Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 41, 2011 - Issue 12
349
Views
18
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Flavin monooxygenases, FMO1 and FMO3, not cytochrome P450 isoenzymes, contribute to metabolism of anti-tumour triazoloacridinone, C-1305, in liver microsomes and HepG2 cells

, , &
Pages 1044-1055 | Received 04 May 2011, Accepted 08 Jul 2011, Published online: 23 Aug 2011

References

  • Augustin E, Mos-Rompa A, Skwarska A, Witkowski JM, Konopa J. (2006). Induction of G2/M phase arrest and apoptosis of human leukemia cells by potent antitumor triazoloacridinone C-1305. Biochem Pharmacol 72:1668–1679.
  • Bidzińska J, Wojciechowski M, Baginski M, Skladanowski A. (2009). Specific structural changes in telomeric DNA induced by triazoloacridone compound C-1305 prevent the formation of TRF1/2 shelterin complexes. Mol Cancer Ther, 8(12 Suppl), C159.
  • Boocock DJ, Maggs JL, White IN, Park BK. (1999). α-hydroxytamoxifen, a genotoxic metabolite of tamoxifen in the rat: identification and quantification in vivo and in vitro. Carcinogenesis 20:153–160.
  • Capizzi RL, Roman LA, Tjulandin S, Smirnova I, Manikhas A, Paterson JS, Major A, Lundberg AS, Fumoleau P. (2008). Phase II trial of C1311, a novel inhibitor of topoisomerase II in advanced breast cancer. J Clin Oncol 26 (suppl), 1055.
  • Cashman JR. (2005). Some distinctions between flavin-containing and cytochrome P450 monooxygenases. Biochem Biophys Res Commun 338:599–604.
  • Cholody WM, Martelli S, Konopa J. (1990). 8-Substituted 5-[(aminoalkyl)amino]-6H-v-triazolo[4,5,1-de]acridin-6-ones as potential antineoplastic agents. Synthesis and biological activity. J Med Chem 33:2852–2856.
  • Cholody WM, Martelli S, Paradziej-Lukowicz J, Konopa J. (1990). 5-[(Aminoalkyl)amino]imidazo[4,5,1-de]acridin-6-ones as a novel class of antineoplastic agents. Synthesis and biological activity. J Med Chem 33:49–52.
  • Emoto C, Murase S, Sawada Y, Jones BC, Iwasaki K. (2003). In vitro inhibitory effect of 1-aminobenzotriazole on drug oxidations catalyzed by human cytochrome P450 enzymes: A comparison with SKF-525A and ketoconazole. Drug Metab Pharmacokinet 18:287–295.
  • Grimm SW, Dyroff MC. (1997). Inhibition of human drug metabolizing cytochromes P450 by anastrozole, a potent and selective inhibitor of aromatase. Drug Metab Dispos 25:598–602.
  • Huang Q, Stoner G, Resau J, Nickols J, Mirvish SS. (1992). Metabolism of N-nitrosomethyl-n-amylamine by microsomes from human and rat esophagus. Cancer Res 52:3547–3551.
  • Isambert N, Campone M, Bourbouloux E, Drouin M, Major A, Yin W, Loadman P, Capizzi R, Grieshaber C, Fumoleau P. (2010). Evaluation of the safety of C-1311 (SYMADEX) administered in a phase 1 dose escalation trial as a weekly infusion for 3 consecutive weeks in patients with advanced solid tumours. Eur J Cancer 46:729–734.
  • Jacobson PA, Green K, Birnbaum A, Remmel RP. (2002). Cytochrome P450 isozymes 3A4 and 2B6 are involved in the in vitro human metabolism of thiotepa to TEPA. Cancer Chemother Pharmacol 49:461–467.
  • Koba M, Konopa J. (2007). Interactions of antitumor triazoloacridinones with DNA. Acta Biochim Pol 54:297–306.
  • Kousba A, Soll R, Yee S, Martin M. (2007). Cyclic conversion of the novel Src kinase inhibitor [7-(2,6-dichloro-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-amine (TG100435) and its N-oxide metabolite by flavin-containing monoxygenases and cytochrome P450 reductase. Drug Metab Dispos 35:2242–2251.
  • Krueger SK, Williams DE. (2005). Mammalian flavin-containing monooxygenases: Structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther 106:357–387.
  • Krueger SK, Vandyke JE, Williams DE, Hines RN. (2006). The role of flavin-containing monooxygenase (FMO) in the metabolism of tamoxifen and other tertiary amines. Drug Metab Rev 38:139–147.
  • Kusnierczyk H, Cholody WM, Paradziej-Lukowicz J, Radzikowski C, Konopa J. (1994). Experimental antitumor activity and toxicity of the selected triazolo- and imidazoacridinones. Arch Immunol Ther Exp (Warsz) 42:415–423.
  • Lee JW, Shin KD, Lee M, Kim EJ, Han SS, Han MY, Ha H, Jeong TC, Koh WS. (2003). Role of metabolism by flavin-containing monooxygenase in thioacetamide-induced immunosuppression. Toxicol Lett 136:163–172.
  • Lemke K, Poindessous V, Skladanowski A, Larsen AK. (2004). The antitumor triazoloacridone C-1305 is a topoisomerase II poison with unusual properties. Mol Pharmacol 66:1035–1042.
  • Lemke K, Wojciechowski M, Laine W, Bailly C, Colson P, Baginski M, Larsen AK, Skladanowski A. (2005). Induction of unique structural changes in guanine-rich DNA regions by the triazoloacridone C-1305, a topoisomerase II inhibitor with antitumor activities. Nucleic Acids Res 33:6034–6047.
  • Murray M. (1997). Drug-mediated inactivation of cytochrome P450. Clin Exp Pharmacol Physiol 24:465–470.
  • Parte P, Kupfer D. (2005). Oxidation of tamoxifen by human flavin-containing monooxygenase (FMO) 1 and FMO3 to tamoxifen-N-oxide and its novel reduction back to tamoxifen by human cytochromes P450 and hemoglobin. Drug Metab Dispos 33:1446–1452.
  • Phillips IR, Shephard EA. (2008). Flavin-containing monooxygenases: Mutations, disease and drug response. Trends Pharmacol Sci 29:294–301.
  • Pike MG, Mays DC, Macomber DW, Lipsky JJ. (2001). Metabolism of a disulfiram metabolite, S-methyl N,N-diethyldithiocarbamate, by flavin monooxygenase in human renal microsomes. Drug Metab Dispos 29:127–132.
  • Potega A, Dabrowska E, Niemira M, Kot-Wasik A, Ronseaux S, Henderson CJ, Wolf CR, Mazerska Z. (2011). The imidazoacridinone antitumor drug, C-1311, is metabolized by flavin monooxygenases but not by cytochrome p450s. Drug Metab Dispos 39:1423–1432.
  • Richter T, Schwab M, Eichelbaum M, Zanger UM. (2005). Inhibition of human CYP2B6 by N,N’,N”-triethylenethiophosphoramide is irreversible and mechanism-based. Biochem Pharmacol 69:517–524.
  • Solomon H, Brosh R, Buganim Y, Rotter V. (2010). Inactivation of the p53 tumor suppressor gene and activation of the Ras oncogene: cooperative events in tumorigenesis. Discov Med 9:448–454.
  • Sridar C, Kent UM, Notley LM, Gillam EM, Hollenberg PF. (2002). Effect of tamoxifen on the enzymatic activity of human cytochrome CYP2B6. J Pharmacol Exp Ther 301:945–952.
  • Stresser DM, Broudy MI, Ho T, Cargill CE, Blanchard AP, Sharma R, Dandeneau AA, Goodwin JJ, Turner SD, Erve JC, Patten CJ, Dehal SS, Crespi CL. (2004). Highly selective inhibition of human CYP3Aa in vitro by azamulin and evidence that inhibition is irreversible. Drug Metab Dispos 32:105–112.
  • We˛sierska-Ga˛dek J, Schloffer D, Gueorguieva M, Uhl M, Skladanowski A. (2004). Increased susceptibility of poly(ADP-ribose) polymerase-1 knockout cells to antitumor triazoloacridone C-1305 is asso-ciated with permanent G2 cell cycle arrest. Cancer Res 64:4487–4497.
  • Wisniewska A, Chrapkowska A, Kot-Wasik A, Konopa J, Mazerska Z. (2007). Metabolic transformations of antitumor imidazoacridinone, C-1311, with microsomal fractions of rat and human liver. Acta Biochim Pol 54:831–838.
  • Yanni SB, Annaert PP, Augustijns P, Bridges A, Gao Y, Benjamin DK Jr, Thakker DR. (2008). Role of flavin-containing monooxygenase in oxidative metabolism of voriconazole by human liver microsomes. Drug Metab Dispos 36:1119–1125.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.