Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 41, 2011 - Issue 12
349
Views
18
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Flavin monooxygenases, FMO1 and FMO3, not cytochrome P450 isoenzymes, contribute to metabolism of anti-tumour triazoloacridinone, C-1305, in liver microsomes and HepG2 cells

, , &
Pages 1044-1055 | Received 04 May 2011, Accepted 08 Jul 2011, Published online: 23 Aug 2011
 

Abstract

  1. 5-Dimethylaminopropylamino-8-hydroxytriazoloacridinone, C-1305, being the close structural analogue of the clinically tested imidazoacridinone anti-tumour agent, C-1311, expressed high activity against experimental tumours and is expected to have more advantageous pharmacological properties than C-1311.

  2. The aim of this study was to elucidate the role of selected liver enzymes in the metabolism of C-1305.

  3. We demonstrated that the studied triazoloacridinone was transformed with rat and human liver microsomes, HepG2 hepatoma cells and with human recombinant flavin-containing monooxygenases FMO1, FMO3 but not with CYPs. Furthermore, this compound was an effective inhibitor of CYP1A2 and CYP3A4. The product of FMO catalysed metabolism was shown to be identical to the main metabolite from liver microsomes and HepG2 cells. It was identified as an N-oxide derivative and, under hypoxia, it underwent retroreduction back to C-1305, what was extremely effective with participation of CYP3A4.

  4. In summary, this work revealed that the involvement of the P450 enzymatic system in microsomal and cellular metabolism of C-1305 was negligible, whereas this agent was an inhibitor of CYP1A2 and CYP3A4. In contrast, FMO1 and FMO3 were crucial for metabolism of C-1305 by liver microsomes and in HepG2 cells, which makes C-1305 an attractive potent anti-tumour agent.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.