1,102
Views
35
CrossRef citations to date
0
Altmetric
Research Article

Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cells in vitro via hyperthermia

, , , , , & show all
Pages 682-697 | Received 23 Mar 2011, Accepted 28 Jul 2011, Published online: 12 Oct 2011

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (6)

Qingxin Mu, Hui Wang & Miqin Zhang. (2017) Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opinion on Drug Delivery 14:1, pages 123-136.
Read now
Christian Ndong, Seiko Toraya-Brown, Katsiaryna Kekalo, Ian Baker, Tillman U Gerngross, Steven N Fiering & Karl E Griswold. (2015) Antibody-mediated targeting of iron oxide nanoparticles to the folate receptor alpha increases tumor cell association in vitro and in vivo. International Journal of Nanomedicine 10, pages 2595-2617.
Read now
Gerardo F. Goya, Laura Asín & M. Ricardo Ibarra. (2013) Cell death induced by AC magnetic fields and magnetic nanoparticles: Current state and perspectives. International Journal of Hyperthermia 29:8, pages 810-818.
Read now
Cordula Grüttner, Knut Müller, Joachim Teller & Fritz Westphal. (2013) Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications. International Journal of Hyperthermia 29:8, pages 777-789.
Read now
Irene Andreu & Eva Natividad. (2013) Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. International Journal of Hyperthermia 29:8, pages 739-751.
Read now

Articles from other publishers (29)

Tatyana I. Shabatina, Olga I. Vernaya, Nikolay L. Shimanovskiy & Mikhail Ya. Melnikov. (2023) Metal and Metal Oxides Nanoparticles and Nanosystems in Anticancer and Antiviral Theragnostic Agents. Pharmaceutics 15:4, pages 1181.
Crossref
Md Abdus Subhan. (2022) Advances with metal oxide-based nanoparticles as MDR metastatic breast cancer therapeutics and diagnostics. RSC Advances 12:51, pages 32956-32978.
Crossref
Elyahb Allie Kwizera, Samantha Stewart, Md Musavvir Mahmud & Xiaoming He. (2022) Magnetic Nanoparticle-Mediated Heating for Biomedical Applications. Journal of Heat Transfer 144:3.
Crossref
K. R. Sneha, Neenu Benny, Balagopal N. Nair & G. S. Sailaja. (2021) Natural rubber latex assisted shape-attuned synthesis of intrinsically radiopaque and magnetic bioceramic nanocomposite with hyperthermia potential for cancer therapeutics. New Journal of Chemistry 45:22, pages 9892-9903.
Crossref
Hira Fatima, Tawatchai Charinpanitkul & Kyo-Seon Kim. (2021) Fundamentals to Apply Magnetic Nanoparticles for Hyperthermia Therapy. Nanomaterials 11:5, pages 1203.
Crossref
S. Del Sol-Fernández, Y. Portilla-Tundidor, L. Gutiérrez, O. F. Odio, E. Reguera, D. F. Barber & M. P. Morales. (2019) Flower-like Mn-Doped Magnetic Nanoparticles Functionalized with α v β 3 -Integrin-Ligand to Efficiently Induce Intracellular Heat after Alternating Magnetic Field Exposition, Triggering Glioma Cell Death . ACS Applied Materials & Interfaces 11:30, pages 26648-26663.
Crossref
Md. Salman Shakil, Md. Ashraful Hasan & Satya Ranjan Sarker. (2019) Iron Oxide Nanoparticles for Breast Cancer Theranostics. Current Drug Metabolism 20:6, pages 446-456.
Crossref
Xiaodong Xie, Yingying Zhang, Fengqiao Li, Tingting Lv, Ziying Li, Haijun Chen, Lee Jia & Yu Gao. (2019) Challenges and Opportunities from Basic Cancer Biology for Nanomedicine for Targeted Drug Delivery. Current Cancer Drug Targets 19:4, pages 257-276.
Crossref
Vânia Vilas-Boas, Begoña Espiña, Yury V. Kolen’ko, Manuel Bañobre-López, Marina Brito, Verónica Martins, José Alberto Duarte, Dmitri Y. Petrovykh, Paulo Freitas & Félix Carvalho. (2019) Effectiveness and Safety of a Nontargeted Boost for a CXCR4-Targeted Magnetic Hyperthermia Treatment of Cancer Cells. ACS Omega 4:1, pages 1931-1940.
Crossref
Dipak Maity & Ganeshlenin Kandasamy. 2019. Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy. Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy 299 332 .
David Chang, May Lim, Jeroen A. C. M. Goos, Ruirui Qiao, Yun Yee Ng, Friederike M. Mansfeld, Michael Jackson, Thomas P. Davis & Maria Kavallaris. (2018) Biologically Targeted Magnetic Hyperthermia: Potential and Limitations. Frontiers in Pharmacology 9.
Crossref
Cristina Núñez, Sergio Vázquez Estévez & María del Pilar Chantada. (2018) Inorganic nanoparticles in diagnosis and treatment of breast cancer. JBIC Journal of Biological Inorganic Chemistry 23:3, pages 331-345.
Crossref
Vânia Vilas-Boas, Begoña Espiña, Yury V. Kolen'ko, Manuel Bañobre-Lopez, José A. Duarte, Verónica C. Martins, Dmitri Y. Petrovykh, Paulo P. Freitas & Felix D. Carvalho. (2018) Combining CXCR4-targeted and nontargeted nanoparticles for effective unassisted in vitro magnetic hyperthermia . Biointerphases 13:1.
Crossref
Md. Abdur Rahman, Yoshimasa Matsumura, Shigekazu Yano & Bungo Ochiai. (2018) pH-Responsive Charge-Conversional and Hemolytic Activities of Magnetic Nanocomposite Particles for Cell-Targeted Hyperthermia. ACS Omega 3:1, pages 961-972.
Crossref
Daishun Ling & Taeghwan Hyeon. 2017. Magnetic Nanomaterials - Fundamentals, Synthesis and Applications. Magnetic Nanomaterials - Fundamentals, Synthesis and Applications 393 438 .
Jan C. Peeken, Peter Vaupel & Stephanie E. Combs. (2017) Integrating Hyperthermia into Modern Radiation Oncology: What Evidence Is Necessary?. Frontiers in Oncology 7.
Crossref
Priscila Falagan-Lotsch, Elissa M. Grzincic & Catherine J. Murphy. (2017) New Advances in Nanotechnology-Based Diagnosis and Therapeutics for Breast Cancer: An Assessment of Active-Targeting Inorganic Nanoplatforms. Bioconjugate Chemistry 28:1, pages 135-152.
Crossref
N.R. Datta, S. Krishnan, D.E. Speiser, E. Neufeld, N. Kuster, S. Bodis & H. Hofmann. (2016) Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich’s “magic (nano)bullet” for cancer theranostics?. Cancer Treatment Reviews 50, pages 217-227.
Crossref
Christian NDong, Jennifer A. Tate, Warren C. Kett, Jaya Batra, Eugene Demidenko, Lionel D. Lewis, P. Jack Hoopes, Tillman U. Gerngross & Karl E. Griswold. (2015) Tumor Cell Targeting by Iron Oxide Nanoparticles Is Dominated by Different Factors In Vitro versus In Vivo. PLOS ONE 10:2, pages e0115636.
Crossref
Devrim Kilinc, Anna Lesniak, Suad A. Rashdan, Dhruv Gandhi, Agata Blasiak, Paul C. Fannin, Alex von Kriegsheim, Walter Kolch & Gil U. Lee. (2015) Mechanochemical Stimulation of MCF7 Cells with Rod-Shaped Fe-Au Janus Particles Induces Cell Death Through Paradoxical Hyperactivation of ERK. Advanced Healthcare Materials 4:3, pages 395-404.
Crossref
Nils Bohmer & Andreas Jordan. (2015) Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells. Beilstein Journal of Nanotechnology 6, pages 167-176.
Crossref
Silvio Dutz & Rudolf Hergt. (2014) Magnetic particle hyperthermia—a promising tumour therapy?. Nanotechnology 25:45, pages 452001.
Crossref
J. G. Silva-Escobedo, V. Sanchez-Monroy, M. Rojas-Lopez, J. Lopez-Cruz & C. A. Gonzalez. (2014) c-erbB-2 as a Possible Target for the Use of Magnetic Nanoparticles in Breast Cancer Cells. IEEE Transactions on NanoBioscience 13:3, pages 300-307.
Crossref
Ling-Yun Zhao, Jia-Yi Liu, Wei-Wei Ouyang, Dan-Ye Li, Li Li, Li-Ya Li & Jin-Tian Tang. (2013) Magnetic-mediated hyperthermia for cancer treatment: Research progress and clinical trials. Chinese Physics B 22:10, pages 108104.
Crossref
Cordula Gruttner, Knut Muller & Joachim Teller. (2013) Comparison of Strain-Promoted Alkyne-Azide Cycloaddition <newline/>With Established Methods for Conjugation of <newline/>Biomolecules to Magnetic Nanoparticles. IEEE Transactions on Magnetics 49:1, pages 172-176.
Crossref
Yu Mi, Xiaoli Liu, Jing Zhao, Jun Ding & Si-Shen Feng. (2012) Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers. Biomaterials 33:30, pages 7519-7529.
Crossref
Gang Wang, Jianping Zhang, Abiche H. Dewilde, Anoop K. Pal, Dhimiter Bello, Joel M. Therrien, Susan J. Braunhut & Kenneth A. Marx. (2012) Understanding and correcting for carbon nanotube interferences with a commercial LDH cytotoxicity assay. Toxicology 299:2-3, pages 99-111.
Crossref
Stephen R. Grobmyer, Guangyin Zhou, Luke G. Gutwein, Nobutaka Iwakuma, Parvesh Sharma & Steven N. Hochwald. (2012) Nanoparticle delivery for metastatic breast cancer. Nanomedicine: Nanotechnology, Biology and Medicine 8, pages S21-S30.
Crossref
Stephen R. Grobmyer, Guangyin Zhou, Luke G. Gutwein, Nobutaka Iwakuma, Parvesh Sharma & Steven N. Hochwald. (2012) Nanoparticle delivery for metastatic breast cancer. Maturitas 73:1, pages 19-26.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.