365
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Relative importance analysis of Landsat, waveform LIDAR and PALSAR inputs for deciduous biomass estimation

, , , , , & show all
Pages 795-807 | Received 30 Aug 2016, Accepted 12 Oct 2016, Published online: 17 Feb 2017

References

  • Attarchi S., Gloaguen R. (2014)—Improving the Estimation of Above Ground Biomass Using Dual Polarimetric PALSAR and ETM+ Data in the Hyrcanian Mountain Forest (Iran). Remote Sensing, 6: 3693–3715. doi: http://dx.doi.org/10.3390/rs6053693.
  • Avitabile V., Baccini A., Friedl M.A., Schmullius C. (2012)—Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sensing of Environment, 117: 366–380. doi: http://dx.doi.org/10.1016/j.rse.2011.10.012.
  • Banskota A., Wynne R.H., Johnson P., Emessiene B. (2009)—Synergistic use of very high-frequency radar and discrete-LiDAR return for estimating biomass in temperate hardwood and mixed forests. Proceedings Silvilaser, College Station, Texas, USA, pp. 81–87.
  • Carreiras J.M., Vasconcelos M.J., Lucas R.M. (2012)—Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa). Remote Sensing of Environment, 121: 426–442. doi: http://dx.doi.org/10.1016/j.rse.2012.02.012.
  • Chang A., Jung J., Kim Y. (2015)—Estimation of forest stand diameter class using airborne lidar and field data. Remote Sensing Letters, 6 (6): 419–428. doi: http://dx.doi.org/10.1080/2150704X.2015.1035770.
  • Dees M., Straub C., Langar P., Koch B. (2006)—Remote sensing based concepts utilizing SPOT5 and for forest habitat mapping and monitoring under the EU Habitat Directive. ONP 10 Test & Benchmarks Report, Part of the geoland project reporting dossier, pp. 53–78.
  • Dees M., Koch B. (2008)—Forestry applications. Advances in Photogrammetry. Remote Sensing and Spatial Information Sciences, 2008 ISPRS Congress Book, pp. 439–468.
  • Deng S., Katoh M., Guan Q., Yin N., Li M. (2014)—Estimating Forest Aboveground Biomass by Combining ALOS PALSAR and WorldView-2 Data: A Case Study at Purple Mountain National Park, Nanjing, China. Remote Sensing, 6: 7878–7910. doi: http://dx.doi.org/10.3390/rs6097878.
  • Dobson M.C., Ulaby F.T., Le Toan T., Beaudion A., Kaschischke E.S., Christensen N. (1992)—Dependence of radar backscatter on coniferous forest biomass. IEEE Transactions on Geoscience and Remote Sensing, 30 (2): 412–415. doi: http://dx.doi.org/10.1109/36.134090.
  • Dube T., Mutanga O. (2015)—Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 101: 36–46. doi: http://dx.doi.org/10.1016/j.isprsjprs.2014.11.001.
  • Fassnacht F.E., Hartig F., Latifi H., Berger C., Hernández J. (2014)—Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment, 154: 102–114. doi: http://dx.doi.org/10.1016/j.rse.2014.07.028.
  • Filippi A.M., Güneralp I., Randall J. (2014)—Hyperspectral remote sensing of aboveground biomass on a river meander bend using multivariate adaptive regression splines and stochastic gradient boosting. Remote Sensing Letters, 5 (5): 432–441. doi: http://dx.doi.org/10.1080/2150704X.2014.915070.
  • Hamdan O., Aziz H.K., Rahman K.A. (2011)—Remotely sensed L-band SAR data for tropical forest biomass estimation. Journal of Tropical Forest Science, 23 (3): 318–327.
  • Hamdan O., Khali Aziz H., Mohd Hasmadi I. (2014)—L-band ALOS PALSAR for biomass estimation of Matang Mangroves, Malaysia. Remote Sensing of Environment, 155: 69–78. doi: http://dx.doi.org/10.1016/j.rse.2014.04.029.
  • Huang W., Sun G., Dubayah R., Cook B., Montesano P., Ni W., Zhang Z. (2013)—Mapping biomass change after forest disturbance: Applying LiDAR footprint-derived models at key map scales. Remote Sensing of Environment, 134: 319–332. doi: http://dx.doi.org/10.1016/j.rse.2013.03.017.
  • Hyyppä J., Hyyppä H., Yu X., Kaartinen H., Kukko A., Holopainen M. (2009)—Forest inventory using small-footprint airborne LiDAR. Forest Inventory Using Small Footprint Airborne Topographic Laser Ranging and Scanning Principles. CRC Press, Boca Raton, pp. 335–370.
  • Jin H., Mountrakis G., Stehman (2014)—Assessing integration of intensity, polarimetric scattering, interferometric coherence and spatial texture metrics in PALSAR-derived land cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 98: 70–84. doi: http://dx.doi.org/10.1016/j.isprsjprs.2014.09.017.
  • Koch B. (2010)—Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS Journal of Photogrammetry and Remote Sensing, 65 (6): 581–590. doi: http://dx.doi.org/10.1016/j.isprsjprs.2010.09.001.
  • Liaw A., Wiener M. (2002)—Classification and Regression by Random Forest. R News, 2 (3): 18–22.
  • Lu D. (2005)—Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. International Journal of Remote Sensing, 26 (12): 2509–2525. doi: http://dx.doi.org/10.1080/01431160500142145.
  • Lu D. (2006)—The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27 (7): 1297–1328. doi: http://dx.doi.org/10.1080/01431160500486732.
  • Lu D., Chen Q., Wang G., Liu L., Li G., Moran E. (2014)—A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9 (1): 63–105. doi: http://dx.doi.org/10.1080/17538947.2014.990526.
  • Mallet C., Bretar F. (2009)—Full waveform topographic LiDAR: State-of-the-art. ISPRS Journal of Photogrammetry and Remote Sensing, 64 (1): 1–16. doi: http://dx.doi.org/10.1016/j.isprsjprs.2008.09.007.
  • Maltamo M., Malinen J., Packalén P., Suvanto A., Kangas J. (2006)—Nonparametric estimation of stem volume using airborne laser scanning, aerial photography and stand register data. Canadian Journal of Forest Research, 36 (2): 426–436. doi: http://dx.doi.org/10.1139/x05-246.
  • Masato H., Saigusa N., Yamagata Y., Hirano T. (2015)—Regional forest biomass estimation using ICESat/GLAS spaceborn LiDAR over Borneo. Carbon Management, 6 (1–2): 1933. doi: http://dx.doi.org/10.1080/17583004.2015.1066638.
  • Mitchard E.T.A., Saatchi S.S., White L.J.T., Abernethy K.A., Jeffery K.J., Lewis S.L., Collins M., Lefsky M.A., Leal M.E., Woodhouse I.H., Meir P. (2012)—Mapping tropical forest biomass with radar and spaceborne LiDAR in Lope National Park, Gabon: Overcoming problems of high biomass and persistent cloud. Biogeosciences, 9: 179–191. doi: http://dx.doi.org/10.5194/bg-9-179-2012.
  • Moghaddam M., Dungan J.L., Acker S. (2002)—Forest variable estimation from fusion of SAR and multispectral optical data. IEEE Transactions on Geoscience and Remote Sensing, 40 (10): 2176–2187. doi: http://dx.doi.org/10.1109/TGRS.2002.804725.
  • Morel A.C., Saatchi S.S., Malhi Y., Berry N.J., Banin L., Burslem D., Nilus R., Ong R.C. (2011)—Estimating aboveground biomass in forest and oil palm plantation in Sabah, Malaysian Borneo using ALOS PALSAR data. Forest Ecology and Management, 262 (9): 1786–1798. doi: http://dx.doi.org/10.1016/j.foreco.2011.07.008.
  • Mui-How P., Saito H. (2003)—Estimation of biomass of a mountainous tropical forest using Landsat TM data. Canadian Journal of Remote Sensing, 29 (4): 429–440. doi: http://dx.doi.org/10.5589/m03-005.
  • Peregon A., Yamagata Y. (2013)—The use of ALOS/PALSAR backscatter to estimate above-ground forest biomass: A case study in Western Siberia. Remote Sensing of Environment, 137: 139–146. doi: http://dx.doi.org/10.1016/j.rse.2013.06.012.
  • Rignot E., Salas W.A., Skole D.A. (1997)—Mapping deforestation and secondary growth in Rondia Brazil, using imaging radar and thematic mapper data. Remote Sensing of Environment, 59 (2): 167–179. doi: http://dx.doi.org/10.1016/S0034-4257(96)00150-2.
  • Santoro M., Askne J., Smith G., Fransson J.E.S. (2002a)—Stem volume retrieval in boreal forests from ERS-1/2 interferometry. Remote Sensing of Environment, 81 (1): 19–35. doi: http://dx.doi.org/10.1016/S0034-4257(01)00329-7.
  • Santoro M., Schmullius C., Eriksson L., Hese S. (2002b)—The Siberia and Siberia-II projects: an overview. Proceedings of SPIE, SPIE Conference Crete, 4886: 247–256.
  • Ranson K.J., Sun G. (1994)—Mapping biomass of northern forests using multifrequency SAR data. IEEE Transactions on Geoscience and Remote Sensing, 32 (5): 1117–1124. doi: http://dx.doi.org/10.1109/36.295053.
  • Sarker M., Nichol J., Ahmad B., Busu I., Rahman A. (2012)—Potential of texture measurements of two-date dual polarization PALSAR data for the improvement of forest biomass estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 69: 146–166. doi: http://dx.doi.org/10.1016/j.isprsjprs.2012.03.002.
  • Straub C., Dees M., Weinacker H., Koch B. (2009)—Using airborne laser scanner data and CIR orthophotos to estimate the stem volume of forest stands. Photogrammetrie, Fernerkundung, Geoinformation, 30 (3): 277–287. doi: http://dx.doi.org/10.1127/0935-1221/2009/0022.
  • Sun G., Ranson K.J., Guo Z., Zhang Z., Montesano P., Kimes D. (2011)—Forest biomass mapping from lidar and radar synergies. Remote Sensing of Environment, 115: 2906–2916. doi: http://dx.doi.org/10.1016/j.rse.2011.03.021.
  • Suzuki R., Kim Y., Ishii R. (2013)—Sensitivity of the backscatter intensity of ALOS/PALSAR to the above-ground biomass and other biophysical parameters of boreal forest in Alaska. Polar Science, 7 (2): 100–112. doi: http://dx.doi.org/10.1016/j.polar.2013.03.001.
  • Swatantran A., Dubayah R., Roberts D., Hofton M., Bryan Blair J. (2011)—Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion. Remote Sensing of Environment, 115: 2917–2930. doi: http://dx.doi.org/10.1016/j.rse.2010.08.027.
  • Tang H., Brolly M., Zhao F., Strahler A.H., Schaaf C.L., Ganguly S., Zhang G., Dubayah R. (2014)—Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: A case study in Sierra National Forest, CA. Remote Sensing of Environment, 143: 131–141. doi: http://dx.doi.org/10.1016/j.rse.2013.12.007.
  • Thiel C., Drezet P., Weise C., Quegan S., Schmullius C. (2006)—Radar remote sensing for the delineation of forest cover maps and the detection of deforestation. Forestry, 79 (5): 589–597. doi: http://dx.doi.org/10.1093/forestry/cpl036.
  • Yanjun S., Guo Q., Xue B., Hu T., Alvarez O. (2016)—Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data. Remote Sensing of Environment, 173:187–199. doi: http://dx.doi.org/10.1016/j.rse.2015.12.002.
  • Zhuang W., Mountrakis G. (2014a)—An accurate and computationally efficient algorithm for ground peak identification in large footprint waveform LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 95: 81–92. doi: http://dx.doi.org/10.1016/j.isprsjprs.2014.06.004.
  • Zhuang W., Mountrakis G. (2014b)—Ground peak identification in dense shrub areas using large footprint waveform LiDAR and Landsat images. International Journal of Digital Earth, 8 (10): 805–824. doi: http://dx.doi.org/10.1080/17538947.2014.942716.
  • Zhuang W., Mountrakis G., Wiley Jr. J., Beier C. (2015)—Estimation of Aboveground Forest Biomass Using Metrics Based on Gaussian Decomposition of Waveform Lidar Data. International Journal of Remote Sensing, 36 (7): 1871–1889. doi: http://dx.doi.org/10.1080/01431161.2015.1029095.