1,710
Views
93
CrossRef citations to date
0
Altmetric
Original

An in-vivo experimental study of temperature elevations in animal tissue during magnetic nanoparticle hyperthermia

, & , PhD
Pages 589-601 | Received 29 Feb 2008, Accepted 13 May 2008, Published online: 09 Jul 2009

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (11)

Felista L. Tansi, Wisdom O. Maduabuchi, Melanie Hirsch, Paul Southern, Simon Hattersley, Rainer Quaas, Ulf Teichgräber, Quentin A. Pankhurst & Ingrid Hilger. (2021) Deep-tissue localization of magnetic field hyperthermia using pulse sequencing. International Journal of Hyperthermia 38:1, pages 743-754.
Read now
Mojgan Sheikhpour, Mohadeseh Arabi, Alibakhsh Kasaeian, Ali Rokn Rabei & Zahra Taherian. (2020) Role of Nanofluids in Drug Delivery and Biomedical Technology: Methods and Applications. Nanotechnology, Science and Applications 13, pages 47-59.
Read now
Sundeep Singh & Roderick Melnik. (2020) Thermal ablation of biological tissues in disease treatment: A review of computational models and future directions. Electromagnetic Biology and Medicine 39:2, pages 49-88.
Read now
Lucas de Alcântara Sica de Toledo, Hélen Cássia Rosseto & Marcos Luciano Bruschi. (2018) Iron oxide magnetic nanoparticles as antimicrobials for therapeutics. Pharmaceutical Development and Technology 23:4, pages 316-323.
Read now
Alexander LeBrun, Tejashree Joglekar, Charles Bieberich, Ronghui Ma & Liang Zhu. (2016) Identification of infusion strategy for achieving repeatable nanoparticle distribution and quantification of thermal dosage using micro-CT Hounsfield unit in magnetic nanoparticle hyperthermia. International Journal of Hyperthermia 32:2, pages 132-143.
Read now
Christopher J. Rivet, Yuan Yuan, Ryan J. Gilbert & Diana-Andra Borca-Tasciuc. (2014) Effect of magnetic nanoparticle heating on cortical neuron viability. International Journal of Hyperthermia 30:2, pages 79-85.
Read now
Alexander LeBrun, Navid Manuchehrabadi, Anilchandra Attaluri, Frank Wang, Ronghui Ma & Liang Zhu. (2013) MicroCT image-generated tumour geometry and SAR distribution for tumour temperature elevation simulations in magnetic nanoparticle hyperthermia. International Journal of Hyperthermia 29:8, pages 730-738.
Read now
Anilchandra Attaluri, Ronghui Ma, Yun Qiu, Wei Li & Liang Zhu. (2011) Nanoparticle distribution and temperature elevations in prostatic tumours in mice during magnetic nanoparticle hyperthermia. International Journal of Hyperthermia 27:5, pages 491-502.
Read now
Gennaro Bellizzi & Ovidio M. Bucci. (2010) On the optimal choice of the exposure conditions and the nanoparticle features in magnetic nanoparticle hyperthermia. International Journal of Hyperthermia 26:4, pages 389-403.
Read now
M. Salloum, R. Ma & L. Zhu. (2009) Enhancement in treatment planning for magnetic nanoparticle hyperthermia: Optimization of the heat absorption pattern. International Journal of Hyperthermia 25:4, pages 309-321.
Read now

Articles from other publishers (82)

Noreen Sher Akbar, Maimona Rafiq, Taseer Muhammad & Metib Alghamdi. (2024) Biological structural study for the blood casson fluid flow in catheterized diverging tapered stenosed arteries with emerging shaped nanoparticles: application in drug delivery. Microfluidics and Nanofluidics 28:6.
Crossref
Noreen Sher Akbar, Maimona Rafiq, Taseer Muhammad & Metib Alghamdi. (2024) Propulsive study of blood flow with heat transfer enhancement connection to ferro copper magnetized nanoparticles in converging tapered stenosed arterial surface. International Journal of Modern Physics B.
Crossref
Senthilkumar Thirumurugan, Susaritha Ramanathan, Kayalvizhi Samuvel Muthiah, Yu-Chien Lin, Michael Hsiao, Udesh Dhawan, An-Ni Wang, Wai-Ching Liu, Xinke Liu, Mei-Yi Liao & Ren-Jei Chung. (2024) Inorganic nanoparticles for photothermal treatment of cancer. Journal of Materials Chemistry B 12:15, pages 3569-3593.
Crossref
Philip Drake, Ali Algaddafi, Thomas Swift & Raed A. Abd-Alhameed. (2024) Design and Modelling of an Induction Heating Coil to Investigate the Thermal Response of Magnetic Nanoparticles for Hyperthermia Applications. BioMedInformatics 4:2, pages 1006-1018.
Crossref
F.E.L. Ossege, R.G. Gontijo & A.S. de Paula. (2024) Dynamical analysis of a ferrofluid subjected to oscillatory field and shear rates: Applications to magnetic hyperthermia. Journal of Magnetism and Magnetic Materials 596, pages 171936.
Crossref
Noreen Sher Akbar, M. Bilal Habib, Maimona Rafiq, Taseer Muhammad & Metib Alghamdi. (2024) Biological structural study of emerging shaped nanoparticles for the blood flow in diverging tapered stenosed arteries to see their application in drug delivery. Scientific Reports 14:1.
Crossref
Amritpal Singh & Neeraj Kumar. (2024) Evaluation of the cooling effect due to the presence of major blood vessel on the magnetic hyperthermia therapy. Evaluation of the cooling effect due to the presence of major blood vessel on the magnetic hyperthermia therapy.
R.G. Gontijo & A.B. Guimarães. (2023) Effect of interparticle correlation on magnetic hyperthermia in biological media: A numerical study. Journal of Magnetism and Magnetic Materials 580, pages 170931.
Crossref
K. Radhika, N. Suthanthira Vanitha, D. Anitha, K. Bashkaran & K. Shemalaa Ganthi. 2023. Sustainable Utilization of Nanoparticles and Nanofluids in Engineering Applications. Sustainable Utilization of Nanoparticles and Nanofluids in Engineering Applications 265 284 .
Nandyala Mahesh, Neetu Singh & Prabal Talukdar. (2023) Investigation of a breast cancer magnetic hyperthermia through mathematical modeling of intratumoral nanoparticle distribution and temperature elevations. Thermal Science and Engineering Progress 40, pages 101756.
Crossref
Andisheh Etminan, Milad Salimibani, Ali Dahaghin, Mohammad Haghpanahi & Ali Maleki. (2023) FEM thermal assessment of a 3-D irregular tumor with capillaries in magnetic nanoparticle hyperthermia via dissimilar injection points. Computers in Biology and Medicine 157, pages 106771.
Crossref
Gustavo Resende Fatigate, Marcelo Lobosco & Ruy Freitas Reis. (2023) A 3D Approach Using a Control Algorithm to Minimize the Effects on the Healthy Tissue in the Hyperthermia for Cancer Treatment. Entropy 25:4, pages 684.
Crossref
Manpreet Singh. (2023) Biological heat and mass transport mechanisms behind nanoparticles migration revealed under microCT image guidance. International Journal of Thermal Sciences 184, pages 107996.
Crossref
Meenal Singhal, Rohit Kumar Singla, Kavita Goyal & Sarvjeet Singh. (2023) Inverse optimization based non-invasion technique for multiple tumor detection in brain tissue. International Communications in Heat and Mass Transfer 141, pages 106596.
Crossref
R.G. Gontijo & A.B. Guimarães. (2023) Langevin dynamic simulations of magnetic hyperthermia in rotating fields. Journal of Magnetism and Magnetic Materials 565, pages 170171.
Crossref
Nandyala Mahesh, Neetu Singh & Prabal Talukdar. (2023) A mathematical model of intratumoral infusion, particle distribution and heat transfer in cancer tumors: In-silico investigation of magnetic nanoparticle hyperthermia. International Journal of Thermal Sciences 183, pages 107887.
Crossref
Muhammad Suleman. 2023. In Silico Approach Towards Magnetic Fluid Hyperthermia of Cancer Treatment. In Silico Approach Towards Magnetic Fluid Hyperthermia of Cancer Treatment 95 113 .
Muhammad Suleman. 2023. In Silico Approach Towards Magnetic Fluid Hyperthermia of Cancer Treatment. In Silico Approach Towards Magnetic Fluid Hyperthermia of Cancer Treatment 17 35 .
Antônio Marchese Bravo Esteves, Gustavo Resende Fatigate, Marcelo Lobosco & Ruy Freitas Reis. 2023. Computational Science – ICCS 2023. Computational Science – ICCS 2023 623 637 .
Qian Jiang, Feng Ren, Chenglei Wang, Zhaokun Wang, Gholamreza Kefayati, Sasa Kenjeres, Kambiz Vafai, Yang Liu & Hui Tang. (2022) On the magnetic nanoparticle injection strategy for hyperthermia treatment. International Journal of Mechanical Sciences 235, pages 107707.
Crossref
I Aştefanoaei & A Stancu. (2022) Magnetic Hyperthermia with biocompatible coated nanoparticles: A temperature analysis. IOP Conference Series: Materials Science and Engineering 1254:1, pages 012023.
Crossref
Vahid Darvishi, Mahdi Navidbakhsh & Saeid Amanpour. (2021) Heat and mass transfer in the hyperthermia cancer treatment by magnetic nanoparticles. Heat and Mass Transfer 58:6, pages 1029-1039.
Crossref
Amritpal Singh & Neeraj Kumar. (2022) Parameterizing the Effects of Tumor Shape in Magnetic Nanoparticle Thermotherapy Through a Computational Approach. Journal of Heat Transfer 144:3.
Crossref
Nandyala Mahesh, Neetu Singh & Prabal Talukdar. (2022) A mathematical model for understanding nanoparticle biodistribution after intratumoral injection in cancer tumors. Journal of Drug Delivery Science and Technology 68, pages 103048.
Crossref
Yash Thakare, Swapnil Dharaskar, Ashish Unnarkat & Shriram S. Sonawane. 2022. Applications of Nanofluids in Chemical and Bio-medical Process Industry. Applications of Nanofluids in Chemical and Bio-medical Process Industry 303 334 .
Gustavo Resende Fatigate, Rafael Felipe Coelho Neves, Marcelo Lobosco & Ruy Freitas Reis. 2022. Computational Science – ICCS 2022. Computational Science – ICCS 2022 514 525 .
Eyad M. Hamad, Aseel Khaffaf, Omar Yasin, Ziad Abu El-Rub, Samer Al-Gharabli, Wael Al-Kouz & Ali J. Chamkha. (2021) Review of Nanofluids and Their Biomedical Applications. Journal of Nanofluids 10:4, pages 463-477.
Crossref
Muhammad Suleman, Samia Riaz & Rashid Jalil. (2020) A mathematical modeling approach toward magnetic fluid hyperthermia of cancer and unfolding heating mechanism. Journal of Thermal Analysis and Calorimetry 146:3, pages 1193-1219.
Crossref
Jakob Vizjak, Miloš Beković, Marko Jesenik & Anton Hamler. (2021) Development of a Magnetic Fluid Heating FEM Simulation Model with Coupled Steady State Magnetic and Transient Thermal Calculation. Mathematics 9:20, pages 2561.
Crossref
Nickolas D. Polychronopoulos, Apostolos A. Gkountas, Ioannis E. Sarris & Leonidas A. Spyrou. (2021) A Computational Study on Magnetic Nanoparticles Hyperthermia of Ellipsoidal Tumors. Applied Sciences 11:20, pages 9526.
Crossref
Jie Wang, Ji-Wook Kim, Hyungsub Kim & Seongtae Bae. (2021) Heat Induction Behavior of Injected Superparamagnetic Nanofluid Interpreted by Mass and Heat Transfer for Clinical Magnetic Hyperthermia Applications. IEEE Transactions on Nanotechnology 20, pages 933-943.
Crossref
Muhammad Suleman & Samia Riaz. (2020) 3D in silico study of magnetic fluid hyperthermia of breast tumor using Fe3O4 magnetic nanoparticles. Journal of Thermal Biology 91, pages 102635.
Crossref
Gurmeet Singh, Neeraj Kumar & Pramod Kumar Avti. (2020) Computational evaluation of effectiveness for intratumoral injection strategies in magnetic nanoparticle assisted thermotherapy. International Journal of Heat and Mass Transfer 148, pages 119129.
Crossref
Yun-Dong Tang, Tao Jin, Rodolfo C.C. Flesch & Hai-Yan Jiang. (2020) Simultaneous Optimization of Injection Dose and Location for Magnetic Hyperthermia Using Metaheuristic Algorithms. IEEE Transactions on Magnetics 56:1, pages 1-6.
Crossref
Frederik Soetaert, Preethi Korangath, David Serantes, Steven Fiering & Robert Ivkov. (2020) Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Advanced Drug Delivery Reviews 163-164, pages 65-83.
Crossref
Yun-dong Tang, Rodolfo C.C. Flesch & Tao Jin. (2019) Numerical method to evaluate the survival rate of malignant cells considering the distribution of treatment temperature field for magnetic hyperthermia. Journal of Magnetism and Magnetic Materials 490, pages 165458.
Crossref
Yi Xu, Junhua Wang, Haoli Hou & Jianwei Shao. (2019) Simulation analysis of coupled magnetic-temperature fields in magnetic fluid hyperthermia. AIP Advances 9:10.
Crossref
Jaber Beik, Mohamadreza Asadi, Samideh Khoei, Sophie Laurent, Ziaeddin Abed, Mehri Mirrahimi, Ali Farashahi, Reza Hashemian, Habib Ghaznavi & Ali Shakeri-Zadeh. (2019) Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle. Journal of Photochemistry and Photobiology B: Biology 199, pages 111599.
Crossref
Rajneesh Kumar, Anil K. Vashishth & Suniti Ghangas. (2019) Nonlocal heat conduction approach in a bi-layer tissue during magnetic fluid hyperthermia with dual phase lag model. Bio-Medical Materials and Engineering 30:4, pages 387-402.
Crossref
Mohsen Izadi, Sara Sinaei, S.A.M. Mehryan, Hakan F. Oztop & Nidal Abu-Hamdeh. (2018) Natural convection of a nanofluid between two eccentric cylinders saturated by porous material: Buongiorno’s two phase model. International Journal of Heat and Mass Transfer 127, pages 67-75.
Crossref
Alexander LeBrun & Liang Zhu*. 2018. Theory and Applications of Heat Transfer in Humans. Theory and Applications of Heat Transfer in Humans 631 667 .
John C. BischofKenneth R. Diller. (2018) From Nanowarming to Thermoregulation: New Multiscale Applications of Bioheat Transfer. Annual Review of Biomedical Engineering 20:1, pages 301-327.
Crossref
Mohamed Nassim Bensenane, Assia Rachida Senoudi, Reda Benmouna & Fouzia Ould-Kaddour. (2018) Analytical modeling of hyperthermia using magnetic nanoparticles. The European Physical Journal Applied Physics 81:3, pages 30901.
Crossref
André Valente, Felipe Loureiro, Leandro Di Bartolo & Webe João Mansur. (2018) Computer simulation of hyperthermia with nanoparticles using an OcTree finite volume technique. International Communications in Heat and Mass Transfer 91, pages 248-255.
Crossref
Yundong Tang, Rodolfo C C Flesch & Tao Jin. (2018) Numerical investigation of temperature field in magnetic hyperthermia considering mass transfer and diffusion in interstitial tissue. Journal of Physics D: Applied Physics 51:3, pages 035401.
Crossref
. (2017) Numerical Model Study of In Vivo Magnetic Nanoparticle Tumor Heating. IEEE Transactions on Biomedical Engineering 64:12, pages 2813-2823.
Crossref
Astefanoaei Iordana & Stancu Alexandru. (2017) Advanced thermo-mechanical analysis in the magnetic hyperthermia. Journal of Applied Physics 122:16.
Crossref
Nor Azwadi Che Sidik, Syahrullail Samion, Javad Ghaderian & Muhammad Noor Afiq Witri Muhammad Yazid. (2017) Recent progress on the application of nanofluids in minimum quantity lubrication machining: A review. International Journal of Heat and Mass Transfer 108, pages 79-89.
Crossref
Iordana Astefanoaei & Alexandru Stancu. A temperature analysis in magnetic hyperthermia. A temperature analysis in magnetic hyperthermia.
J.C. Umavathi, Odelu Ojjela & K. Vajravelu. (2017) Numerical analysis of natural convective flow and heat transfer of nanofluids in a vertical rectangular duct using Darcy-Forchheimer-Brinkman model. International Journal of Thermal Sciences 111, pages 511-524.
Crossref
Mostafa Zakariapour, Mohammad Hossein Hamedi & Nasser Fatouraee. (2016) Numerical Investigation of Magnetic Nanoparticles Distribution Inside a Cylindrical Porous Tumor Considering the Influences of Interstitial Fluid Flow. Transport in Porous Media 116:1, pages 251-274.
Crossref
Beriache M'hamed, Nor Azwadi Che Sidik, Mohammad Noor Afiq Witri Muhammad Yazid, Rizalman Mamat, G. Najafi & G.H.R. Kefayati. (2016) A review on why researchers apply external magnetic field on nanofluids. International Communications in Heat and Mass Transfer 78, pages 60-67.
Crossref
Dinesh Kumar, P. Kumar & K.N. Rai. (2016) A study on DPL model of heat transfer in bi-layer tissues during MFH treatment. Computers in Biology and Medicine 75, pages 160-172.
Crossref
Ruy Freitas Reis, Felipe dos Santos Loureiro & Marcelo Lobosco. (2016) 3D numerical simulations on GPUs of hyperthermia with nanoparticles by a nonlinear bioheat model. Journal of Computational and Applied Mathematics 295, pages 35-47.
Crossref
G. Pizzichelli, F. Di Michele & E. Sinibaldi. (2016) An analytical model for nanoparticles concentration resulting from infusion into poroelastic brain tissue. Mathematical Biosciences 272, pages 6-14.
Crossref
Ruy Freitas Reis, Felipe dos Santos Loureiro & Marcelo Lobosco. (2015) Parameters analysis of a porous medium model for treatment with hyperthermia using OpenMP. Journal of Physics: Conference Series 633, pages 012087.
Crossref
F. Di Michele, G. Pizzichelli, B. Mazzolai & E. Sinibaldi. (2015) On the preliminary design of hyperthermia treatments based on infusion and heating of magnetic nanofluids. Mathematical Biosciences 262, pages 105-116.
Crossref
Nicholas J. Schaub, Deniz Rende, Yuan Yuan, Ryan J. Gilbert & Diana-Andra Borca-Tasciuc. (2014) Reduced Astrocyte Viability at Physiological Temperatures from Magnetically Activated Iron Oxide Nanoparticles. Chemical Research in Toxicology 27:12, pages 2023-2035.
Crossref
Michael D. Nieskoski & B. Stuart Trembly. (2014) Comparison of a Single Optimized Coil and a Helmholtz Pair for Magnetic Nanoparticle Hyperthermia. IEEE Transactions on Biomedical Engineering 61:6, pages 1642-1650.
Crossref
R F Reis, F S Loureiro & M Lobosco. (2014) A Parallel 2D Numerical Simulation of Tumor Cells Necrosis by Local Hyperthermia. Journal of Physics: Conference Series 490, pages 012138.
Crossref
Soham Ghosh, Debabrata Das Gupta, Suman Chakraborty & Sarit K. Das. (2013) Superparamagnetic nanoparticle assisted hyperthermia and cooling protocol for optimum damage of internal carcinoma using computational predictive model. Heat and Mass Transfer 49:9, pages 1217-1229.
Crossref
D.B. Rodrigues, P.J.S. Pereira, P. Limão-Vieira, P.R. Stauffer & P.F. Maccarini. (2013) Study of the one dimensional and transient bioheat transfer equation: Multi-layer solution development and applications. International Journal of Heat and Mass Transfer 62, pages 153-162.
Crossref
Altug Ozcelikkale, Soham Ghosh & Bumsoo Han. (2013) Multifaceted Transport Characteristics of Nanomedicine: Needs for Characterization in Dynamic Environment. Molecular Pharmaceutics 10:6, pages 2111-2126.
Crossref
Shu-Yi Wang, Shujuan Huang & Diana-Andra Borca-Tasciuc. (2013) Potential Sources of Errors in Measuring and Evaluating the Specific Loss Power of Magnetic Nanoparticles in an Alternating Magnetic Field. IEEE Transactions on Magnetics 49:1, pages 255-262.
Crossref
W Minkowycz, E Sparrow & J AbrahamRonghui Ma, Di Su & Liang Zhu. 2012. Nanoparticle Heat Transfer and Fluid Flow. Nanoparticle Heat Transfer and Fluid Flow 69 96 .
N. Manuchehrabadi, A. Attaluri, H. Cai, R. Edziah, E. Lalanne, C. Bieberich, R. Ma, A. M. Johnson & L. Zhu. (2012) MicroCT Imaging and In Vivo Temperature Elevations in Implanted Prostatic Tumors in Laser Photothermal Therapy Using Gold Nanorods. Journal of Nanotechnology in Engineering and Medicine 3:2.
Crossref
Michael D. Tomasini & M. Silvina Tomassone. (2012) Dissipative particle dynamics simulation of poly(ethylene oxide)–poly(ethyl ethylene) block copolymer properties for enhancement of cell membrane rupture under stress. Chemical Engineering Science 71, pages 400-408.
Crossref
Jing Zhong, Wenzhong Liu, Zhongzhou Du, Paulo César de Morais, Qing Xiang & Qingguo Xie. (2012) A noninvasive, remote and precise method for temperature and concentration estimation using magnetic nanoparticles. Nanotechnology 23:7, pages 075703.
Crossref
Paolo Di Barba, Fabrizio Dughiero & Elisabetta Sieni. (2012) Synthesizing Distributions of Magnetic Nanoparticles for Clinical Hyperthermia. IEEE Transactions on Magnetics 48:2, pages 263-266.
Crossref
Paolo Di Barba, Fabrizio Dughiero & Elisabetta Sieni. (2012) Field synthesis for the optimal treatment planning in Magnetic Fluid Hyperthermia. Archives of Electrical Engineering 61:1, pages 57-67.
Crossref
Di Su, Ronghui Ma & Liang Zhu. (2011) Numerical study of nanofluid infusion in deformable tissues for hyperthermia cancer treatments. Medical & Biological Engineering & Computing 49:11, pages 1233-1240.
Crossref
Ali Akbar Golneshan & Mansour Lahonian. (2011) Diffusion of magnetic nanoparticles in a multi-site injection process within a biological tissue during magnetic fluid hyperthermia using lattice Boltzmann method. Mechanics Research Communications 38:6, pages 425-430.
Crossref
Anilchandra Attaluri, Ronghui Ma & Liang Zhu. (2011) Using MicroCT Imaging Technique to Quantify Heat Generation Distribution Induced by Magnetic Nanoparticles for Cancer Treatments. Journal of Heat Transfer 133:1.
Crossref
Raja Shekar Rachakatla, Sivasai Balivada, Gwi-Moon Seo, Carl B. Myers, Hongwang Wang, Thilani N. Samarakoon, Raj Dani, Marla Pyle, Franklin O. Kroh, Brandon Walker, Xiaoxuan Leaym, Olga B. Koper, Viktor Chikan, Stefan H. Bossmann, Masaaki Tamura & Deryl L. Troyer. (2010) Attenuation of Mouse Melanoma by A/C Magnetic Field after Delivery of Bi-Magnetic Nanoparticles by Neural Progenitor Cells. ACS Nano 4:12, pages 7093-7104.
Crossref
Liang Zhu. (2010) Recent Developments in Biotransport. Journal of Thermal Science and Engineering Applications 2:4.
Crossref
A. V. Kuznetsov & D. A. Nield. (2010) The Onset of Double-Diffusive Nanofluid Convection in a Layer of a Saturated Porous Medium. Transport in Porous Media 85:3, pages 941-951.
Crossref
Di Su, Ronghui Ma, Maher Salloum & Liang Zhu. (2010) Multi-scale study of nanoparticle transport and deposition in tissues during an injection process. Medical & Biological Engineering & Computing 48:9, pages 853-863.
Crossref
Sandra Scharfe, Thomas F. Fässler, Alexander Eychmüller, Uri Banin, Stefanie Dehnen, Andreas Eichhöfer, John F. Corrigan, Olaf Fuhr, Dieter Fenske, Günter Schmid, Galyna Krylova, Maryna I. Bodnarchuk, Ulrich I. Tromsdorf, Elena V. Shevchenko, Dmitri V. Talapin & Horst Weller. 2010. Nanoparticles. Nanoparticles 49 310 .
. (2010) Current World Literature. Current Opinion in Obstetrics & Gynecology 22:1, pages 87-93.
Crossref
S.L. McGill, C.L. Cuylear, N.L. Adolphi, M. Osinski & H.D.C. Smyth. (2009) Magnetically Responsive Nanoparticles for Drug Delivery Applications Using Low Magnetic Field Strengths. IEEE Transactions on NanoBioscience 8:1, pages 33-42.
Crossref
Nandyala Mahesh, Neetu Singh & Prabal Talukdar. (2022) Investigation of a Breast Cancer Magnetic Hyperthermia Through Mathematical Modeling of Intratumoral Nanoparticle Distribution and Temperature Elevations. SSRN Electronic Journal.
Crossref
Rafael Gabler Gontijo & Andrey Barbosa Guimarães. (2022) Langevin Dynamic Simulations of Magnetic Hyperthermia in Rotating Fields. SSRN Electronic Journal.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.