.org/10.1007/s13595-015-0457-x.
  • González-Ferreiro E., Diéguez-Aranda U., Miranda D. (2012)—Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities. Forestry, 85: 281–292. doi: http://dx.doi.org/10.1093/forestry/cps002.
  • González-Ferreiro E., Miranda D., Barreiro-Fernández L., Buján S., García-Gutiérrez J., Diéguez-Aranda U. (2013)—Modelling stand biomass fractions in Galician Eucalyptus globulus plantations by use of different LiDAR pulse densities. Forest Systems, 22: 510–525. doi: http://dx.doi.org/10.5424/fs/2013223-03878.
  • González-Ferreiro E., Diéguez-Aranda U., Crecente-Campo F., Barreiro-Fernández L., Miranda D., Castedo-Dorado F. (2014)—Modelling canopy fuel variables for Pinus radiata D. Don in NW Spain with low-density LiDAR data. International Journal of Wildland Fire, 23: 350. doi: http://dx.doi.org/10.1071/WF13054.
  • González-Olabarria J.R., Rodríguez F., Fernández-Landa A., Mola-Yudego B. (2012)—Mapping fire risk in the Model Forest of Urbión (Spain) based on airborne LiDAR measurements. Forest Ecology and Management, 282: 149–156. doi: http://dx.doi.org/10.1016/j.foreco.2012.06.056.
  • Hall S.A., Burke I.C., Box D.O., Kaufmann M.R., Stoker J.M. (2005)—Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests. Forest Ecology and Management, 208: 189–209. doi: http://dx.doi.org/10.1016/j.foreco.2004.12.001.
  • Hawbaker T.J., Gobakken T., Lesak A., Tremborg E., Contrucci K., Radeloff V. (2010)—Light detection and ranging-based measures of mixed hardwood forest structure. Forest science, 56: 313–326. doi: http://dx.doi.org/10.1029/2008JG000870.
  • Holland J.H. (1992)—Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artific. MIT Press, Cambridge, pp. 183.
  • Lefsky M.A., Cohen W.B., Harding D.J., Parker G.G., Acker S.A., Gower S.T. (2002)—Lidar remote sensing of above-ground biomass in three biomes. Global ecology and biogeography, 11: 393–399. doi: http://dx.doi.org/10.1046/j.1466-822x.2002.00303.x.
  • Lefsky M.A., Hudak A.T., Cohen W.B., Acker S.A. (2005)—Patterns of covariance between forest stand and canopy structure in the Pacific Northwest. Remote Sensing of Environment, 95: 517–531. doi: http://dx.doi.org/10.1016/j.rse.2005.01.004.
  • Lim K.S., Treitz P.M. (2004)—Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators. Scandinavian Journal of Forest Research, 19: 558–570. doi: http://dx.doi.org/10.1080/02827580410019490.
  • Li Y., Andersen H.E., McGaughey R. (2008)—A comparison of statistical methods for estimating forest biomass from light detection and ranging data. Western Journal of Applied Forestry, 23: 223–231. doi: http://dx.doi.org/10.1117/1.JRS.8.081598.
  • Lovell J.L., Jupp D.L.B., Newnham G.J., Coops N.C., Culvenor D.S. (2005)—Simulation study for finding optimal lidar acquisition parameters for forest height retrieval. Forest Ecology and Management, 214 (1): 398–412. doi: http://dx.doi.org/10.1016/j.foreco.2004.07.077.
  • Maltamo M., Næsset E., Vauhkonen J. (2014)—Forestry applications of airborne laser scanning. Springer, Dordrecht. doi: http://dx.doi.org/10.1007/978-94-017-8663-8.
  • McGaughey R. (2014)—FUSION/LDV: software for LIDAR Data Analysis and Visualization. In: US Department of Agriculture, F.S., Pacific Northwest Research Station, Seattle, USA, pp. 123.
  • Montaghi A., Corona P., Dalponte M., Gianelle D., Chirici G., Olsson, H. (2013)—Airborne laser scanning of forest resources: an overview of research in Italy as a commentary case study. International Journal of Applied Earth Observation and Geoinformation, 23: 288–300. doi: http://dx.doi.org/10.1016/jjag.2012.10.002.
  • Montealegre A.L., Lamelas M.T., de la Riva J., García-Martín A., Escribano F. (2016)—Use of low point density ALS data to estimate stand-level structural variables in Mediterranean Aleppo pine forest. Forestry, cpw008. doi: http://dx.doi.org/10.1093/forestry/cpw008.
  • Næsset E. (2002)—Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment, 80: 88–99. doi: http://dx.doi.org/10.1016/S0034-4257(01)00290-5
  • Næsset E. (2004)—Estimation of above-and below-ground biomass in boreal forest ecosystems. International Archives of Photogrammetry, Remote Sensing Spatial and Information Sciences, 36: 145–148. doi: http://dx.doi.org/10.1016/j.rse.2008.03.004.
  • Ni-Meister W., Lee S., Strahler A.H., Woodcock C.E., Schaaf C., Yao T., Ranson K.J., Sun G., Blair J.B. (2010)—Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing. Journal of Geophysical Research: Biogeosciences, 115 (G2). doi: http://dx.doi.org/10.1029/2009JG000936.
  • Nord-Larsen T., Riis-Nielsen T. (2010)—Developing an airborne laser scanning dominant height model from a countrywide scanning survey and national forest inventory data. Scandinavian Journal of Forest Research, 25 (3): 262–272. doi: http://dx.doi.org/10.1080/02827581.2010.486000.
  • R Development Core Team (2014)—R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at: http://www.R-project.org (Accessed 27 October 2010).
  • Ruiz L.A., Hermosilla T., Mauro F., Godino M. (2014)—Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates. Forests, 5 (5): 936951. doi: http://dx.doi.org/10.3390/f5050936.
  • Ruiz-Peinado R., del Rio M., Montero G. (2011)—New models for estimating the carbon sink capacity of Spanish softwood species. Forest Systems, 20: 176–188. doi: http://dx.doi.org/10.5424/fs/2011201-11643.
  • Ruiz-Peinado R., Montero G., Del Río M. (2012)—Biomass models to estimate carbon stocks for hardwood tree species. Forest systems, 21: 42–52. doi: http://dx.doi.org/10.5424/fs/2112211-02193.
  • Shapiro S.S., Wilk M.B., Chen H.J. (1968)—A comparative study of various tests for normality. Journal of the American Statistical Association, 63: 1343–1372. doi: http://dx.doi.org/10.1080/01621459.1968.10480932.
  • Stephens P.R., Kimberley M.O., Beets P.N., Paul T.S., Searles N., Bell A., Brack C., Broadley J. (2012)—Airborne scanning LiDAR in a double sampling forest carbon inventory. Remote Sensing of Environment, 117: 348–357. doi: http://dx.doi.org/10.1016/j.rse.2011.10.009.
  • Stevens J.P. (2012)—Applied multivariate statistics for the social sciences. Taylor & Francis, New York, pp. 652.
  • Thomas V., Treitz P., McCaughey J., Morrison I. (2006)—Mapping stand-level forest biophysical variables for a mixedwood boreal forest using lidar: an examination of scanning density. Canadian Journal of Forest Research, 36 (1): 34–47. doi: http://dx.doi.org/10.1139/x05-230.
  • Treitz P., Lim K., Woods M., Pitt D., Nesbitt D., Etheridge D. (2012)—LiDAR Sampling Density for Forest Resource Inventories in Ontario, Canada. Remote Sensing, 4: 830–848. doi: http://dx.doi.org/10.3390/rs4040830.
  • Valbuena R., Mauro F., Aijonilla F.J., Manzanera J.A. (2011)—Comparing airborne laser scanning-imagery fusion methods based on geometric accuracy in forested areas. Remote Sensing of Environment, 115: 1942–1954. doi: http://dx.doi.org/10.1016/j.rse.2011.03.017.
  • Vauhkonen J., Maltamo M., McRoberts R. E., Næsset E. (2014)—Introduction to Forestry Applications of Airborne Laser Scanning. In Forestry applications of airborne laser scanning: Concepts and cases studies. Springer, Dordrecht, pp. 1–16. doi: http://dx.doi.org/10.1007/978-94-017-8663-8.
  • Véga C., Renaud J.P., Durrieu S., Bouvier M. (2016)—On the interest of penetration depth, canopy area and volume metrics to improve Lidar-based models of forest parameters. Remote Sensing of Environment, 175: 32–42. doi: http://dx.doi.org/10.1016/j.rse.2015.12.039.
  • White J.C., Wulder M.A., Varhola A., Vastaranta M., Coops N.C., Pitt D., Cook B.D., Woods M. (2013)—A best practices guide for generatingforest inventory attributes from airborne laser scanning data using an area-based approach. The Forestry Chronicle, 89: 722–723. doi: http://dx.doi.org/10.5558/tfc2013-132.
  • Zhao F., Guo Q., Kelly M. (2012)—Allometric equation choice impacts lidar-based forest biomass estimates: A case study from the Sierra National Forest, CA. Agricultural and forest meteorology, 165: 64–72. doi: http://dx.doi.org/10.1016/j.agrformet.2012.05.019.
  • Zolkos S.G., Goetz S.J., Dubayah R. (2013)—A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sensing of Environment, 128: 289–298. doi: http://dx.doi.org/10.1016/j.rse.2012.10.017.
  • Zonete F., Rodriguez L.C.E., Packalén P. (2010)—Estimação de parâmetros biométricos de plantíos clonais de eucalipto no sul da Bahia: uma aplicação da tecnologia laser aerotransportada. Scientia Forestalis, 38: 225–223.