2,983
Views
123
CrossRef citations to date
0
Altmetric
Review Articles

Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia

&
Pages 739-751 | Received 30 Apr 2013, Accepted 16 Jul 2013, Published online: 03 Sep 2013

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

Irati Rodrigo, Idoia Castellanos-Rubio, Eneko Garaio, Oihane K. Arriortua, Maite Insausti, Iñaki Orue, José Ángel García & Fernando Plazaola. (2020) Exploring the potential of the dynamic hysteresis loops via high field, high frequency and temperature adjustable AC magnetometer for magnetic hyperthermia characterization. International Journal of Hyperthermia 37:1, pages 976-991.
Read now
Olivia L. Lanier, Olena I. Korotych, Adam G. Monsalve, Dayita Wable, Shehaab Savliwala, Noa W. F. Grooms, Christopher Nacea, Omani R. Tuitt & Jon Dobson. (2019) Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. International Journal of Hyperthermia 36:1, pages 686-700.
Read now

Articles from other publishers (120)

Arjun Singh, Prashant Kumar, Saurabh Pathak, Komal Jain, Parul Garg, Megha Pant, Ajit K. Mahapatro, Rajesh Kumar Singh, Preasha Rajput, Sang-Koog Kim, K.K. Maurya & R.P. Pant. (2024) Tailored nanoparticles for magnetic hyperthermia: Highly stable aqueous dispersion of Mn-substituted magnetite superparamagnetic nanoparticles by double surfactant coating for improved heating efficiency. Journal of Alloys and Compounds 976, pages 172999.
Crossref
Sanjeet Kumar Paswan, Pawan Kumar, Suman Kumari, Subhadeep Datta, Manoranjan Kar, J.P. Borah & Lawrence Kumar. (2024) Temperature dependent magnetic and electrical transport properties of lanthanum and samarium substituted nanocrystalline nickel ferrite and their hyperthermia applications. Journal of Alloys and Compounds 973, pages 172830.
Crossref
Gopal Niraula, Chengwei Wu, Xiaogang Yu, Sonia Malik, Dalip Singh Verma, Rengpeng Yang, Boxiong Zhao, Shuaiwen Ding, Wei Zhang & Surender Kumar Sharma. (2024) The Curie temperature: a key playmaker in self-regulated temperature hyperthermia. Journal of Materials Chemistry B.
Crossref
A. Cabral-Prieto, I. García-Sosa, Edilso Reguera & R. Ramírez-Suárez. (2023) Magnetic heating properties of magnetite nanoclusters produced by precipitation. Hyperfine Interactions 244:1.
Crossref
Sándor Guba, Barnabás Horváth & István Szalai. (2023) Calculation of specific loss power of magnetic fluids by mean spherical approximation (MSA) model. Journal of Molecular Liquids 392, pages 123487.
Crossref
Arjun Singh, Prashant Kumar, Saurabh Pathak, Komal Jain, Parul Garg, Megha Pant, Ajit K. Mahapatro, Dharitri Rath, Lan Wang, Sang-Koog Kim, K.K. Maurya & R.P. Pant. (2023) A threefold increase in SAR performance for magnetic hyperthermia by compositional tuning in zinc-substituted iron oxide superparamagnetic nanoparticles with superior biocompatibility. Journal of Alloys and Compounds 968, pages 171868.
Crossref
Angelo Pommella, Pablo Griffiths, Gildas Coativy, Florent Dalmas, Surojit Ranoo, Annette M. Schmidt, Françoise Méchin, Julien Bernard, Thomas Zinn, Theyencheri Narayanan, Sylvain Meille & Guilhem P. Baeza. (2023) Fate of Magnetic Nanoparticles during Stimulated Healing of Thermoplastic Elastomers. ACS Nano.
Crossref
Md Rezoanur Rahman, Abdulhakim Bake, Al Jumlat Ahmed, Sheik Md Kazi Nazrul Islam, Liang Wu, Hadis Khakbaz, Sara FitzGerald, Artek Chalifour, Karen L. Livesey, Jonathan C. Knott, Peter C. Innis, Stephen Beirne & David Cortie. (2023) Interplay between thermal and magnetic properties of polymer nanocomposites with superparamagnetic Fe3O4 nanoparticles. Journal of Magnetism and Magnetic Materials 579, pages 170859.
Crossref
Lucía Gandarias, Elizabeth M. Jefremovas, David Gandia, Lourdes Marcano, Virginia Martínez-Martínez, Pedro Ramos-Cabrer, Daniel M. Chevrier, Sergio Valencia, Luis Fernández Barquín, M. Luisa Fdez-Gubieda, Javier Alonso, Ana García-Prieto & Alicia Muela. (2023) Incorporation of Tb and Gd improves the diagnostic functionality of magnetotactic bacteria. Materials Today Bio 20, pages 100680.
Crossref
Anna M. Nowicka, Monika Ruzycka-Ayoush, Artur Kasprzak, Agata Kowalczyk, Magdalena Bamburowicz-Klimkowska, Malgorzata Sikorska, Kamil Sobczak, Mikolaj Donten, Anna Ruszczynska, Julita Nowakowska & Ireneusz P. Grudzinski. (2023) Application of biocompatible and ultrastable superparamagnetic iron( iii ) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells . Journal of Materials Chemistry B 11:18, pages 4028-4041.
Crossref
Hayden Carlton, Shelby L. Foster, Mourad Benamara, Lauren F. Greenlee & David Huitink. (2023) Magnetic Nanoparticle Thermometry via Controlled Diffusion. Particle & Particle Systems Characterization 40:3.
Crossref
Elisabetta Sieni, Simonetta Geninatti Crich, Maria Rosaria Ruggiero, Lucia Del Bianco, Federico Spizzo, Roberta Bertani, Mirto Mozzon, Marco Barozzi, Michele Forzan & Paolo Sgarbossa. (2023) Experimental Comparison of Methods to Evaluate Heat Generated by Magnetic Nanofluids Exposed to Alternating Magnetic Fields. Fluids 8:3, pages 83.
Crossref
Anirudh Sharma, Avesh Avinash Jangam, Julian Low Yung Shen, Aiman Ahmad, Nageshwar Arepally, Hayden Carlton, Robert Ivkov & Anilchandra Attaluri. (2023) Design of a temperature-feedback controlled automated magnetic hyperthermia therapy device. Frontiers in Thermal Engineering 3.
Crossref
Hayden Carlton & Robert Ivkov. (2023) A new method to measure magnetic nanoparticle heating efficiency in non-adiabatic systems using transient pulse analysis. Journal of Applied Physics 133:4.
Crossref
Daniel Arranz, Rosa Weigand & Patricia de la Presa. (2023) Towards the Standardization of Photothermal Measurements of Iron Oxide Nanoparticles in Two Biological Windows. Nanomaterials 13:3, pages 450.
Crossref
David Gandia, Lourdes Marcano, Lucía Gandarias, Danny Villanueva, Iñaki Orue, Radu Marius Abrudan, Sergio Valencia, Irati Rodrigo, José Ángel García, Alicia Muela, Ma Luisa Fdez-Gubieda & Javier Alonso. (2022) Tuning the Magnetic Response of Magnetospirillum magneticum by Changing the Culture Medium: A Straightforward Approach to Improve Their Hyperthermia Efficiency. ACS Applied Materials & Interfaces 15:1, pages 566-577.
Crossref
Lise G. Hanson, Bianca L. Hansen, Thomas Veile, Mathias Zambach, Niels B. Christensen & Cathrine Frandsen. (2023) The Impact of Sample Insulation on Estimating the Heating Power of Magnetic Nanoparticles by AC Calorimetry. IEEE Magnetics Letters 14, pages 1-5.
Crossref
D.P. Valdés, T.E. Torres, A.C. Moreno Maldonado, G. Urretavizcaya, M.S. Nadal, M. Vasquez Mansilla, R.D. Zysler, G.F. Goya, E. De Biasi & E. Lima. (2023) Thermographical Method to Assess the Performance of Magnetic Nanoparticles in Hyperthermia Experiments through Spatiotemporal Temperature Profiles. Physical Review Applied 19:1.
Crossref
Molongnenla Jamir, C. Borgohain & J.P. Borah. (2023) Influence of structure and magnetic properties of surface modified nanoparticles for hyperthermia application. Physica B: Condensed Matter 648, pages 414405.
Crossref
Venkatesha Narayanaswamy, Jayalakshmi Jagal, Hafsa Khurshid, Imaddin A. Al-Omari, Mohamed Haider, Alexander S. Kamzin, Ihab M. Obaidat & Bashar Issa. (2022) Hyperthermia of Magnetically Soft-Soft Core-Shell Ferrite Nanoparticles. International Journal of Molecular Sciences 23:23, pages 14825.
Crossref
Maria Antonieta Ramírez-Morales, Anastasia E. Goldt, Polina M. Kalachikova, Javier A. Ramirez B.Masashi Suzuki, Alexey N. Zhigach, Asma Ben Salah, Liliya I. Shurygina, Sergey D. Shandakov, Timofei Zatsepin, Dmitry V. Krasnikov, Toru Maekawa, Evgeny N. Nikolaev & Albert G. Nasibulin. (2022) Albumin Stabilized Fe@C Core–Shell Nanoparticles as Candidates for Magnetic Hyperthermia Therapy. Nanomaterials 12:16, pages 2869.
Crossref
Anirudh Sharma, Erik Cressman, Anilchandra Attaluri, Dara L. Kraitchman & Robert Ivkov. (2022) Current Challenges in Image-Guided Magnetic Hyperthermia Therapy for Liver Cancer. Nanomaterials 12:16, pages 2768.
Crossref
J.-L. Déjardin & H. Kachkachi. (2022) Time profile of temperature rise in assemblies of nanomagnets. Journal of Magnetism and Magnetic Materials 556, pages 169354.
Crossref
Katiúscia Vieira Jardim, Abraham F. Palomec‐Garfias, Marcus Vinícius Araújo, César Márquez‐Beltrán, Andris Figueiroa Bakuzis, Sergio Enrique Moya, Alexandre Luis Parize & Marcelo Henrique Sousa. (2022) Remotely triggered curcumin release from stimuli‐responsive magneto‐polymeric layer‐by‐layer engineered nanoplatforms . Journal of Applied Polymer Science 139:21.
Crossref
Sándor Guba, Barnabás Horváth & István Szalai. (2022) Application and comparison of thermistors and fiber optic temperature sensor reference for ILP measurement of magnetic fluids in double cell magnetic hyperthermia. Heliyon 8:6, pages e09606.
Crossref
Suman Kumari, Murli Kumar Manglam, Lawrence Kumar, Papori Seal, Jyoti Prasad Borah, Mukesh Kumar Zope & Manoranjan Kar. (2022) Magnetic properties and hyperthermia action of cobalt zinc ferrite fibers. Journal of Sol-Gel Science and Technology 101:3, pages 546-561.
Crossref
Venkatesha Narayanaswamy, Imaddin A. Al-Omari, Aleksandr S. Kamzin, Bashar Issa & Ihab M. Obaidat. (2022) Tailoring Interfacial Exchange Anisotropy in Hard–Soft Core-Shell Ferrite Nanoparticles for Magnetic Hyperthermia Applications. Nanomaterials 12:2, pages 262.
Crossref
Matteo Bruno Lodi, Antonis Makridis, Nicola M. Carboni, Konstantina Kazeli, Nicola Curreli, Theodoros Samaras, Makis Angelakeris, Giuseppe Mazzarella & Alessandro Fanti. (2022) Design and Characterization of Magnetic Scaffolds for Bone Tumor Hyperthermia. IEEE Access 10, pages 19768-19779.
Crossref
Ingrid Hilger. 2022. Magnetic Materials and Technologies for Medical Applications. Magnetic Materials and Technologies for Medical Applications 265 285 .
Natalia E. Kazantseva, Ilona S. Smolkova, Vladimir Babayan, Jarmila Vilčáková, Petr Smolka & Petr Saha. (2021) Magnetic Nanomaterials for Arterial Embolization and Hyperthermia of Parenchymal Organs Tumors: A Review. Nanomaterials 11:12, pages 3402.
Crossref
Zichun Yan, Sara FitzGerald, Thomas M. Crawford & O. Thompson Mefford. (2021) Oxidation of wüstite rich iron oxide nanoparticles via post-synthesis annealing. Journal of Magnetism and Magnetic Materials 539, pages 168405.
Crossref
Tongwei Zhang, Huangtao Xu, Jia Liu, Yongxin Pan & Changqian Cao. (2021) Determination of the heating efficiency of magnetotactic bacteria in alternating magnetic field. Journal of Oceanology and Limnology 39:6, pages 2116-2126.
Crossref
Jesus G. Ovejero, Federico Spizzo, M. Puerto Morales & Lucia Del Bianco. (2021) Nanoparticles for Magnetic Heating: When Two (or More) Is Better Than One. Materials 14:21, pages 6416.
Crossref
Irene Morales, Rocio Costo, Nicolas Mille, Julian Carrey, Antonio Hernando & Patricia de la Presa. (2021) Time-dependent AC magnetometry and chain formation in magnetite: the influence of particle size, initial temperature and the shortening of the relaxation time by the applied field. Nanoscale Advances 3:20, pages 5801-5812.
Crossref
Veronica Manescu (Paltanea), Gheorghe Paltanea, Iulian Antoniac & Marius Vasilescu. (2021) Magnetic Nanoparticles Used in Oncology. Materials 14:20, pages 5948.
Crossref
Francois Vernay, Jean‐Louis Déjardin & Hamid Kachkachi. 2021. Magnetic Nanoparticles in Human Health and Medicine. Magnetic Nanoparticles in Human Health and Medicine 307 326 .
Sarbjit Singh, Alexandr Tovstolytkin & Gurmeet Singh Lotey. (2021) Heating loss mechanism in β-NaFeO2 nanoparticles for cancer treatment under alternating field. Materialia 18, pages 101152.
Crossref
Yaser Rehman, Zhenxiang Cheng, Xiaolin Wang, Xu-Feng Huang & Konstantin Konstantinov. (2021) Theranostic two-dimensional superparamagnetic maghemite quantum structures for ROS-mediated cancer therapy. Journal of Materials Chemistry B 9:29, pages 5805-5817.
Crossref
Barbara Farkaš & Nora H. de Leeuw. (2021) A Perspective on Modelling Metallic Magnetic Nanoparticles in Biomedicine: From Monometals to Nanoalloys and Ligand-Protected Particles. Materials 14:13, pages 3611.
Crossref
C. A. M. Iglesias, J. C. R. de Araújo, J. Xavier, R. L. Anders, J. M. de Araújo, R. B. da Silva, J. M. Soares, E. L. Brito, L. Streck, J. L. C. Fonseca, C. C. Plá Cid, M. Gamino, E. F. Silva, C. Chesman, M. A. Correa, S. N. de Medeiros & F. Bohn. (2021) Magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process. Scientific Reports 11:1.
Crossref
Dimitris Kouzoudis, Georgios Samourgkanidis, Argiris Kolokithas-Ntoukas, Giorgio Zoppellaro & Konstantinos Spiliotopoulos. (2021) Magnetic Hyperthermia in the 400–1,100 kHz Frequency Range Using MIONs of Condensed Colloidal Nanocrystal Clusters. Frontiers in Materials 8.
Crossref
Sanjeet Kumar Paswan, Suman Kumari, Manoranjan Kar, Astha Singh, Himanshu Pathak, J.P. Borah & Lawrence Kumar. (2021) Optimization of structure-property relationships in nickel ferrite nanoparticles annealed at different temperature. Journal of Physics and Chemistry of Solids 151, pages 109928.
Crossref
Jesus G. Ovejero, Federico Spizzo, M. Puerto Morales & Lucia Del Bianco. (2021) Mixing iron oxide nanoparticles with different shape and size for tunable magneto-heating performance. Nanoscale 13:11, pages 5714-5729.
Crossref
J. Sánchez, Mario Rodríguez-Reyes, Dora A. Cortés-Hernández, Carlos Alberto Ávila-Orta & Pamela Yajaira Reyes-Rodríguez. (2021) Heating capacity and biocompatibility of Pluronic-coated manganese gallium ferrites for magnetic hyperthermia treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects 612, pages 125986.
Crossref
Gabriel C. Lavorato, Raja DasJavier Alonso Masa, Manh-Huong Phan & Hariharan Srikanth. (2021) Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications. Nanoscale Advances 3:4, pages 867-888.
Crossref
Sándor Guba, Barnabás Horváth, Gergely Molnár & István Szalai. (2021) A double cell differential thermometric system for specific loss power measurements in magnetic hyperthermia. Measurement 169, pages 108652.
Crossref
Molongnenla Jamir, Riyajul Islam, Lalit M. Pandey & J.P. Borah. (2021) Effect of surface functionalization on the heating efficiency of magnetite nanoclusters for hyperthermia application. Journal of Alloys and Compounds 854, pages 157248.
Crossref
Raja Das, Ngoc Pham Kim, Supun B. Attanayake, Manh-Huong Phan & Hariharan Srikanth. (2021) Role of Magnetic Anisotropy on the Hyperthermia Efficiency in Spherical Fe3−xCoxO4 (x = 0–1) Nanoparticles. Applied Sciences 11:3, pages 930.
Crossref
Marie-Charlotte Horny, Jean Gamby, Vincent Dupuis & Jean-Michel Siaugue. (2021) Magnetic Hyperthermia on γ-Fe2O3@SiO2 Core-Shell Nanoparticles for mi-RNA 122 Detection. Nanomaterials 11:1, pages 149.
Crossref
Aylar Najafipour, Ali Gharieh, Afshin Fassihi, Hojjat Sadeghi-Aliabadi & Ali Reza Mahdavian. (2020) MTX-Loaded Dual Thermoresponsive and pH-Responsive Magnetic Hydrogel Nanocomposite Particles for Combined Controlled Drug Delivery and Hyperthermia Therapy of Cancer. Molecular Pharmaceutics 18:1, pages 275-284.
Crossref
Izaz Raouf, Jaehun Lee, Heung Soo Kim & Min-Ho Kim. (2021) Parametric investigations of magnetic nanoparticles hyperthermia in ferrofluid using finite element analysis. International Journal of Thermal Sciences 159, pages 106604.
Crossref
Paolo Sgarbossa, Maria Rosaria Ruggiero, Simonetta Geninatti Crich, Michele Forzan, Roberta Bertani, Mirto Mozzon & Elisabetta Sieni. 2021. 8th European Medical and Biological Engineering Conference. 8th European Medical and Biological Engineering Conference 198 207 .
Y. Wang, Y. Miao, G. Li, M. Su, X. Chen, H. Zhang, Y. Zhang, W. Jiao, Y. He, J. Yi, X. Liu & H. Fan. (2020) Engineering ferrite nanoparticles with enhanced magnetic response for advanced biomedical applications. Materials Today Advances 8, pages 100119.
Crossref
Reza Eivazzadeh‐Keihan, Ehsan Bahojb Noruzi, Karim Khanmohammadi Chenab, Amir Jafari, Fateme Radinekiyan, Seyed Masoud Hashemi, Farnoush Ahmadpour, Ali Behboudi, Jafar Mosafer, Ahad Mokhtarzadeh, Ali Maleki & Michael R. Hamblin. (2020) Metal‐based nanoparticles for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine 14:12, pages 1687-1714.
Crossref
Hossein Etemadi & Paul G. Plieger. (2020) Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. Advanced Therapeutics 3:11.
Crossref
Lukas Steinmetz, Joel Bourquin, Hana Barosova, Laetitia Haeni, Jessica Caldwell, Ana Milosevic, Christoph Geers, Mathias Bonmarin, Patricia Taladriz-Blanco, Barbara Rothen-Rutishauser & Alke Petri-Fink. (2020) Rapid and sensitive quantification of cell-associated multi-walled carbon nanotubes. Nanoscale 12:33, pages 17362-17372.
Crossref
Lukas Steinmetz, Christoph Kirsch, Christoph Geers, Alke Petri-Fink & Mathias Bonmarin. (2020) Investigating a Lock-In Thermal Imaging Setup for the Detection and Characterization of Magnetic Nanoparticles. Nanomaterials 10:9, pages 1665.
Crossref
M. L. Fdez-Gubieda, J. Alonso, A. García-Prieto, A. García-Arribas, L. Fernández Barquín & A. Muela. (2020) Magnetotactic bacteria for cancer therapy. Journal of Applied Physics 128:7.
Crossref
Simonetta Geninatti Crich, Maria Rosaria Ruggiero, Michele Forzan, Paolo Sgarbossa & Elisabetta Sieni. (2020) Magnetic hyperthermia efficiency of Mn doped Fe oxides particles loaded into PLGA. International Journal of Applied Electromagnetics and Mechanics 63, pages S123-S129.
Crossref
Izaz Raouf, Salman Khalid, Asif Khan, Jaehun Lee, Heung Soo Kim & Min-Ho Kim. (2020) A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges. Journal of Thermal Biology 91, pages 102644.
Crossref
R. Ghasemi, J. Echeverría, J.I. Pérez-Landazábal, J.J. Beato-Lopez, M. Naseri & C. Gómez-Polo. (2020) Effect of Cu substitution on the magnetic and magnetic induction heating response of CdFe2O4 spinel ferrite. Journal of Magnetism and Magnetic Materials 499, pages 166201.
Crossref
Costas Papadopoulos, Eleni K. Efthimiadou, Michael Pissas, David Fuentes, Nikolaos Boukos, Vassilis Psycharis, George Kordas, Vassilios C. Loukopoulos & George C. Kagadis. (2020) Magnetic fluid hyperthermia simulations in evaluation of SAR calculation methods. Physica Medica 71, pages 39-52.
Crossref
K. C. Ugochukwu, M. M. Sadiq, E. S. Biegel, L. Meagher, M. R. Hill, K. G. Sandeman, A. Haydon & K. Suzuki. (2020) Effect of direct-current magnetic field on the specific absorption rate of metamagnetic CoMnSi: A potential approach to switchable hyperthermia therapy. AIP Advances 10:1.
Crossref
Frederik Soetaert, Preethi Korangath, David Serantes, Steven Fiering & Robert Ivkov. (2020) Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Advanced Drug Delivery Reviews 163-164, pages 65-83.
Crossref
L. Del Bianco, F. Spizzo, P. Sgarbossa, E. Sieni, G. Barucca, M. R. Ruggiero & S. Geninatti Crich. (2019) Dipolar Magnetic Interactions in Mn-Doped Magnetite Nanoparticles Loaded into PLGA Nanocapsules for Nanomedicine Applications. The Journal of Physical Chemistry C 123:49, pages 30007-30020.
Crossref
Ihab M. Obaidat, Venkatesha Narayanaswamy, Sulaiman Alaabed, Sangaraju Sambasivam & Chandu V. V. Muralee Gopi. (2019) Principles of Magnetic Hyperthermia: A Focus on Using Multifunctional Hybrid Magnetic Nanoparticles. Magnetochemistry 5:4, pages 67.
Crossref
Sarah E. Sandler, Benjamin Fellows & O. Thompson Mefford. (2019) Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications. Analytical Chemistry 91:22, pages 14159-14169.
Crossref
David Gandia, Lucía Gandarias, Irati Rodrigo, Joshua Robles‐García, Raja Das, Eneko Garaio, José Ángel García, Manh‐Huong Phan, Hariharan Srikanth, Iñaki Orue, Javier Alonso, Alicia Muela & M. Luisa Fdez‐Gubieda. (2019) Unlocking the Potential of Magnetotactic Bacteria as Magnetic Hyperthermia Agents. Small 15:41.
Crossref
Surojit Ranoo, B.B. Lahiri, Sithara Vinod & John Philip. (2019) Effect of initial susceptibility and relaxation dynamics on radio frequency alternating magnetic field induced heating in superparamagnetic nanoparticle dispersions. Journal of Magnetism and Magnetic Materials 486, pages 165267.
Crossref
Valentina Grumezescu, Oana Gherasim, Irina Negut, Stefan Banita, Alina Maria Holban, Paula Florian, Madalina Icriverzi & Gabriel Socol. (2019) Nanomagnetite-embedded PLGA Spheres for Multipurpose Medical Applications. Materials 12:16, pages 2521.
Crossref
Yaser Hadadian, Mehran Azimbagirad, Elcio A. Navas & Theo Z. Pavan. (2019) A versatile induction heating system for magnetic hyperthermia studies under different experimental conditions. Review of Scientific Instruments 90:7.
Crossref
A Makridis, S Curto, G C van Rhoon, T Samaras & M Angelakeris. (2019) A standardisation protocol for accurate evaluation of specific loss power in magnetic hyperthermia. Journal of Physics D: Applied Physics 52:25, pages 255001.
Crossref
L. Del Bianco, F. Spizzo, G. Barucca, M. R. Ruggiero, S. Geninatti Crich, M. Forzan, E. Sieni & P. Sgarbossa. (2019) Mechanism of magnetic heating in Mn-doped magnetite nanoparticles and the role of intertwined structural and magnetic properties. Nanoscale 11:22, pages 10896-10910.
Crossref
N. Maniotis, A. Nazlidis, E. Myrovali, A. Makridis, M. Angelakeris & T. Samaras. (2019) Estimating the effective anisotropy of ferromagnetic nanoparticles through magnetic and calorimetric simulations. Journal of Applied Physics 125:10, pages 103903.
Crossref
David Cabrera, Irene Rubia-Rodríguez, Eneko Garaio, Fernando Plazaola, Luc Dupré, Neil Farrow, Francisco J. Terán & Daniel Ortega. 2019. Nanomaterials for Magnetic and Optical Hyperthermia Applications. Nanomaterials for Magnetic and Optical Hyperthermia Applications 111 138 .
C. Gómez-Polo, V. Recarte, L. Cervera, J.J. Beato-López, J. López-García, J.A. Rodríguez-Velamazán, M.D. Ugarte, E.C. Mendonça & J.G.S. Duque. (2018) Tailoring the structural and magnetic properties of Co-Zn nanosized ferrites for hyperthermia applications. Journal of Magnetism and Magnetic Materials 465, pages 211-219.
Crossref
Chun-Ting Yang, Keng-Yuan Li, Fan-Qi Meng, Jung-Feng Lin, In-Chi Young, Robert Ivkov & Feng-Huei Lin. (2018) ROS-induced HepG2 cell death from hyperthermia using magnetic hydroxyapatite nanoparticles. Nanotechnology 29:37, pages 375101.
Crossref
B.B. Lahiri, Surojit Ranoo & John Philip. (2018) Effect of orientational ordering of magnetic nanoemulsions immobilized in agar gel on magnetic hyperthermia. Journal of Magnetism and Magnetic Materials 451, pages 254-268.
Crossref
Zohreh Nemati, Javier Alonso, Irati Rodrigo, Raja Das, Eneko Garaio, José Ángel García, Iñaki Orue, Manh-Huong Phan & Hariharan Srikanth. (2018) Improving the Heating Efficiency of Iron Oxide Nanoparticles by Tuning Their Shape and Size. The Journal of Physical Chemistry C 122:4, pages 2367-2381.
Crossref
Xiaohan Zhou, Longchen Wang, Yanjun Xu, Wenxian Du, Xiaojun Cai, Fengjuan Wang, Yi Ling, Hangrong Chen, Zhigang Wang, Bing Hu & Yuanyi Zheng. (2018) A pH and magnetic dual-response hydrogel for synergistic chemo-magnetic hyperthermia tumor therapy. RSC Advances 8:18, pages 9812-9821.
Crossref
A Drayton, J Zehner, J Timmis, V Patel, G Vallejo-Fernandez & K O’Grady. (2017) A comparative measurement technique of nanoparticle heating for magnetic hyperthermia applications. Journal of Physics D: Applied Physics 50:49, pages 495003.
Crossref
Christophe A. Monnier, Federica Crippa, Christoph Geers, Evelyne Knapp, Barbara Rothen-Rutishauser, Mathias Bonmarin, Marco Lattuada & Alke Petri-Fink. (2017) Lock-In Thermography as an Analytical Tool for Magnetic Nanoparticles: Measuring Heating Power and Magnetic Fields. The Journal of Physical Chemistry C 121:48, pages 27164-27175.
Crossref
Suriyanto, E. Y. K. Ng & S. D. Kumar. (2017) Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. BioMedical Engineering OnLine 16:1.
Crossref
B B Lahiri, Surojit Ranoo & John Philip. (2017) Uncertainties in the estimation of specific absorption rate during radiofrequency alternating magnetic field induced non-adiabatic heating of ferrofluids. Journal of Physics D: Applied Physics 50:45, pages 455005.
Crossref
B.B. Lahiri, Surojit Ranoo, A.W. Zaibudeen & John Philip. (2017) Magnetic hyperthermia in magnetic nanoemulsions: Effects of polydispersity, particle concentration and medium viscosity. Journal of Magnetism and Magnetic Materials 441, pages 310-327.
Crossref
James Wells, Olga Kazakova, Oliver Posth, Uwe Steinhoff, Sarunas Petronis, Lara K Bogart, Paul Southern, Quentin Pankhurst & Christer Johansson. (2017) Standardisation of magnetic nanoparticles in liquid suspension. Journal of Physics D: Applied Physics 50:38, pages 383003.
Crossref
Frederik Soetaert, Sri Kamal Kandala, Andris Bakuzis & Robert Ivkov. (2017) Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles. Scientific Reports 7:1.
Crossref
Marco Coïsson, Gabriele Barrera, Federica Celegato, Luca Martino, Shashank N. Kane, Saroj Raghuvanshi, Franco Vinai & Paola Tiberto. (2017) Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications. Biochimica et Biophysica Acta (BBA) - General Subjects 1861:6, pages 1545-1558.
Crossref
M. S. Carrião, V. R. R. Aquino, G. T. Landi, E. L. Verde, M. H. Sousa & A. F. Bakuzis. (2017) Giant-spin nonlinear response theory of magnetic nanoparticle hyperthermia: A field dependence study. Journal of Applied Physics 121:17.
Crossref
Eva Natividad & Irene Andreu. (2017) Omitting the need of external heat capacity data in an adiabatic magnetothermal setup devoted to the characterization of nanomaterials for magnetic hyperthermia. Applied Thermal Engineering 117, pages 409-416.
Crossref
P.T. Phong, L.H. Nguyen, L.T.H. Phong, P.H. Nam, D.H. Manh, I.–J. Lee & N.X. Phuc. (2017) Study of specific loss power of magnetic fluids with various viscosities. Journal of Magnetism and Magnetic Materials 428, pages 36-42.
Crossref
Philipp Lemal, Christoph Geers, Christophe A. Monnier, Federica Crippa, Leopold Daum, Dominic A. Urban, Barbara Rothen-Rutishauser, Mathias Bonmarin, Alke Petri-Fink & Thomas L. Moore. (2017) Lock-in thermography as a rapid and reproducible thermal characterization method for magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 427, pages 206-211.
Crossref
Philipp Lemal, Christoph Geers, Barbara Rothen-Rutishauser, Marco Lattuada & Alke Petri-Fink. (2017) Measuring the heating power of magnetic nanoparticles: an overview of currently used methods. Materials Today: Proceedings 4, pages S107-S117.
Crossref
Maria Margarida Cruz, Liliana P. Ferreira, André F. Alves, Sofia G. Mendo, Paula Ferreira, Margarida Godinho & Maria Deus Carvalho. 2017. Nanostructures for Cancer Therapy. Nanostructures for Cancer Therapy 485 511 .
Yasir Javed, Khuram Ali & Yasir Jamil. 2017. Complex Magnetic Nanostructures. Complex Magnetic Nanostructures 393 424 .
A. Talaat, J. Alonso, V. Zhukova, E. Garaio, J. A. García, H. Srikanth, M. H. Phan & A. Zhukov. (2016) Ferromagnetic glass-coated microwires with good heating properties for magnetic hyperthermia. Scientific Reports 6:1.
Crossref
Vinicio Carias, Zohreh Nemati Porshokouh, Kristen Stojak Repa, Javier Alonso, Hariharan Srikanth, Jürgen Rühe, Ryan Toomey & Jing Wang. (2016) Remotely Controlled Micromanipulation by Buckling Instabilities in Fe 3 O 4 Nanoparticle Embedded Poly( N -isopropylacrylamide) Surface Arrays . ACS Applied Materials & Interfaces 8:41, pages 28012-28018.
Crossref
Eric C. Abenojar, Sameera Wickramasinghe, Jesbaniris Bas-Concepcion & Anna Cristina S. Samia. (2016) Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Progress in Natural Science: Materials International 26:5, pages 440-448.
Crossref
B. Palazzo, B. Palazzo, S. Scialla, F. Scalera, N. Margiotta & F. Gervaso. 2016. Advanced Composite Materials. Advanced Composite Materials 209 273 .
Aidin Lak, Dina Niculaes, George C. Anyfantis, Giovanni Bertoni, Markus J. Barthel, Sergio Marras, Marco Cassani, Simone Nitti, Athanassia Athanassiou, Cinzia Giannini & Teresa Pellegrino. (2016) Facile transformation of FeO/Fe3O4 core-shell nanocubes to Fe3O4 via magnetic stimulation. Scientific Reports 6:1.
Crossref
A. Józefczak, B. Leszczyński, A. Skumiel & T. Hornowski. (2016) A comparison between acoustic properties and heat effects in biogenic (magnetosomes) and abiotic magnetite nanoparticle suspensions. Journal of Magnetism and Magnetic Materials 407, pages 92-100.
Crossref
Raja Das, Javier Alonso, Zohreh Nemati Porshokouh, Vijaysankar Kalappattil, David Torres, Manh-Huong Phan, Eneko Garaio, José Ángel García, Jose Luis Sanchez Llamazares & Hariharan Srikanth. (2016) Tunable High Aspect Ratio Iron Oxide Nanorods for Enhanced Hyperthermia. The Journal of Physical Chemistry C 120:18, pages 10086-10093.
Crossref
A. Skumiel, T. Hornowski, A. Józefczak, M. Koralewski & B. Leszczyński. (2016) Uses and limitation of different thermometers for measuring heating efficiency of magnetic fluids. Applied Thermal Engineering 100, pages 1308-1318.
Crossref
Anh-Tuan Le, Chu Duy Giang, Le Thi Tam, Ta Quoc Tuan, Vu Ngoc Phan, Javier Alonso, Jagannath Devkota, Eneko Garaio, José Ángel García, Rosa Martín-Rodríguez, Ma Luisa Fdez-Gubieda, Hariharan Srikanth & Manh-Huong Phan. (2016) Enhanced magnetic anisotropy and heating efficiency in multi-functional manganese ferrite/graphene oxide nanostructures. Nanotechnology 27:15, pages 155707.
Crossref
Cristina Blanco-Andujar, Daniel Ortega, Paul Southern, Stephen A Nesbitt, Nguyễn Thị Kim Thanh & Quentin A Pankhurst. (2016) Real-time tracking of delayed-onset cellular apoptosis induced by intracellular magnetic hyperthermia. Nanomedicine 11:2, pages 121-136.
Crossref
Z. Nemati, J. Alonso, H. Khurshid, M. H. Phan & H. Srikanth. (2016) Core/shell iron/iron oxide nanoparticles: are they promising for magnetic hyperthermia?. RSC Advances 6:45, pages 38697-38702.
Crossref
C. A. Monnier, M. Lattuada, D. Burnand, F. Crippa, J. C. Martinez-Garcia, A. M. Hirt, B. Rothen-Rutishauser, M. Bonmarin & A. Petri-Fink. (2016) A lock-in-based method to examine the thermal signatures of magnetic nanoparticles in the liquid, solid and aggregated states. Nanoscale 8:27, pages 13321-13332.
Crossref
R. Bertani, M. Forzan, P. Sgarbossa, E. Sieni, P. Di Barba, F. Spizzo & L. Del Bianco. (2015) Multi-objective design of a magnetic fluid hyperthermia device. Multi-objective design of a magnetic fluid hyperthermia device.
Irene Andreu, Eva Natividad, Laura Solozábal & Olivier Roubeau. (2015) Same magnetic nanoparticles, different heating behavior: Influence of the arrangement and dispersive medium. Journal of Magnetism and Magnetic Materials 380, pages 341-346.
Crossref
Irene Andreu, Eva Natividad, Laura Solozábal & Olivier Roubeau. (2015) Nano-objects for Addressing the Control of Nanoparticle Arrangement and Performance in Magnetic Hyperthermia. ACS Nano 9:2, pages 1408-1419.
Crossref
Ihab Obaidat, Bashar Issa & Yousef Haik. (2015) Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia. Nanomaterials 5:1, pages 63-89.
Crossref
Kenya Murase, Marina Aoki, Natsuo Banura, Kohei Nishimoto, Atsushi Mimura, Tomomi Kuboyabu & Isamu Yabata. (2015) Usefulness of Magnetic Particle Imaging for Predicting the Therapeutic Effect of Magnetic Hyperthermia. Open Journal of Medical Imaging 05:02, pages 85-99.
Crossref
M. Vasilakaki, C. Binns & K. N. Trohidou. (2015) Susceptibility losses in heating of magnetic core/shell nanoparticles for hyperthermia: a Monte Carlo study of shape and size effects. Nanoscale 7:17, pages 7753-7762.
Crossref
C. Blanco-Andujar, D. Ortega, P. Southern, Q. A. Pankhurst & N. T. K. Thanh. (2015) High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions. Nanoscale 7:5, pages 1768-1775.
Crossref
R R Wildeboer, P Southern & Q A Pankhurst. (2014) On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. Journal of Physics D: Applied Physics 47:49, pages 495003.
Crossref
Robert Ludwig, Marcus Stapf, Silvio Dutz, Robert Müller, Ulf Teichgräber & Ingrid Hilger. (2014) Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential. Nanoscale Research Letters 9:1.
Crossref
Silvio Dutz & Rudolf Hergt. (2014) Magnetic particle hyperthermia—a promising tumour therapy?. Nanotechnology 25:45, pages 452001.
Crossref
Inès Ponsot, Yiannis Pontikes, Giovanni Baldi, Rama Chinnam, Rainer Detsch, Aldo Boccaccini & Enrico Bernardo. (2014) Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste. Materials 7:8, pages 5565-5580.
Crossref
Irene Andreu, Eva Natividad, Costanza Ravagli, Miguel Castro & Giovanni Baldi. (2014) Heating ability of cobalt ferrite nanoparticles showing dynamic and interaction effects. RSC Advances 4:55, pages 28968.
Crossref
Aziliz Hervault & Nguyễn Thị Kim Thanh. (2014) Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 6:20, pages 11553-11573.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.