46
Views
0
CrossRef citations to date
0
Altmetric
Full Papers

Bipedal Robot running: human-like actuation timing using fast and slow adaptations

, ORCID Icon, , , , & show all
Pages 577-588 | Received 13 Nov 2023, Accepted 13 Mar 2024, Published online: 16 Apr 2024

References

  • McGeer T. Passive dynamic walking. Int J Rob Res. 1990;9:62–82. doi: 10.1177/027836499000900206
  • Garcia M, Chatterjee A, Ruina A, et al. The simplest walking model: stability, complexity, and scaling. J Biomech Eng. 1998;120:281–288. doi: 10.1115/1.2798313
  • Goswami A, Thuilot B, Espiau B. A study of the passive gait of a compass-like biped robot: symmetry and chaos. Int J Robot Res. 1998;17:1282–1301. doi: 10.1177/027836499801701202
  • Collins S, Ruina A, Tedrake R, et al. Efficient bipedal robots based on passive-dynamic walkers. Science. 2005;307:1082–1085. doi: 10.1126/science.1107799
  • Ikemata Y, Yasuhara K, Sano A, et al. A study of the leg-swing motion of passive walking. Proc IEEE Int Conf Robot Autom. 2008;1588–1593. doi: 10.1109/ROBOT.2008.4543428
  • Hitoshi K, Uemura M, Sakata K, et al. Simulation verification for the robustness of passive compass gait with a joint stiffness adjustment. Adv Robot. 2019;33(21):1129–1143. doi: 10.1080/01691864.2019.1671894
  • Okamoto K, Aoi S, Obayashi I, et al. Disappearance of chaotic attractor of passive dynamic walking by stretch-bending deformation in basin of attraction. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2020.
  • Kamimura T, Sano A. Effect of the dynamics of a horizontally wobbling mass on biped walking performance. In: 2023 IEEE International Conference on Robotics and Automation (ICRA); 2023. p. 12212–12217.
  • Blickhan R. The spring-mass model for running and hopping. J Biomech. 1989;22:1217–1227. doi: 10.1016/0021-9290(89)90224-8
  • Full R, Koditschek D. Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J Exp Biol. 1999;202:3325–3332. doi: 10.1242/jeb.202.23.3325
  • Geyer H, Seyfarth A, Blickhan R. Spring-mass running: simple approximate solution and application to gait stability. J Theor Biol. 2005;232:315–328. doi: 10.1016/j.jtbi.2004.08.015
  • Geyer H, Seyfarth A, Blickhan R. Compliant leg behaviour explains basic dynamics of walking and running. Proc R Soc B: Biol Sci. 2006;273:2861–2867. doi: 10.1098/rspb.2006.3637
  • Clark K, Weyand P. Are running speeds maximized with simple-spring stance mechanics?. J Appl Physiol Respir Environ Exerc Physiol. 2014;117:604–615.
  • Gan Z, Yesilevskiy Y, Zaytsev P, et al. All common bipedal gaits emerge from a single passive model. J R Soc Inter. 2018;15:20180455. doi: 10.1098/rsif.2018.0455
  • Miyamoto H, Sano A, Ikemata Y, et al. A study of bouncing rod dynamics aiming at passive running. In: IEEE International Conference on Robotics and Automation, ICRA2010. IEEE; 2010. p. 3298–3303.
  • Kamimura T, Sato K, Murayama D, et al. Dynamical effect of elastically supported wobbling mass on biped running. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS2021; 2021. p. 4048–4055.
  • Rybak IA, Shevtsova NA, Lafreniere-Roula M, et al. Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J Physiol (Lond). 2006;577(2):617–639. doi: 10.1113/jphysiol.2006.118703
  • Cappellini G, Ivanenko YP, Poppele RE, et al. Motor patterns in human walking and running. J Neurophysiol. 2006;95:3426–3437. doi: 10.1152/jn.00081.2006
  • Ivanenko YP, Poppele RE, Lacquaniti F. Motor control programs and walking. Neuroscientist. 2006;12(4):339–348. doi: 10.1177/1073858406287987PMID: 16840710.
  • Ivanenko YP, Cappellini G, Dominici N, et al. Modular control of limb movements during human locomotion. J Neurosci. 2007;27:11149–11161. doi: 10.1523/JNEUROSCI.2644-07.2007
  • Molkov YI, Bacak BJ, Talpalar AE, et al. Mechanisms of left-right coordination in mammalian locomotor pattern generation circuits: A mathematical modeling view. PLoS Comput Biol. 2015;11:e1004270. doi: 10.1371/journal.pcbi.1004270
  • Ichimura D, Hobara H, Hisano G, et al. Acquisition of bipedal locomotion in a neuromusculoskeletal model with unilateral transtibial amputation. Front Bioeng Biotechnol. 2023;11:1130353. doi: 10.3389/fbioe.2023.1130353
  • Taga G, Yamaguchi Y, Shimizu H. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol Cybern. 1991;65:147–159. doi: 10.1007/BF00198086
  • Manoonpong P, Wörgötter F. Efference copies in neural control of dynamic biped walking. Rob Auton Syst. 2009;57:1140–1153. doi: 10.1016/j.robot.2009.06.007
  • Fukuoka Y, Habu Y, Fukui T. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation. Biol Cybern. 2013;107:695–710. doi: 10.1007/s00422-013-0572-4
  • Aoi S, Manoonpong P, Ambe Y, et al. Adaptive control strategies for interlimb coordination in legged robots: a review. Front Neurorobot. 2017;11:1–21. doi: 10.3389/fnbot.2017.00039
  • Fujiki S, Aoi S, Funato T, et al. Adaptive hindlimb split-belt treadmill walking in rats by controlling basic muscle activation patterns via phase resetting. Sci Rep. 2018;8:17341. doi: 10.1038/s41598-018-35714-8
  • Wang Y, Xue X, Chen B. Matsuoka's cpg with desired rhythmic signals for adaptive walking of humanoid robots. IEEE Trans Cybern. 2020;50(2):613–626. doi: 10.1109/TCYB.6221036
  • Russo AD, Stanev D, Sabnis A, et al. Investigating the roles of reflexes and central pattern generators in the control and modulation of human locomotion using a physiologically plausible neuromechanical model. J Neural Eng. 2023 nov;20(6):066006. doi: 10.1088/1741-2552/acfdcc
  • Aoi S, Tsuchiya K. Stability analysis of a simple walking model driven by an oscillator with a phase reset using sensory feedback. IEEE Trans Robot. 2006;22:391–397. doi: 10.1109/TRO.2006.870671
  • Aoi S, Tsuchiya K. Self-stability of a simple walking model driven by a rhythmic signal. Nonlinear Dyn. 2007;48:1–16. doi: 10.1007/s11071-006-9030-3
  • Matsubara T, Morimoto J, Nakanishi J, et al. Learning cpg-based biped locomotion with a policy gradient method. Rob Auton Syst. 2006;54(11):911–920. doi: 10.1016/j.robot.2006.05.012
  • Kasaei M, Abreu M, Lau N, et al. Robust biped locomotion using deep reinforcement learning on top of an analytical control approach. Rob Auton Syst. 2021;146:103900. doi: 10.1016/j.robot.2021.103900
  • Bellegarda G, Ijspeert AC-r. Learning central pattern generators for quadruped locomotion. IEEE Robot Autom Lett. 2022;7(4):12547–12554. doi: 10.1109/LRA.2022.3218167
  • Herneth C, Hayashibe M, Owaki D. Learnable tegotae-based feedback in cpgs with sparse observation produces efficient and adaptive locomotion. In: 2023 IEEE International Conference on Robotics and Automation (ICRA); 2023. p. 1155–1161.
  • Perry JB. Gait analysis: normal and pathological function. 2nd ed., New Jersey: Slack Incorporated; 2010.
  • Fujiki S, Aoi S, Funato T, et al. Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: A robotics study. J R Soc Inter. 2015;12:20150542. doi: 10.1098/rsif.2015.0542
  • Morton S, Bastian A. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci. 2006;26:9107–9116. doi: 10.1523/JNEUROSCI.2622-06.2006
  • Fukuchi R, Fukuchi C, Duarte M. A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics. PeerJ. 2017;5:e3298. doi: 10.7717/peerj.3298

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.