59
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Non-visual ocular photoreception

Pages 195-205 | Published online: 08 Jul 2009

References

  • Halberg E Physiologic 24-hour periodicity in human beings and mice, the lighting regimen and daily reoutine. In: Withrow J, editor. Photoperiodism and related phenomena in plants and animals. Washington, D.C.: American Association for the Advancement of Science, 1959;803–878.
  • Pittendrigh C. Circadian rhythms and the circadian organization of living systems. Biological Clocks. Symposia on Quantitative Biology, Vol. XXV. Cold Spring Harbor, NY: Cold Spring Harbor Press, 1960;159–184.
  • Takahashi JS. Molecular genetics of circadian clocks in mammals. Mol Biol Cell. 2000;11:2206.
  • King DP, Takahashi JS. Molecular genetics of circadian rhythms in mammals. Annu Rev Neurosci. 2000;23:713–742.
  • Dunlap JC. Molecular bases for circadian clocks. Cell. 1999;96: 271–290.
  • Dunlap JC. Common threads in eukaryotic circadian systems. Curr Opin Gen Dev. 1998;8:400-4o6.
  • Van Gelder RN, Krasnow MA. Partners in time. Circadian rhythms. Curr Biol. 1996;6: 244.–246.
  • Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Nat Acad Sci USA. 1972;69: 1583–1586.
  • Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247: 975–978.
  • Campbell SS, Murphy PJ. Extraocular circadian phototransduction in humans. Science. 1998;279:396–399.
  • Lindblom N, Heiskala H, Hatonen T, et al. No evidence for extraocular light induced phase shifting of human melatonin, cortisol and thyrotropin rhythms. Neuroreport. 2000;11:713–717.
  • Jean-Louis G, Kripke DF, Cole RJ, Elliott JA. No melatonin suppression by illumination of popliteal fossae or eyelids. J Biol Rhythms. 2000;15:265–269.
  • Lindblom N, Hatonen T, Laakso ML, Alila-Johansson A, Laipio ML, Turpeinen U. Bright light exposure of a large skin area does not affect melatonin or bilirubin levels in humans. Biol Psychiatr. 2000;48: 1098–1104.
  • Eastman CI, Martin SK, Hebert M. Failure of extraocular light to facilitate circadian rhythm reentrainment in humans. Chronobiol Int. 2000;17:807–826.
  • Freedman MS, Lucas RJ, Soni B, et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science. 1999;284:502–504.
  • Leak RK, Card JP, Moore RY. Suprachiasmatic pacemaker organization analyzed by viral transynaptic transport. Brain Res. 1999;819:23–32.
  • Hannibal J, Ding JM, Chen D, et al. Pituitary adenylate cyclase activating peptide (PACAP) in the retinohypothalamic tract: a daytime regulator of the biological clock. Ann NY Acad Sci. 1998;865:197–206.
  • Chen D, Buchanan GF, Ding JM, Hannibal J, Gillette MU. Pituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc Natl Acad Sci USA. 1999;96:13468–13473.
  • Shen SB, Spratt C, Sheward WJ, et al. Overexpression of the human VPAC(2) receptor in the suprachiasmatic nucleus alters the circadian phenotype of mice. Proc Natl Acad Sci USA. 2000;97:I 1575–11580.
  • Hannibal J, Moller M, Ottersen OP, Fahrenkrug J. PACAP and glutamate are co-stored in the retinohypothalamic tract. J Comp NeuroL 2000;418:147–155.
  • Takahashi JS, DeCoursey PJ, Bauman L, Menaker M. Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature. 1984;308:186–188.
  • Ebihara S, Tsuji K. Entrainment of the circadian activity rhythm to the light cycle: effective light intensity for a Zeitgeber in the retinal degenerate C3H mouse and the normal C57BL mouse. Physiol Behav. 1980;24:523–527.
  • Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M. Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A. 1991;169:39–50.
  • Provencio I, Wong S, Lederman AB, Argamaso SM, Foster RG. Visual and circadian responses to light in aged retinally degenerate mice. Vision Res. 1994;34:1799–1806.
  • Provencio I, Foster RG. Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res. 1995;694: 183–190.
  • Foster RG, Argamaso S, Coleman S, Colwell CS, Lederman A, Provencio I. Photoreceptors regulating circadian behavior: a mouse model. J Biol Rhythms. 1993;8(Suppl): S17–23.
  • Provencio I, Cooper HM, Foster RG. Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J Comp NeuroL 1998;395:417–439.
  • Sun H, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J. Peropsin, a novel visual pigment-like protein located in the apical microvilli of the retinal pigment epithelium. Proc Natl Acad Sci USA. 1997;94:9893–9898.
  • Blackshaw S, Snyder SH. Encephalopsin: a novel mammalian extraretinal opsin discretely localized in the brain. J Neurosci. 1999;19:3681–3690.
  • Chen P, Lee TD, Fong HK. Interaction of i-cis-retinol dehydrogenase with the chromophore of retinal G protein-coupled receptor opsin. J Biol Chem. 200 I ;27: 27.
  • Morimura H, Saindelle-Ribeaudeau F, Berson EL, Dryja TP. Mutations in RGR, encoding a light-sensitive opsin homologue, in patients with retinitis pigmentosa. Nat Genet. 1999;23:393–394.
  • Tao L, Shen D, Pandey S, Hao W, Rich KA, Fong HK. Structure and developmental expression of the mouse RGR opsin gene. Mol Vision. 1998;4:25.
  • Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA. 1998;95:340–345.
  • Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J NeuroscL 2000;20:600–605.
  • Quadro L, Blaner WS, Salchow DJ, et al. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. Eur Mol Biol Organ (EMBO) 1999; 18:4633–4644.
  • Sancar A. Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. Annu Rev Biochem. 2000;69:31–67.
  • Lin C, Ahmad M, Cashmore AR. Arabidopsis cryptochrome is a soluble protein mediating blue light-dependent regulation of plant growth and development. Plant J. 1996;I0:893–902.
  • Ahmad M, Cashmore AR. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature. 1993;366:162–166.
  • Guo H, Yang H, Mockler TC, Lin C. Regulation of flowering time by Arabidopsis photoreceptors. Science. 1998;279:1360–1363.
  • Stanewsky R, Kaneko M, Emery P, et al. The cry(b) mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell. 1998;95:681–692.
  • Ishikawa T, Matsumoto A, Kato Jr T, et al. DCRY is a Drosophila photoreceptor protein implicated in light entrainment of circadian rhythm. Genes Cells. 1999;4:57–65.
  • Emery P, So WV, Kaneko M, Hall JC, Rosbash M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell. 1998;95: 669–679.
  • Emery P, Stanewsky R, Helfrich-Forster C, Emery-Le M, Hall JC, Rosbash M. Drosophila CRY is a deep brain circadian photoreceptor. Neuron. 2000:26:493–504.
  • Hsu DS, Zhao X, Zhao S, et al. Putative human blue-light photoreceptors hCRYI and hCRY2 are flavoproteins. Biochemistry. 1996;35:13871–13877.
  • Miyamoto Y, Sancar A. Vitamin B2 - based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci USA. 1998;95: 6097–6102.
  • Thresher RJ, Vitaterna MH, Miyamoto Y, et al. Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science. 1998;282: 1490–1494.
  • Van der Horst GT, Muijtjens M, Kobayashi K, et al. Mammalian Cry' and Cry2 are essential for maintenance of circadian rhythms. Nature. 1999;398:627–630.
  • Selby CP, Thompson C, Schmitz TM, Van Gelder RN, Sancar A. Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice. Proc Natl Acad Sci USA. 2000;97: 14697–14702.
  • Garcia-Fernandez JM, Jimenez AJ, Foster RG. The persistence of cone photoreceptors within the dorsal retina of aged retinally degenerate mice (rd/rd): implications for circadian organization. Neurosci Lett. 1995;187:33–36.
  • Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ. Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet. 1997;16:19–27.
  • Yanovsky MJ, Mazzella MA, Casal JJ. A quadruple photoreceptor mutant still keeps track of time. Curr Biol. 2000;10:1013–1015.
  • Hall JC. Cryptochromes: sensory reception, transduction, and clock functions subserving circadian systems. Curr Opin Neurobiol. 2000;10:456–466.
  • Mrosovsky N. Masking: history, definitions, and measurement. Chronobiol Mt. 1999;16:415–429.
  • Redlin U, Mrosovsky N. Masking by light in hamsters with SCN lesions. J Comp Physiol A. 1999;184:439–448.
  • Mrosovsky N, Foster RG, Salmon PA. Thresholds for masking responses to light in three strains of retinally degenerate mice. J Comp Physiol A. 1999;184:423–428.
  • Argamaso-Hernan. Light-evoked behavior in mice with inherited retinal degeneration: an analysis of circadian photoentrainment. PhD Thesis. Charlottesville, VA: University of Virginia, 1996.
  • Goto M, Ebihara S. The influence of different light intensities on pineal melatonin content in the retinal degenerate C3H mouse and the normal CBA mouse. Neurosci Lett. 1990;108:267–272.
  • Czeisler CA, Shanahan TL, Klerman EB, et al. Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med. 1995;332:6–11.
  • Streilein JW. Molecular basis of ACAID. Ocul Immunol Want. 1997;5:217–218.
  • Ferguson TA. The molecular basis of anterior associated immune deviation (ACAID). Ocul Immunol Want 1997;5:213–215.
  • Ferguson TA, Hayashi JD, Kaplan HJ. Regulation of the systemic immune response by visible light and the eye. FASEB .1 108;2: 3017-3021.
  • Ferguson TA, Mahendra SL, Hooper P, Kaplan HJ. The wavelength of light governing intraocular immune reactions. Invest Ophthalmol Vis ScL 1992;33:1788–1795.
  • Welge-Lussen U, Wilsch C, Neuhardt T, Streilein J, Lutjen-Drecoll E. Loss of anterior chamber-associated immune deviation (ACAID) in aged retinal degeneration (rd) mice. Invest Ophthalmol Vis Sci. 1999;40: 3209–3214.
  • Schmitz T, Herndon J, Ferguson T, Van Gelder R. Abnormal anterior chamber associated immune deviation (ACAID) in 129 strain mice. Invest Ophthalmol Vis ScL 200 I ;42: 5473.
  • Pepose J, Van Gelder R. Acute retinal necrosis syndrome. In: Ryan S, editor. Retina. St. Louis: Mosby, 2000;1623–1631.
  • von Szily A. Experimental endogenous transmission of infection from bulbus to bulbus. Klin Monatsbl Augenheilkd. 1924; 75:593–599.
  • Olson RM, Holland GN, Goss SJ, Bowers WD, Meyers-Elliott RH. Routes of viral spread in the von Szily model of herpes simplex virus retinopathy. Curr Eye Res. 1987; 6:59–62.
  • Matsubara S, Atherton SS. Spread of HSV-I to the suprachiasmatic nuclei and retina in T cell depleted BALB/c mice. J Neuroimmunol. 1997;80:165–171.
  • Atherton SS, Kanter MY, Streilein JW. ACAID requires early replication of HSV-I in the injected eye. Curr Eye Res. 1991;I0(Suppl): 75–80.
  • Kahn M, Kaplan HJ, Ferguson TA. The regulation by light of retinal necrosis and the immune response following anterior chamber inoculation of herpes simplex virus type-I. Arch Virol. 1993;131:115–126.
  • Whiteley SJO, Young MJ, Litchfield TM, Coffey PJ, Lund RD. Changes in the pupillary light reflex of pigmented Royal College of Surgeons rats with age. Exp Eye Res. 1998;66:719–730.
  • Lucas RJ, Douglas RH, Foster RG. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci. 2001;4:621–626.
  • Sack RL, Lewy AJ, Blood ML, Keith LD, Nakagawa H. Circadian rhythm abnormalities in totally blind people: incidence and clinical significance. J Guth Endocrinol Metab. 1992;75:127–134.
  • Klein T, Martens H, Dijk DJ, Kronauer RE, Seely EW, Czeisler CA. Circadian sleep regulation in the absence of light perception: chronic non-24-hour circadian rhythm sleep disorder in a blind man with a regular 24-hour sleep-wake schedule. Sleep. 1993;16: 333–343.
  • Tabandeh H, Lockley S, Buttery R, et al. Disturbance of sleep in blindness. Am J Ophthalmol. 1998;126:707–712.
  • Sack RL, Brandes RW, Kendall AR, Lewy AJ. Entrainment of free-running circadian rhythms by melatonin in blind people. N Engl J Med. 2000;343:1070–1077.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.