3,060
Views
133
CrossRef citations to date
0
Altmetric
Review Articles

In vivo applications of magnetic nanoparticle hyperthermia

Pages 828-834 | Received 06 May 2013, Accepted 05 Aug 2013, Published online: 12 Nov 2013

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (11)

Felista L. Tansi, Wisdom O. Maduabuchi, Melanie Hirsch, Paul Southern, Simon Hattersley, Rainer Quaas, Ulf Teichgräber, Quentin A. Pankhurst & Ingrid Hilger. (2021) Deep-tissue localization of magnetic field hyperthermia using pulse sequencing. International Journal of Hyperthermia 38:1, pages 743-754.
Read now
Harley F. Rodrigues, Gustavo Capistrano & Andris F. Bakuzis. (2020) In vivo magnetic nanoparticle hyperthermia: a review on preclinical studies, low-field nano-heaters, noninvasive thermometry and computer simulations for treatment planning. International Journal of Hyperthermia 37:3, pages 76-99.
Read now
Fatimah Mohammed Alzahrani, Khadijah Mohammed Saleh Katubi, Daoud Ali & Saud Alarifi. (2019) Apoptotic and DNA-damaging effects of yttria-stabilized zirconia nanoparticles on human skin epithelial cells. International Journal of Nanomedicine 14, pages 7003-7016.
Read now
Ganga Baskar, Mathangi Ravi, Jiban Jyoti Panda, Anjali Khatri, Bhawna Dev, Roy Santosham, Sekar Sathiya, Chidambaram Saravana Babu, Virander Singh Chauhan, Suresh K. Rayala & Ganesh Venkatraman. (2017) Efficacy of Dipeptide-Coated Magnetic Nanoparticles in Lung Cancer Models Under Pulsed Electromagnetic Field. Cancer Investigation 35:6, pages 431-442.
Read now
Barbara Chudzik, Arkadiusz Miaskowski, Zbigniew Surowiec, Grzegorz Czernel, Tomasz Duluk, Andrzej Marczuk & Mariusz Gagoś. (2016) Effectiveness of magnetic fluid hyperthermia against Candida albicans cells. International Journal of Hyperthermia 32:8, pages 842-857.
Read now
Mohammad Mahdi Attar, Saeid Amanpour, Mohammad Haghpanahi, Mahnaz Haddadi, Gita Rezaei, Samad Muhammadnejad, Mehran HajiAkhoundzadeh, Tahereh Barati, Fatemeh Sadeghi & Saba Javadi. (2016) Thermal analysis of magnetic nanoparticle in alternating magnetic field on human HCT-116 colon cancer cell line. International Journal of Hyperthermia 32:8, pages 858-867.
Read now
Antonios Makridis, Magdalini Tziomaki, Konstantina Topouridou, Maria P. Yavropoulou, John G. Yovos, Orestis Kalogirou, Theodoros Samaras & Mavroeidis Angelakeris. (2016) A novel strategy combining magnetic particle hyperthermia pulses with enhanced performance binary ferrite carriers for effective in vitro manipulation of primary human osteogenic sarcoma cells. International Journal of Hyperthermia 32:7, pages 778-785.
Read now
Gennaro Bellizzi, Ovidio M. Bucci & Gaetano Chirico. (2016) Numerical assessment of a criterion for the optimal choice of the operative conditions in magnetic nanoparticle hyperthermia on a realistic model of the human head. International Journal of Hyperthermia 32:6, pages 688-703.
Read now
Michael R. Horsman. (2016) Realistic biological approaches for improving thermoradiotherapy. International Journal of Hyperthermia 32:1, pages 14-22.
Read now
Christian Ndong, Seiko Toraya-Brown, Katsiaryna Kekalo, Ian Baker, Tillman U Gerngross, Steven N Fiering & Karl E Griswold. (2015) Antibody-mediated targeting of iron oxide nanoparticles to the folate receptor alpha increases tumor cell association in vitro and in vivo. International Journal of Nanomedicine 10, pages 2595-2617.
Read now
Kunihiro Ikuta, Hiroshi Urakawa, Eiji Kozawa, Shunsuke Hamada, Takehiro Ota, Ryuji Kato, Hiroyuki Honda, Takeshi Kobayashi, Naoki Ishiguro & Yoshihiro Nishida. (2015) In vivo heat-stimulus-triggered osteogenesis. International Journal of Hyperthermia 31:1, pages 58-66.
Read now

Articles from other publishers (122)

Gopal Niraula, Chengwei Wu, Xiaogang Yu, Sonia Malik, Dalip Singh Verma, Rengpeng Yang, Boxiong Zhao, Shuaiwen Ding, Wei Zhang & Surender Kumar Sharma. (2024) The Curie temperature: a key playmaker in self-regulated temperature hyperthermia. Journal of Materials Chemistry B.
Crossref
Aparajita Ghosh, Ambati Himaja, Swati Biswas, Onkar Kulkarni & Balaram Ghosh. (2023) Advances in the Delivery and Development of Epigenetic Therapeutics for the Treatment of Cancer. Molecular Pharmaceutics 20:12, pages 5981-6009.
Crossref
Siao Lei, Jie He, Pengli Gao, Yueqi Wang, Hui Hui, Yu An & Jie Tian. (2023) Magnetic Particle Imaging-Guided Hyperthermia for Precise Treatment of Cancer: Review, Challenges, and Prospects. Molecular Imaging and Biology.
Crossref
S. P. Tsopoe, C. Borgohain, Manoranjan Kar, Shantanu Kumar Panda & J. P. Borah. (2023) An exhaustive scrutiny to amplify the heating prospects by devising a core@shell nanostructure for constructive magnetic hyperthermia applications. Scientific Reports 13:1.
Crossref
Meysam Soleymani, Amirhoushang Poorkhani, Solmaz Khalighfard, Mohammad Velashjerdi, Vahid Khori, Saeed Khodayari, Hamid Khodayari, Mohammad Dehghan, Nazila Alborzi, Shahram Agah & Ali Mohammad Alizadeh. (2023) Folic acid-conjugated dextran-coated Zn0.6Mn0.4Fe2O4 nanoparticles as systemically delivered nano heaters with self-regulating temperature for magnetic hyperthermia therapy of liver tumors. Scientific Reports 13:1.
Crossref
Wisdom O. Maduabuchi, Felista L. Tansi, Regine Heller & Ingrid Hilger. (2023) Hyperthermia Influences the Secretion Signature of Tumor Cells and Affects Endothelial Cell Sprouting. Biomedicines 11:8, pages 2256.
Crossref
Yan Mi, Chi Ma, Wei Zheng, Zhengmin Li & Mengnan Zhang. (2023) Magnetic losses in single-domain magnetic particles. The European Physical Journal Special Topics 232:8, pages 1353-1368.
Crossref
Tuan-Anh Le, Yaser Hadadian & Jungwon Yoon. (2023) A prediction model for magnetic particle imaging–based magnetic hyperthermia applied to a brain tumor model. Computer Methods and Programs in Biomedicine 235, pages 107546.
Crossref
Jiang Yuxue, Sun Ran, Fan Minghui & Sheng Minjia. (2023) Applications of nanomaterials in endometriosis treatment. Frontiers in Bioengineering and Biotechnology 11.
Crossref
Nguyen Xuan Phuc, Do Hung Manh & Pham Hong Nam. (2023) Electromagnetic heating using nanomaterials and various potentials applications. Vietnam Journal of Science and Technology 61:2.
Crossref
Jesús Molinar‐Díaz, John Luke Woodliffe, Benjamin Milborne, Lauren Murrell, Md Towhidul Islam, Elisabeth Steer, Nicola Weston, Nicola A. Morley, Paul D. Brown & Ifty Ahmed. (2023) Ferromagnetic Cytocompatible Glass‐Ceramic Porous Microspheres for Magnetic Hyperthermia Applications. Advanced Materials Interfaces 10:11.
Crossref
Ioana Baldea, Anca Petran, Adrian Florea, Alexandra Sevastre-Berghian, Iuliana Nenu, Gabriela Adriana Filip, Mihai Cenariu, Maria Teodora Radu & Cristian Iacovita. (2023) Magnetic Nanoclusters Stabilized with Poly[3,4-Dihydroxybenzhydrazide] as Efficient Therapeutic Agents for Cancer Cells Destruction. Nanomaterials 13:5, pages 933.
Crossref
Gurmeet Singh, Amritpal Singh, Neeraj Kumar & Pramod Avti. (2023) Effects of injection rates and tissue diffusivity in magnetic nano-particle hyperthermia. Medical Engineering & Physics 113, pages 103965.
Crossref
Tahani Al Sariri, Radostin D. Simitev & Raimondo Penta. (2023) Optimal heat transport induced by magnetic nanoparticle delivery in vascularised tumours. Journal of Theoretical Biology 561, pages 111372.
Crossref
Marjan Ghazimoradi, Aliakbar Tarlani, Abdolali Alemi, Hamed Hamishehkar & Marjan Ghorbani. (2023) pH-responsive, magnetic-luminescent core/shell carriers for co-delivery of anticancer drugs (MTX & DOX) for breast cancer treatment. Journal of Alloys and Compounds 936, pages 168257.
Crossref
Robert Müller, Janna Kuchinka & Thomas Heinze. (2022) Studies about the design of magnetic bionanocomposite. Physical Sciences Reviews 7:12, pages 1397-1420.
Crossref
Carla Martí Castelló, Mara Taís de Carvalho, Andris Figueiroa Bakuzis, Simone Gonçalves Fonseca & Marina Pacheco Miguel. (2022) Local tumour nanoparticle thermal therapy: A promising immunomodulatory treatment for canine cancer. Veterinary and Comparative Oncology 20:4, pages 752-766.
Crossref
A.G. Díez, M. Rincón-Iglesias, S. Lanceros-Méndez, J. Reguera & E. Lizundia. (2022) Multicomponent magnetic nanoparticle engineering: the role of structure-property relationship in advanced applications. Materials Today Chemistry 26, pages 101220.
Crossref
Ananiya A. Demessie, Youngrong Park, Prem Singh, Abraham S. Moses, Tetiana Korzun, Fahad Y. Sabei, Hassan A. Albarqi, Leonardo Campos, Cory R. Wyatt, Khashayar Farsad, Pallavi Dhagat, Conroy Sun, Olena R. Taratula & Oleh Taratula. (2022) An Advanced Thermal Decomposition Method to Produce Magnetic Nanoparticles with Ultrahigh Heating Efficiency for Systemic Magnetic Hyperthermia. Small Methods 6:12.
Crossref
Markus Rademacher, Jonathan Gosling, Antonio Pontin, Marko Toroš, Jence T. Mulder, Arjan J. Houtepen & P. F. Barker. (2022) Measurement of single nanoparticle anisotropy by laser induced optical alignment and Rayleigh scattering for determining particle morphology. Applied Physics Letters 121:22.
Crossref
N.N. Liu, A.P. Pyatakov, A.M. Saletsky, M.N. Zharkov, N.A. Pyataev, G.B. Sukhorukov, Y.K. Gun'ko & A.M. Tishin. (2022) The “field or frequency” dilemma in magnetic hyperthermia: The case of Zn Mn ferrite nanoparticles. Journal of Magnetism and Magnetic Materials 555, pages 169379.
Crossref
Sabrina Rotundo, Danilo Brizi, Alessandra Flori, Giulio Giovannetti, Luca Menichetti & Agostino Monorchio. (2022) Shaping and Focusing Magnetic Field in the Human Body: State-of-the Art and Promising Technologies. Sensors 22:14, pages 5132.
Crossref
Youngrong Park, Ananiya A. Demessie, Addie Luo, Olena R. Taratula, Abraham S. Moses, Peter Do, Leonardo Campos, Younes Jahangiri, Cory R. Wyatt, Hassan A. Albarqi, Khashayar Farsad, Ov D. Slayden & Oleh Taratula. (2022) Targeted Nanoparticles with High Heating Efficiency for the Treatment of Endometriosis with Systemically Delivered Magnetic Hyperthermia. Small 18:24.
Crossref
Parisa Eslami, Martin Albino, Francesca Scavone, Federica Chiellini, Andrea Morelli, Giovanni Baldi, Laura Cappiello, Saer Doumett, Giada Lorenzi, Costanza Ravagli, Andrea Caneschi, Anna Laurenzana & Claudio Sangregorio. (2022) Smart Magnetic Nanocarriers for Multi-Stimuli On-Demand Drug Delivery. Nanomaterials 12:3, pages 303.
Crossref
Sara Lopez, Nicolas Hallali, Yoann Lalatonne, Arnaud Hillion, Joana C. Antunes, Nizar Serhan, Pascal Clerc, Daniel Fourmy, Laurence Motte, Julian Carrey & Véronique Gigoux. (2022) Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields. Nanoscale Advances 4:2, pages 421-436.
Crossref
Maryam Tajabadi, Iman Rahmani, Seyed Mohammad Mirkazemi & Hanif Goran Orimi. (2022) Insights into the synthesis optimization of Fe@SiO2 Core-Shell nanostructure as a highly efficient nano-heater for magnetic hyperthermia treatment. Advanced Powder Technology 33:1, pages 103366.
Crossref
Alexander Kritskiy. 2022. Magnetic Materials and Technologies for Medical Applications. Magnetic Materials and Technologies for Medical Applications 613 623 .
Nisha Lamichhane, Maneea Eizadi Sharifabad, Ben Hodgson, Tim Mercer & Tapas Sen. 2022. Nanoparticle Therapeutics. Nanoparticle Therapeutics 455 497 .
Luiza Steffens Reinhardt, Mabilly Cox Holanda de Barros Dias, Jussania Gnoatto, Anna Wawruszak, Marta Hałasa, Pablo Ricardo Arantes, Neil J. Rowan & Dinara Jaqueline Moura. 2022. Polymeric and Natural Composites. Polymeric and Natural Composites 241 270 .
Lijo P. Mona, Sandile P. Songca & Peter A. Ajibade. (2021) Synthesis and encapsulation of iron oxide nanorods for application in magnetic hyperthermia and photothermal therapy. Nanotechnology Reviews 11:1, pages 176-190.
Crossref
Nurettin Sezer, İbrahim Arı, Yusuf Biçer & Muammer Koç. (2021) Superparamagnetic nanoarchitectures: Multimodal functionalities and applications. Journal of Magnetism and Magnetic Materials 538, pages 168300.
Crossref
Neeharika Senthilkumar, Preetam Kumar Sharma, Neeru Sood & Nikhil Bhalla. (2021) Designing magnetic nanoparticles for in vivo applications and understanding their fate inside human body. Coordination Chemistry Reviews 445, pages 214082.
Crossref
Heba Kahil, Ahmed Faramawy, Hesham El-Sayed & Adel Abdel-Sattar. (2021) Magnetic Properties and SAR for Gadolinium-Doped Iron Oxide Nanoparticles Prepared by Hydrothermal Method. Crystals 11:10, pages 1153.
Crossref
Elanur AYDIN KARATAŞ, Kübra BAYINDIRLI, Özlem ÖZDEMİR TOZLU, Erdal SÖNMEZ, Süleyman KERLİ, Hasan TÜRKEZ & Ayşenur YAZICI. (2021) Investigating the Effect of Yttrium Oxide Nanoparticle in U87MG Glioma and PC3 Prostate Cancer: Molecular ApproachesInvestigating the Effect of Yttrium Oxide Nanoparticle in U87MG Glioma and PC3 Prostate Cancer: Molecular Approaches. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 11:3, pages 2307-2318.
Crossref
Costica Caizer. 2021. Magnetic Nanoparticles in Human Health and Medicine. Magnetic Nanoparticles in Human Health and Medicine 430 463 .
Costica Caizer, Cristina Dehelean & Codruta Soica. 2021. Magnetic Nanoparticles in Human Health and Medicine. Magnetic Nanoparticles in Human Health and Medicine 272 306 .
Javier B. Mamani, Taylla K. F. Souza, Mariana P. Nucci, Fernando A. Oliveira, Leopoldo P. Nucci, Arielly H. Alves, Gabriel N. A. Rego, Luciana Marti & Lionel F. Gamarra. (2021) In Vitro Evaluation of Hyperthermia Magnetic Technique Indicating the Best Strategy for Internalization of Magnetic Nanoparticles Applied in Glioblastoma Tumor Cells. Pharmaceutics 13:8, pages 1219.
Crossref
Magda A. Antoniak, Robert Pązik, Urszula Bazylińska, Kamil Wiwatowski, Anna Tomaszewska, Magdalena Kulpa-Greszta, Jagoda Adamczyk-Grochala, Maciej Wnuk, Sebastian Maćkowski, Anna Lewińska & Marcin Nyk. (2021) Multimodal polymer encapsulated CdSe/Fe3O4 nanoplatform with improved biocompatibility for two-photon and temperature stimulated bioapplications. Materials Science and Engineering: C 127, pages 112224.
Crossref
Gary Hannon, Felista L. Tansi, Ingrid Hilger & Adriele Prina‐Mello. (2021) The Effects of Localized Heat on the Hallmarks of Cancer. Advanced Therapeutics 4:7.
Crossref
Costica Caizer. (2021) Theoretical Study on Specific Loss Power and Heating Temperature in CoFe2O4 Nanoparticles as Possible Candidate for Alternative Cancer Therapy by Superparamagnetic Hyperthemia. Applied Sciences 11:12, pages 5505.
Crossref
Maria MonteserínSilvia LarumbeAlejandro V. MartínezSaioa BurguiL. Francisco Martín. (2021) Recent Advances in the Development of Magnetic Nanoparticles for Biomedical Applications. Journal of Nanoscience and Nanotechnology 21:5, pages 2705-2741.
Crossref
Luu Nguyen, Pham Phong, Pham Nam, Do Manh, Nguyen Thanh, Le Tung & Nguyen Phuc. (2021) The Role of Anisotropy in Distinguishing Domination of Néel or Brownian Relaxation Contribution to Magnetic Inductive Heating: Orientations for Biomedical Applications. Materials 14:8, pages 1875.
Crossref
Kosmas Vamvakidis, Nikolaos Maniotis & Catherine Dendrinou-Samara. (2021) Magneto-fluorescent nanocomposites: experimental and theoretical linkage for the optimization of magnetic hyperthermia. Nanoscale 13:13, pages 6426-6438.
Crossref
Daniela Paola Valdés, Enio Lima,Roberto Daniel Zysler, Gerardo Fabián Goya & Emilio De Biasi. (2021) Role of Anisotropy, Frequency, and Interactions in Magnetic Hyperthermia Applications: Noninteracting Nanoparticles and Linear Chain Arrangements. Physical Review Applied 15:4.
Crossref
Raffaele Longo, Giuliana Gorrasi & Liberata Guadagno. (2021) Electromagnetically Stimuli-Responsive Nanoparticles-Based Systems for Biomedical Applications: Recent Advances and Future Perspectives. Nanomaterials 11:4, pages 848.
Crossref
Felisa Reyes-Ortega, Ángel Delgado & Guillermo Iglesias. (2021) Modulation of the Magnetic Hyperthermia Response Using Different Superparamagnetic Iron Oxide Nanoparticle Morphologies. Nanomaterials 11:3, pages 627.
Crossref
Andrey S. Davydov, Alexandr V. Belousov, Grigorii A. Krusanov, Maria A. Kolyvanova, Boris B. Kovalev, Aleksei S. Komlev, Pavel V. Krivoshapkin, Vladimir N. Morozov & Vladimir I. Zverev. (2021) Promising magnetic nanoradiosensitizers for combination of tumor hyperthermia and x-ray therapy: Theoretical calculation. Journal of Applied Physics 129:3.
Crossref
Kamil Kucharczyk, Katarzyna Kaczmarek, Arkadiusz Jozefczak, Mariusz Slachcinski, Andrzej Mackiewicz & Hanna Dams-Kozlowska. (2021) Hyperthermia treatment of cancer cells by the application of targeted silk/iron oxide composite spheres. Materials Science and Engineering: C 120, pages 111654.
Crossref
Sabrina Arcaro & Janio VenturiniSabrina Arcaro & Janio Venturini. 2021. Modern Ferrites in Engineering. Modern Ferrites in Engineering 139 156 .
Costica Caizer. (2020) Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy. Nanomaterials 11:1, pages 40.
Crossref
Lilin Wang, Aziliz Hervault, Paul Southern, Olivier Sandre, Franck Couillaud & Nguyen Thi Kim Thanh. (2020) In vitro exploration of the synergistic effect of alternating magnetic field mediated thermo–chemotherapy with doxorubicin loaded dual pH- and thermo-responsive magnetic nanocomposite carriers . Journal of Materials Chemistry B 8:46, pages 10527-10539.
Crossref
Anindita Das, Sonali Mohanty, Ravi Kumar & Bijoy K. Kuanr. (2020) Tailoring the Design of a Lanthanide Complex/Magnetic Ferrite Nanocomposite for Efficient Photoluminescence and Magnetic Hyperthermia Performance. ACS Applied Materials & Interfaces 12:37, pages 42016-42029.
Crossref
Mohammad Dabaghi, Rainer Quaas & Ingrid Hilger. (2020) The Treatment of Heterotopic Human Colon Xenograft Tumors in Mice with 5-Fluorouracil Attached to Magnetic Nanoparticles in Combination with Magnetic Hyperthermia Is More Efficient than Either Therapy Alone. Cancers 12:9, pages 2562.
Crossref
Susann Piehler, Lena Wucherpfennig, Felista L. Tansi, Alexander Berndt, Rainer Quaas, Ulf Teichgraeber & Ingrid Hilger. (2020) Hyperthermia affects collagen fiber architecture and induces apoptosis in pancreatic and fibroblast tumor hetero-spheroids in vitro. Nanomedicine: Nanotechnology, Biology and Medicine 28, pages 102183.
Crossref
Jing Liao & Huihua Huang. (2020) Review on Magnetic Natural Polymer Constructed Hydrogels as Vehicles for Drug Delivery. Biomacromolecules 21:7, pages 2574-2594.
Crossref
Manpreet Singh, Qimei Gu, Ronghui Ma & Liang Zhu. (2020) Heating Protocol Design Affected by Nanoparticle Redistribution and Thermal Damage Model in Magnetic Nanoparticle Hyperthermia for Cancer Treatment. Journal of Heat Transfer 142:7.
Crossref
Susann Piehler, Heidi Dähring, Julia Grandke, Julia Göring, Pierre Couleaud, Antonio Aires, Aitziber L. Cortajarena, José Courty, Alfonso Latorre, Álvaro Somoza, Ulf Teichgräber & Ingrid Hilger. (2020) Iron Oxide Nanoparticles as Carriers for DOX and Magnetic Hyperthermia after Intratumoral Application into Breast Cancer in Mice: Impact and Future Perspectives. Nanomaterials 10:6, pages 1016.
Crossref
Gary Hannon, Anna Bogdanska, Yuri Volkov & Adriele Prina-Mello. (2020) Comparing the Effects of Intracellular and Extracellular Magnetic Hyperthermia on the Viability of BxPC-3 Cells. Nanomaterials 10:3, pages 593.
Crossref
Wei Shi, Jin Huang, Ruochen Fang & Mingjie Liu. (2020) Imparting Functionality to the Hydrogel by Magnetic-Field-Induced Nano-assembly and Macro-response. ACS Applied Materials & Interfaces 12:5, pages 5177-5194.
Crossref
Damien Mertz, Sébastien Harlepp, Jacky Goetz, Dominique Bégin, Guy Schlatter, Sylvie Bégin‐Colin & Anne Hébraud. (2019) Nanocomposite Polymer Scaffolds Responding under External Stimuli for Drug Delivery and Tissue Engineering Applications. Advanced Therapeutics 3:2.
Crossref
Maria Hepel. (2020) Magnetic Nanoparticles for Nanomedicine. Magnetochemistry 6:1, pages 3.
Crossref
Edouard Alphandéry. (2020) Iron oxide nanoparticles for therapeutic applications. Drug Discovery Today 25:1, pages 141-149.
Crossref
Frederik Soetaert, Preethi Korangath, David Serantes, Steven Fiering & Robert Ivkov. (2020) Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Advanced Drug Delivery Reviews 163-164, pages 65-83.
Crossref
A.L.B. Seynhaeve, M. Amin, D. Haemmerich, G.C. van Rhoon & T.L.M. ten Hagen. (2020) Hyperthermia and smart drug delivery systems for solid tumor therapy. Advanced Drug Delivery Reviews 163-164, pages 125-144.
Crossref
Ceylan Hepokur, İshak Afşin Kariper, Sema Mısır, Ebrunur Ay, Servet Tunoğlu, Mediha Süleymanoğlu Ersez, Ümit Zeybek, Serap Erdem Kuruca & İlhan Yaylım. (2019) Silver nanoparticle/capecitabine for breast cancer cell treatment. Toxicology in Vitro 61, pages 104600.
Crossref
S.K. Sharma, Navadeep Shrivastava, Francesco Rossi, Le Duc Tung & Nguyen Thi Kim Thanh. (2019) Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment. Nano Today 29, pages 100795.
Crossref
Felisa Reyes-Ortega, Blanca Luna Checa Fernández, Angel V. Delgado & Guillermo R. Iglesias. (2019) Hyperthermia-Triggered Doxorubicin Release from Polymer-Coated Magnetic Nanorods. Pharmaceutics 11:10, pages 517.
Crossref
Mourad Sanhaji, Julia Göring, Pierre Couleaud, Antonio Aires, Aitziber L. Cortajarena, José Courty, Adriele Prina-Mello, Marcus Stapf, Robert Ludwig, Yuri Volkov, Alfonso Latorre, Álvaro Somoza, Rodolfo Miranda & Ingrid Hilger. (2019) The phenotype of target pancreatic cancer cells influences cell death by magnetic hyperthermia with nanoparticles carrying gemicitabine and the pseudo-peptide NucAnt. Nanomedicine: Nanotechnology, Biology and Medicine 20, pages 101983.
Crossref
Soraya Emamgholizadeh Minaei, Samideh Khoei, Sepideh Khoee, Fatemeh Vafashoar & Vahid Pirhajati Mahabadi. (2019) In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells. Materials Science and Engineering: C 101, pages 575-587.
Crossref
Hassan A. Albarqi, Leon H. Wong, Canan Schumann, Fahad Y. Sabei, Tetiana Korzun, Xiaoning Li, Mikkel N. Hansen, Pallavi Dhagat, Abraham S. Moses, Olena Taratula & Oleh Taratula. (2019) Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia. ACS Nano 13:6, pages 6383-6395.
Crossref
K. Bohuslavskyi & N. Alabedalkarim. (2019) Labeling Of Pk-15 Cell Line with Nanoparticles of Hadolinium Orthovanadate: Influence of time and Incubation Conditions. Ukraïnsʹkij žurnal medicini, bìologìï ta sportu 4:4, pages 230-236.
Crossref
Phuong Thu Ha, Thi Thu Huong Le, Thuc Quang Bui, Hong Nam Pham, Anh Son Ho & Linh Toan Nguyen. (2019) Doxorubicin release by magnetic inductive heating and in vivo hyperthermia-chemotherapy combined cancer treatment of multifunctional magnetic nanoparticles . New Journal of Chemistry 43:14, pages 5404-5413.
Crossref
Jakub Dalibor Rybka. (2019) Radiosensitizing properties of magnetic hyperthermia mediated by superparamagnetic iron oxide nanoparticles (SPIONs) on human cutaneous melanoma cell lines. Reports of Practical Oncology & Radiotherapy 24:2, pages 152-157.
Crossref
Binh T. Mai, Preethi B. Balakrishnan, Markus J. Barthel, Federica Piccardi, Dina Niculaes, Federica Marinaro, Soraia Fernandes, Alberto Curcio, Hamilton Kakwere, Gwennhael Autret, Roberto Cingolani, Florence Gazeau & Teresa Pellegrino. (2019) Thermoresponsive Iron Oxide Nanocubes for an Effective Clinical Translation of Magnetic Hyperthermia and Heat-Mediated Chemotherapy. ACS Applied Materials & Interfaces 11:6, pages 5727-5739.
Crossref
Costica Caizer. 2019. Nanotheranostics. Nanotheranostics 297 335 .
D. F. Coral, P. A. Soto, V. Blank, A. Veiga, E. Spinelli, S. Gonzalez, G. P. Saracco, M. A. Bab, D. Muraca, P. C. Setton-Avruj, A. Roig, L. Roguin & M. B. Fernández van Raap. (2018) Nanoclusters of crystallographically aligned nanoparticles for magnetic thermotherapy: aqueous ferrofluid, agarose phantoms and ex vivo melanoma tumour assessment . Nanoscale 10:45, pages 21262-21274.
Crossref
Veronica Iacovacci, Leonardo Ricotti, Edoardo Sinibaldi, Giovanni Signore, Fabio Vistoli & Arianna Menciassi. (2018) An Intravascular Magnetic Catheter Enables the Retrieval of Nanoagents from the Bloodstream. Advanced Science 5:9.
Crossref
Spiridon Spirou, Sofia Costa Lima, Penelope Bouziotis, Sanja Vranješ-Djurić, Eleni Efthimiadou, Anna Laurenzana, Ana Barbosa, Ignacio Garcia-Alonso, Carlton Jones, Drina Jankovic & Oliviero Gobbo. (2018) Recommendations for In Vitro and In Vivo Testing of Magnetic Nanoparticle Hyperthermia Combined with Radiation Therapy. Nanomaterials 8:5, pages 306.
Crossref
Riadh W.Y. Habash. 2018. Thermoregulation: From Basic Neuroscience to Clinical Neurology, Part II. Thermoregulation: From Basic Neuroscience to Clinical Neurology, Part II 853 868 .
Catalano Enrico. 2018. Design of Nanostructures for Theranostics Applications. Design of Nanostructures for Theranostics Applications 41 68 .
Suzana Gotovac Atlagić & Verica Pavlić. 2018. Commercialization of Nanotechnologies–A Case Study Approach. Commercialization of Nanotechnologies–A Case Study Approach 299 315 .
Margarita López-Viota, Mazen M. El-Hammadi, Laura Cabeza, José Prados, Consolación Melguizo, M. Adolfina Ruiz Martinez, José L. Arias & Ángel V. Delgado. (2017) Development and Characterization of Magnetite/Poly(butylcyanoacrylate) Nanoparticles for Magnetic Targeted Delivery of Cancer Drugs. AAPS PharmSciTech 18:8, pages 3042-3052.
Crossref
Jung-tak Jang, Jin Wook Jeoung, Joo Hyun Park, Won June Lee, Yu Jeong Kim, Jiyun Seon, Minkyu Kim, Jooyoung Lee, Sun Ha Paek, Ki Ho Park & Seongtae Bae. (2017) Effects of Recovery Time during Magnetic Nanofluid Hyperthermia on the Induction Behavior and Efficiency of Heat Shock Proteins 72. Scientific Reports 7:1.
Crossref
Florian Schlenk, Sebastian Werner, Martin Rabel, Franziska Jacobs, Christian Bergemann, Joachim H. Clement & Dagmar Fischer. (2017) Comprehensive analysis of the in vitro and ex ovo hemocompatibility of surface engineered iron oxide nanoparticles for biomedical applications. Archives of Toxicology 91:10, pages 3271-3286.
Crossref
Takehiro Ota, Yoshihiro Nishida, Kunihiro Ikuta, Ryuji Kato, Eiji Kozawa, Shunsuke Hamada, Tomohisa Sakai & Naoki Ishiguro. (2017) Heat-stimuli-enhanced osteogenesis using clinically available biomaterials. PLOS ONE 12:7, pages e0181404.
Crossref
M. Fernanda Horst, Diego F. Coral, Marcela B. Fernández van Raap, Mariana Alvarez & Verónica Lassalle. (2017) Hybrid nanomaterials based on gum Arabic and magnetite for hyperthermia treatments. Materials Science and Engineering: C 74, pages 443-450.
Crossref
Eva Natividad & Irene Andreu. (2017) Omitting the need of external heat capacity data in an adiabatic magnetothermal setup devoted to the characterization of nanomaterials for magnetic hyperthermia. Applied Thermal Engineering 117, pages 409-416.
Crossref
Giada Graziana Genchi, Attilio Marino, Agostina Grillone, Ilaria Pezzini & Gianni Ciofani. (2017) Remote Control of Cellular Functions: The Role of Smart Nanomaterials in the Medicine of the Future. Advanced Healthcare Materials 6:9, pages 1700002.
Crossref
Jelena Kolosnjaj-Tabi & Claire Wilhelm. (2017) Magnetic nanoparticles in cancer therapy: how can thermal approaches help?. Nanomedicine 12:6, pages 573-575.
Crossref
Neha Wadehra, Ruby Gupta, Bhanu Prakash, Deepika Sharma & S Chakraverty. (2017) Biocompatible ferrite nanoparticles for hyperthermia: effect of polydispersity, anisotropy energy and inter-particle interaction. Materials Research Express 4:2, pages 025037.
Crossref
Kwan Lee, Jung-tak Jang, Hiroshi Nakano, Shigeki Nakagawa, Sun Ha Paek & Seongtae Bae. (2017) External magnetic field dependent shift of superparamagnetic blocking temperature due to core/surface disordered spin interactions. Nanotechnology 28:7, pages 075710.
Crossref
Tuan Anh Pham, Andreas Schreiber, Stefan M. Schiller & Helmut Cölfen. (2017) Toroidal Protein Adaptor Assembles Ferrimagnetic Nanoparticle Fibers with Constructive Magnetic Coupling. Advanced Functional Materials 27:7, pages 1604532.
Crossref
Lei Zhu, Zhiyang Zhou, Hui Mao & Lily Yang. (2017) Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine 12:1, pages 73-87.
Crossref
M. B. Fernández van Raap, D. F. Coral, S. Yu, G. A. Muñoz, F. H. Sánchez & A. Roig. (2017) Anticipating hyperthermic efficiency of magnetic colloids using a semi-empirical model: a tool to help medical decisions. Physical Chemistry Chemical Physics 19:10, pages 7176-7187.
Crossref
G. Kiliç, N. Fernández-Bertólez, C. Costa, F. Brandão, J.P. Teixeira, E. Pásaro, B. Laffon & V. Valdiglesias. 2017. Neurotoxicity of Nanomaterials and Nanomedicine. Neurotoxicity of Nanomaterials and Nanomedicine 127 150 .
Lei Zhu, Lily Yang & Zhiyang Zhou. 2017. Bioactivity of Engineered Nanoparticles. Bioactivity of Engineered Nanoparticles 173 206 .
Eva Natividad & Irene Andreu. 2017. Magnetic Characterization Techniques for Nanomaterials. Magnetic Characterization Techniques for Nanomaterials 261 303 .
B. Palazzo, B. Palazzo, S. Scialla, F. Scalera, N. Margiotta & F. Gervaso. 2016. Advanced Composite Materials. Advanced Composite Materials 209 273 .
Guoqiang Zhou, Yunfei Li, Yanyan Ma, Zhu Liu, Lili Cao, Da Wang, Sudan Liu, Wenshi Xu & Wenying Wang. (2016) Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro. Journal of Nanoparticle Research 18:5.
Crossref
M. Elisa de Sousa, Alejandra Carrea, Pedro Mendoza Zélis, Diego Muraca, Olga Mykhaylyk, Yolanda E. Sosa, Rodolfo G. Goya, Francisco H. Sánchez, Ricardo A. Dewey & Marcela B. Fernández van Raap. (2016) Stress-Induced Gene Expression Sensing Intracellular Heating Triggered by Magnetic Hyperthermia. The Journal of Physical Chemistry C 120:13, pages 7339-7348.
Crossref
Cristina Blanco-Andujar, Daniel Ortega, Paul Southern, Stephen A Nesbitt, Nguyễn Thị Kim Thanh & Quentin A Pankhurst. (2016) Real-time tracking of delayed-onset cellular apoptosis induced by intracellular magnetic hyperthermia. Nanomedicine 11:2, pages 121-136.
Crossref
K. Simeonidis, S. Liébana-Viñas, U. Wiedwald, Z. Ma, Z.-A. Li, M. Spasova, O. Patsia, E. Myrovali, A. Makridis, D. Sakellari, I. Tsiaoussis, G. Vourlias, M. Farle & M. Angelakeris. (2016) A versatile large-scale and green process for synthesizing magnetic nanoparticles with tunable magnetic hyperthermia features. RSC Advances 6:58, pages 53107-53117.
Crossref
Aziliz Hervault, Alexander E. Dunn, May Lim, Cyrille Boyer, Derrick Mott, Shinya Maenosono & Nguyen T. K. Thanh. (2016) Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale 8:24, pages 12152-12161.
Crossref
Mikio Kishimoto, Ryoichi Miyamoto, Tatsuya Oda, Hideto Yanagihara, Nobuhiro Ohkohchi & Eiji Kita. (2016) Magnetic fluid with high dispersion and heating performance using nano-sized Fe3O4 platelets. Journal of Magnetism and Magnetic Materials 398, pages 200-204.
Crossref
Mehrdad Bokharaei, Thomas Schneider, Silvio Dutz, Roland C. Stone, O. Thompson Mefford & Urs O. Häfeli. (2016) Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation. Microfluidics and Nanofluidics 20:1.
Crossref
Susanne Kossatz, Julia Grandke, Pierre Couleaud, Alfonso Latorre, Antonio Aires, Kieran Crosbie-Staunton, Robert Ludwig, Heidi Dähring, Volker Ettelt, Ana Lazaro-Carrillo, Macarena Calero, Maha Sader, José Courty, Yuri Volkov, Adriele Prina-Mello, Angeles Villanueva, Álvaro Somoza, Aitziber L Cortajarena, Rodolfo Miranda & Ingrid Hilger. (2015) Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Research 17:1.
Crossref
Kirsten Lauber, Nikko Brix, Anne Ernst, Roman Hennel, Julia Krombach, Heike Anders & Claus Belka. (2015) Targeting the heat shock response in combination with radiotherapy: Sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity. Cancer Letters 368:2, pages 209-229.
Crossref
Mikio Kishimoto, Ryoichi Miyamoto, Tatsuya Oda, Hideto Yanagihara, Nobuhiro Ohkohchi & Eiji Kita. (2015) Quantity Determination of Magnetic Particles Intravenously Administered to Mice Tissues Using Magnetization Measurements. IEEE Transactions on Magnetics 51:10, pages 1-6.
Crossref
Shupeng Liu, Na Chen, Fufei Pang, Zhengyi Chen & Tingyun Wang. (2015) Carbon-coated magnetic particles increase tissue temperatures after laser irradiation. Journal of Innovative Optical Health Sciences 08:05, pages 1550018.
Crossref
Elizabeth Navarro Cerón, Dirk H. Ortgies, Blanca del Rosal, Fuqiang Ren, Antonio Benayas, Fiorenzo Vetrone, Dongling Ma, Francisco Sanz-Rodríguez, José García Solé, Daniel Jaque & Emma Martín Rodríguez. (2015) Hybrid Nanostructures for High-Sensitivity Luminescence Nanothermometry in the Second Biological Window. Advanced Materials 27:32, pages 4781-4787.
Crossref
N.A. Brusentsov, V.A. Polianskiy, A.V. Zhukov, M.V. Gulyaev, Maxim P. Nikitin, P.I. Nikitin, T.N. Brusentsova, V.D. Kuznetsov, O.A. Bocharova & A.Yu. Baryshnikov. (2015) Combined Photodynamic Thermochemotherapy of Glial Tumors Controlled by MRI and Electronic Sensor. Solid State Phenomena 233-234, pages 757-760.
Crossref
Claudia Strobel, Hartmut Oehring, Rudolf Herrmann, Martin Förster, Armin Reller & Ingrid Hilger. (2015) Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis. Journal of Nanoparticle Research 17:5.
Crossref
Vincent Connord, Pascal Clerc, Nicolas Hallali, Darine El Hajj Diab, Daniel Fourmy, Véronique Gigoux & Julian Carrey. (2015) Real-Time Analysis of Magnetic Hyperthermia Experiments on Living Cells under a Confocal Microscope. Small 11:20, pages 2437-2445.
Crossref
María del Mar Ramos-Tejada, Julian L. Viota, Katarzyna Rudzka & Angel V. Delgado. (2015) Preparation of multi-functionalized Fe3O4/Au nanoparticles for medical purposes. Colloids and Surfaces B: Biointerfaces 128, pages 1-7.
Crossref
Alicia A. Petryk, Adwiteeya Misra, Elliot J. Kastner, Courtney M. Mazur, James D. Petryk & P. Jack Hoopes. Similarities and differences in ablative and non-ablative iron oxide nanoparticle hyperthermia cancer treatment. Similarities and differences in ablative and non-ablative iron oxide nanoparticle hyperthermia cancer treatment.
Kenya Murase, Marina Aoki, Natsuo Banura, Kohei Nishimoto, Atsushi Mimura, Tomomi Kuboyabu & Isamu Yabata. (2015) Usefulness of Magnetic Particle Imaging for Predicting the Therapeutic Effect of Magnetic Hyperthermia. Open Journal of Medical Imaging 05:02, pages 85-99.
Crossref
C. Blanco-Andujar, D. Ortega, P. Southern, Q. A. Pankhurst & N. T. K. Thanh. (2015) High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions. Nanoscale 7:5, pages 1768-1775.
Crossref
George Stefanou, Despina Sakellari, Konstantinos Simeonidis, Theodora Kalabaliki, Makis Angelakeris, Catherine Dendrinou-Samara & Orestis Kalogirou. (2014) Tunable AC Magnetic Hyperthermia Efficiency of Ni Ferrite Nanoparticles. IEEE Transactions on Magnetics 50:12, pages 1-7.
Crossref
Zbynek Heger, Natalia Cernei, Iva Blazkova, Pavel Kopel, Michal Masarik, Ondrej Zitka, Vojtech Adam & Rene Kizek. (2014) γ-Fe2O3 Nanoparticles Covered with Glutathione-Modified Quantum Dots as a Fluorescent Nanotransporter. Chromatographia 77:21-22, pages 1415-1423.
Crossref
Irene Andreu, Eva Natividad, Costanza Ravagli, Miguel Castro & Giovanni Baldi. (2014) Heating ability of cobalt ferrite nanoparticles showing dynamic and interaction effects. RSC Advances 4:55, pages 28968.
Crossref
Antonios Makridis, Konstantina Topouridou, Magdalini Tziomaki, Despoina Sakellari, Konstantinos Simeonidis, Mavroeidis Angelakeris, Maria P. Yavropoulou, John G. Yovos & Orestis Kalogirou. (2014) In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents. J. Mater. Chem. B 2:47, pages 8390-8398.
Crossref
N.N. Liu, A. P. Pyatakov, A. M. Saletsky, M. N. Zharkov, N. A. Pyataev, G. B. Sukhorukov, Y. K. Gunko & A. M. Tishin. (2022) The “Field or Frequency” Dilemma in Magnetic Hyperthermia: The Case of Zn-Mn Ferrite Nanoparticles. SSRN Electronic Journal.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.