510
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Mapping recent burned patches in Siberian larch forest using Landsat and MODIS data

, &
Pages 861-887 | Received 03 Nov 2015, Accepted 07 Oct 2016, Published online: 17 Feb 2017

References

  • Baig M.H.A., Zhang L., Shuai T., Tong Q. (2014) -Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sensing Letters, 5: 423–431. doi: https://doi.org/10.1080/2150704X.2014.915434.
  • Bastarrika A., Chuvieco E., Martín M.P. (2011) -Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sensing of Environment, 115: 1003–1012. doi: https://doi.org/10.1016/j.rse.2010.12.005.
  • Boschetti L., Roy D.P., Justice C.O., Humber M.L. (2015)—MODIS-Landsat fusion for large area 30 m burned area mapping. Remote Sensing of Environment, 161: 27–42. doi: https://doi.org/10.1016/j.rse.2015.01.022.
  • Bowman D.M.J.S., Balch J.K., Artaxo P., Bond W.J., Carlson J.M., Cochrane M.A., D'Antonio C.M., DeFries R.S., Doyle J.C., Harrison S.P., Johnston F.H., Keeley J.E., Krawchuk M.A., Kull C.A., Marston J.B., Moritz M.A., Prentice I.C., Roos C.I., Scott A.C., Swetnam T.W., van der Werf G.R., Pyne S.J. (2009) -Fire in the earth system. Science, 324: 481–484. doi: https://doi.org/10.1126/science.1163886.
  • Brooks E.B., Wynne R.H., Thomas V.A., Blinn C.E., Coulston J.W. (2014) -On-the-fly massively multitemporal change detection using statistical quality control charts and Landsat data. IEEE Transactions on Geoscience and Remote Sensing, 52: 3316–3332. doi: https://doi.org/10.1109/TGRS.2013.2272545.
  • Canty M.J., Nielsen A.A. (2008)—Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sensing of Environment, 112: 1025–1036. doi: https://doi.org/10.1016/j.rse.2007.07.013.
  • Carlson T.N., Ripley D.A. (1997) -On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote sensing of Environment, 62: 241–252. doi: https://doi.org/10.1016/S0034-4257(97)00104-1.
  • Chu T.A., Guo X.L. (2014) -Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review. Remote Sensing, 6: 470–520. doi: https://doi.org/10.3390/rs6010470.
  • Cohen W.B., Yang Z., Kennedy R. (2010) -Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync-Tools for calibration and validation. Remote Sensing of Environment, 114: 2911–2924. doi: https://doi.org/10.1016/j.rse.2010.07.010.
  • Cuevas-Gonzalez M., Gerard F., Balzter H., Riano D. (2009)—Analysing forest recovery after wildfire disturbance in boreal Siberia using remotely sensed vegetation indices. Global Change Biology, 15: 561–577. doi: https://doi.org/10.1111/j.1365-2486.2008.01784.x.
  • de Groot W.J., Cantin A.S., Flannigan M.D., Soja A.J., Gowman L.M., Newbery A. (2013)—A comparison of Canadian and Russian boreal forest fire regimes. Forest Ecology and Management, 294: 23–34. doi: https://doi.org/10.1016/j.foreco.2012.07.033.
  • Drusch M., Del Bello U., Carlier S., Colin O., Fernandez V., Gascon F., Hoersch B., Isola C., Laberinti P., Martimort P., Meygret A., Spoto F., Sy O., Marchese F., Bargellini P. (2012) -Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120: 25–36. doi: https://doi.org/10.1016/j.rse.2011.11.026.
  • Elith J., Leathwick J., Hastie T. (2008)—A working guide to boosted regression trees. Journal of Animal Ecology, 77: 802–813. doi: https://doi.org/10.1111/j.1365-2656.2008.01390.x.
  • Fang L., Yang J. (2014) -Atmospheric effects on the performance and threshold extrapolation of multi-temporal Landsat derived dNBR for burn severity assessment. International Journal of Applied Earth Observation and Geoinformation, 33: 10–20. doi: https://doi.org/10.1016/j.jag.2014.04.017.
  • Fang L., Yang J., Zu J., Li G., Zhang J. (2015)—Quantifying influences and relative importance of fire weather, topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. Forest Ecology and Management, 356: 2–12. https://doi.org/10.1016/j.foreco.2015.01.011.
  • Foody G.M. (2002) -Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80: 185–201. doi: https://doi.org/10.1016/S0034-4257(01)00295-4.
  • Giglio L., Descloitres J., Justice C.O., Kaufman Y. J. (2003) -An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sensing of Environment, 87: 273–282. doi: https://doi.org/10.1016/S0034-4257(03)00184-6.
  • Giglio L., Loboda T., Roy D.P., Quayle B, Justice C.O. (2009) -An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sensing of Environment, 113: 408–420. doi: https://doi.org/10.1016/j.rse.2008.10.006.
  • Goodwin N.R., Collett L.J. (2014)—Development of an automated method for mapping fire history captured in Landsat TM and ETM plus time series across Queensland, Australia. Remote Sensing of Environment, 148: 206–221. doi: https://doi.org/10.1016/j.rse.2014.03.021.
  • Hansen M., DeFries R., Townshend J., Carroll M., Dimiceli C., Sohlberg R. (2003) -Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm. Earth Interactions, 7: 1–15. doi: https://doi.org/10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2.
  • Hansen M.C., Loveland T.R. (2012) -A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment, 122: 66–74. doi: https://doi.org/10.1016/j.rse.2011.08.024.
  • Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman S.V., Goetz S.J., Loveland T.R., Kommareddy A., Egorov A., Chini L., Justice C.O., Townshend J.R.G. (2013) -High-Resolution Global Maps of 21st- Century Forest Cover Change. Science, 342: 850–853. doi: https://doi.org/10.1126/science.1244693.
  • Hawbaker T., Stitt S., Takacs J. (2015) -Provisional Burned Area Essential Climate Variable (BAECV) Algorithm Description. U.S. Geological Survey.
  • Healey S.P., Cohen W.B., Zhiqiang Y., Krankina O.N. (2005)—Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sensing of Environment, 97: 301–310. doi: https://doi.org/10.1016/j.rse.2005.05.009.
  • Hernandez P.A., Graham C.H., Master L.L., Albert D.L. (2006)—The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29: 773–785. doi: https://doi.org/10.1111/j.0906-7590.2006.04700.x.
  • Hilker T., Wulder M.A., Coops N.C., Seitz N., White J.C., Gao F., Masek J.G., Stenhouse G. (2009a) -Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sensing of Environment, 113: 1988–1999. doi: https://doi.org/10.1016/j.rse.2009.05.011.
  • Hilker T., Wulder M.A., Coops N.C., Linke J., McDermid G., Masek J.G., Gao F., White J.C. (2009b)—A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, 113: 1613–1627. doi: https://doi.org/10.1016/j.rse.2009.03.007.
  • Hilker T., Lyapustin A.I., Hall F.G., Myneni R., Knyazikhin Y., Wang Y., Tucker C.J., Sellers P.J. (2015)—On the measurability of change in Amazon vegetation from MODIS. Remote Sensing of Environment, 166: 233–242. doi: https://doi.org/10.1016/j.rse.2015.05.020.
  • Huang C., Wylie B., Yang L., Homer C., Zylstra G. (2002) -Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. International Journal of Remote Sensing, 23: 1741–1748. doi: https://doi.org/10.1080/01431160110106113.
  • Huang C., Goward S.N., Masek J.G., Thomas N., Zhu Z., Vogelmann J.E. (2010) -An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sensing of Environment, 114: 183–198. doi: https://doi.org/10.1016/j.rse.2009.08.017.
  • Huete A., Didan K., Miura T., Rodriguez E.P., Gao X., Ferreira L.G. (2002) -Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83: 195–213. doi: https://doi.org/10.1016/S0034-4257(02)00096-2.
  • Irish R.R., Barker J.L., Goward S.N., Arvidson T. (2006) -Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogrammetric Engineering, Remote Sensing, 72: 1179–1188. doi: https://doi.org/10.14358/PERS.72.10.1179.
  • Jamali S., Jönsson P., Eklundh L., Ardö J., Seaquist J. (2015) -Detecting changes in vegetation trends using time series segmentation. Remote Sensing of Environment, 156: 182–195. doi: https://doi.org/10.1016/j.rse.2014.09.010.
  • Justice C.O., Vermote E., Townshend J.R., Defries R., Roy D.P., Hall D.K., Salomonson V.V., Privette J.L., Riggs G., Strahler A. (1998) -The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, 36: 1228–1249. doi: https://doi.org/10.1109/36.701075.
  • Kennedy R.E., Yang Z., Cohen W.B. (2010) -Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr-Temporal segmentation algorithms. Remote Sensing of Environment, 114: 2897–2910. doi: https://doi.org/10.1016/j.rse.2010.07.008.
  • Kennedy R.E., Yang Z., Cohen W.B., Pfaff E., Braaten J., Nelson P. (2012) -Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sensing of Environment, 122: 117–133. doi: https://doi.org/10.1016/j.rse.2011.09.024.
  • Kennedy R.E., Andréfouët S., Cohen W.B., Gómez C., Griffiths P., Hais M., Healey S.P., Helmer E.H., Hostert P., Lyons M.B., Meigs G.W., Pflugmacher D., Phinn S.R., Powell S.L., Scarth P., Sen S., Schroeder T.A., Schneider A., Sonnenschein R., Vogelmann J.E., Wulder M.A., Zhu Z. (2014)—Bringing an ecological view of change to Landsat-based remote sensing. Frontiers in Ecology and the Environment, 12: 339–346. doi: https://doi.org/10.1890/130066.
  • Lentile L.B., Holden Z.A., Smith A.M.S., Falkowski M.J., Hudak A.T., Morgan P., Lewis S.A., Gessler P.E., Benson N.C. (2006) -Remote sensing techniques to assess active fire characteristics and post-fire effects. International Journal of Wildland Fire, 15: 319–345. doi: https://doi.org/10.1071/WF05097.
  • Liu Z., Yang J., Chang Y., Weisberg P.J., He H.S. (2012) -Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Global Change Biology, 18: 2041–2056. doi: https://doi.org/10.1111/j.1365-2486.2012.02649.x.
  • Masek J.G., Huang C., Wolfe R., Cohen W., Hall F., Kutler J., Nelson P. (2008) -North American forest disturbance mapped from a decadal Landsat record. Remote Sensing of Environment, 112: 2914–2926. doi: https://doi.org/10.1016/j.rse.2008.02.010.
  • Masek J.G., Vermote E.F., Saleous N.E., Wolfe R., Hall F.G., Huemmrich K.F., Gao F., Kutler J., Lim T.-K. (2006)—A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geoscience and Remote Sensing Letters, 3: 68–72. doi: https://doi.org/10.1109/LGRS.2005.857030.
  • Miller J.D., Thode A.E. (2007)—Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment, 109: 66–80. doi: https://doi.org/10.1016/j.rse.2006.12.006.
  • Miller J.D., Knapp E.E., Key C.H., Skinner C.N., Isbell C.J., Creasy R.M., Sherlock J.W. (2009)—Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sensing of Environment, 113: 645–656. doi: https://doi.org/10.1016/j.rse.2008.11.009.
  • Morton D.C., DeFries R.S., Nagol J., Souza Jr C.M., Kasischke E.S., Hurtt G.C., Dubayah R. (2011)—Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data. Remote Sensing of Environment, 115: 1706–1720. doi: https://doi.org/10.1016/j.rse.2011.03.002.
  • Mouillot F., Schultz M.G., Yue C., Cadule P., Tansey K., Ciais P., Chuvieco E. (2014)—Ten years of global burned area products from spaceborne remote sensing- review: Analysis of user needs and recommendations for future developments. International Journal of Applied Earth Observation and Geoinformation, 26: 64–79. doi: https://doi.org/10.1016/j.jag.2013.05.014.
  • Rogers B.M., Soja A.J., Goulden M.L., Randerson, J.T. (2015)—Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geoscience, 8: 228–234. doi: https://doi.org/10.1038/ngeo2352.
  • Roy D., Jin Y., Lewis P., Justice C. (2005)—Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sensing of Environment, 97: 137–162. doi: https://doi.org/10.1016/j.rse.2005.04.007.
  • Roy D.P., Wulder M.A., Loveland T.R., C.E. W., Allen R.G., Anderson M.C., Helder D., Irons J.R., Johnson D.M., Kennedy R., Scambos T.A., Schaaf C.B., Schott J.R., Sheng Y., Vermote E.F., Belward A.S., Bindschadler R., Cohen W.B., Gao F., Hipple J.D., Hostert P., Huntington J., Justice C.O., Kilic A., Kovalskyy V., Lee Z.P., Lymburner L., Masek J.G., McCorkel J., Shuai Y., Trezza R., Vogelmann J., Wynne R.H., Zhu Z. (2014) -Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145: 154–172. doi: https://doi.org/10.1016/j.rse.2014.02.001.
  • Shorohova E., Kneeshaw D., Kuuluvainen T., Gauthier S. (2011) -Variability and dynamics of old-growth forests in the circumboreal zone: Implications for conservation, restoration and management. Silva Fennica, 45: 785–806. doi: https://doi.org/10.14214/sf.72.
  • Song X.-P., Huang C., Sexton J.O., Channan S., Townshend J.R. (2014)—Annual Detection of Forest Cover Loss Using Time Series Satellite Measurements of Percent Tree Cover. Remote Sensing, 6: 8878–8903. doi: https://doi.org/10.3390/rs6098878.
  • Sulla-Menashe D., Kennedy R.E., Yang Z.Q., Braaten J., Krankina O.N., Friedl M.A. (2014)—Detecting forest disturbance in the Pacific Northwest from MODIS time series using temporal segmentation. Remote Sensing of Environment, 151: 114–123. doi: https://doi.org/10.1016/j.rse.2013.07.042.
  • Turner M.G. (2010)—Disturbance and landscape dynamics in a changing world. Ecology, 91: 2833–2849. doi: https://doi.org/10.1890/10-0097.1.
  • van der Werf G.R., Randerson J.T., Giglio L., Collatz G., Mu M., Kasibhatla P.S., Morton D.C., DeFries R., Jin Y.V., van Leeuwen T.T. (2010) -Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10: 11707–11735. doi: https://doi.org/10.5194/acp-10-11707-2010.
  • Verbesselt J., Zeileis A., Herold M. (2012) -Near real-time disturbance detection using satellite image time series. Remote Sensing of Environment, 123: 98–108. doi: https://doi.org/10.1016/j.rse.2012.02.022.
  • Verbesselt J., Hyndman R., Newnham G., Culvenor D. (2010a)—Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114: 106–115. doi: https://doi.org/10.1016/j.rse.2009.08.014.
  • Verbesselt J., Hyndman R., Zeileis A., Culvenor D. (2010b) -Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sensing of Environment, 114: 2970–2980. doi: https://doi.org/10.1016/j.rse.2010.08.003.
  • Wooster M.J., Zhang Y.H. (2004)—Boreal forest fires burn less intensely in Russia than in North America. Geophysical Research Letters, 31. doi: https://doi.org/10.1029/2004g1020805.
  • Wulder M.A., Masek J.G., Cohen W.B., Loveland T.R., Woodcock C.E. (2012)—Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 122: 2–10. doi: https://doi.org/10.1016/j.rse.2012.01.010.
  • Zhu Z., Woodcock C.E. (2012)—Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, 118: 83–94. doi: https://doi.org/10.1016/j.rse.2011.10.028.
  • Zhu Z., Woodcock C.E. (2014) -Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144: 152–171. doi: https://doi.org/10.1016/j.rse.2014.01.011.
  • Zhu Z., Woodcock C.E., Olofsson P. (2012) -Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sensing of Environment, 122: 75–91. https://doi.org/10.1016/j.rse.2011.10.030.