289
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Spectroscopic review of chelating agents and their influence on the bioavailability of Fe, Zn and Ca in Fijian foods

&

References

  • Frontela, C.; Ros, G.; Martínez, C. Phytic Acid Content and “in Vitro” Iron, Calcium and Zinc Bioavailability in Bakery Products: The Effect of Processing. J. Cereal Sci. 2011, 54, 173–179. doi:10.1016/j.jcs.2011.02.015
  • Konietzny, U.; Greiner, R. Phytic Acid/Nutritional Impact. Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Academic Press: London, UK, 2003; pp 4555–4563.
  • Schlemmer, U.; Frølich, W.; Prieto, R. M.; Grases, F. Phytate in Foods and Significance for Humans: Food Sources, Intake, Processing, Bioavailability, Protective Role and Analysis. Mol. Nutr. Food Res. 2009, 53, S330–S375. doi:10.1002/mnfr.200900099
  • Gibson, R. S.; Bailey, K. B.; Gibbs, M.; Ferguson, E. L. A Review of Phytate, Iron, Zinc, and Calcium Concentration in Plant-Based Complementary Foods Used in Low Income Countries and Implications for Bioavailability. Food Nutr. Bull. 2010, 31, S134–S146. doi:10.1177/15648265100312S206
  • Egli, I.; Davidsson, L.; Zeder, C.; Walczyk, T.; Hurrell, R. Dephytinization of a Complementary Food Based on Wheat and Soy Increases Zinc, but Not Copper, Apparent Absorption in Adults. J. Nutr. 2004, 134, 1077–1080. doi:10.1093/jn/134.5.1077
  • Oghbaei, M.; Prakash, J. Effect of Primary Processing of Cereals and Legumes on Its Nutritional Quality: A Comprehensive Review. J. Cogent Food Agric. 2016, 2, 1–14.
  • Kumar, V.; Sinha, A. K.; Makkar, H. P. S.; Becker, K. Dietary Roles of Phytate and Phytase in Human Nutrition: A Review. Food Chem. 2010, 120, 945–959.
  • Graf, E.; Empson, K. L.; Eaton, J. W. Phytic Acid. A Natural Antioxidant. J. Biol. Chem. 1987, 262, 11647–11650.
  • Shamsuddin, A. M. Inositol Phosphates Have Novel Anticancer Function. J. Nutr. 1995, 125, 725S–732S.
  • Dlamini, N. R.; Dykes, L.; Rooney, L. W.; Waniska, R. D.; Taylor, J. R. N. Condensed Tannins in Traditional Wet-Cooked and Modern Extrusion-Cooked Sorghum Porridges. Cereal Chem. 2009, 86, 191–196. doi:10.1094/CCHEM-86-2-0191
  • Butler, L. G. Effects of Condensed Tannin on Animal Nutrition. In Chemistry and Significance of Condensed Tannins, Hemingway, R. W., Karchesy, J. J., Branham, S. J., Eds., Plenum Press: New York, USA, 1988; pp 391–402.
  • Chung, K. T.; Wong, T. Y.; Wei, C. I.; Huang, Y. W.; Lin, Y. Tannins and Human Health: A Review. Crit. Rev. Food Sci. Nutr. 1998, 38, 421–464. doi:10.1080/10408699891274273
  • Huang, W. Y.; Cai, Y. Z.; Zhang, Y. Natural Phenolic Compounds from Medicinal Herbs and Dietary Plants: Potential Use for Cancer Prevention. Nutr. Cancer 2010, 62, 20–23.
  • Habauzit, V.; Morand, C. Evidence for a Protective Effect of Polyphenols-Containing Foods on Cardiovascular Health: An Update for Clinicians. Ther. Adv. Chronic Dis. 2012, 3, 87–106. doi:10.1177/2040622311430006
  • Park, E. Y.; Fuerst, E. P.; Baik, B.-K. Phytate Negatively Influences Wheat Dough and Bread Characteristics by Interfering with Cross-Linking of Glutenin Molecules. J. Cereal Sci. 2015, 64, 133–138.
  • Andrade Korn, M. d. G.; da Boa Morte, E. S.; Batista dos Santos, D. C. M.; Castro, J. T.; Barbosa, J. T. P.; Teixeira, A. P.; Fernandes, A. P.; Welz, B.; dos Santos, W. P. C.; Nunes dos Santos, E. B. G.; et al. Sample Preparation for the Determination of Metals in Food Samples Using Spectroanalytical Methods—A Review. Appl. Spectrosc. Rev. 2008, 43, 67–92. doi:10.1080/05704920701723980
  • Rusydi, M.; Azrina, A. Effect of Germination on Total Phenolic, Tannin and Phytic Acid Contents in Soy Bean and Peanut. Int. Food Res. J. 2012, 19, 673–677.
  • Sivakumara, K.; Kothalawala, S. An Overview of the Analytical Methods for Food Phytates. Int. J. Chem. Stud. 2018, 6, 2016–2020.
  • Harland, B.; Oberleas, D. A. A Modified Method for Phytate Analysis Using an Ion-Exchange Procedure: Application to Textured Vegetable Proteins. Cereals Chem. 1977, 54, 827–832.
  • Latta, M.; Eskin, M. A Simple and Rapid Colorimetric Method for Phytate Determination. J. Agric. Food Chem. 1980, 28, 1313–1315. doi:10.1021/jf60232a049
  • Vinh, L. T.; Dworschak, E. Phytate Content of Some Foods from Plant Origin from Vietnam and Hungary. Nahrung 1985, 29, 161–166.
  • Ellis, R.; Morris, E. R. Appropriate Resin Selection for Rapid Phytate Analyses by Ion-Exchange Chromatography. Cereal Chem. 1986, 63, 58–59.
  • Bos, K.; Verbeek, C.; Van Eden, C.; Slump, P.; Wolters, M. Improved Determination of Phytatye by Ion-Exchange Chromatography. J. Agric. Food Chem. 1991, 39, 1770–1772.
  • March, J. G.; Villacampa, A. I.; Grases, F. Enzymatic-Spectrophotometric Determination of Phytic Acid with Phytase from Aspergillus Ficuum. Anal. Chim. Acta 1995, 300, 269–272. doi:10.1016/0003-2670(94)00367-U
  • García-Estepa, R. M.; Hernández, E. G.; Villanova, B. G. Phytic Acid Content in Milled Cereal Products and Breads. Food Res. Inter. 1999, 32, 217–221.
  • Talamond, P.; Doulbeau, S.; Rochette, I.; Guyot, J. P.; Treche, S. Anion Exchange High-Performance Liquid Chromatography with Conductivity Detection for the Analysis of Phytic Acid in Food. J. Chromatogr. A 2000, 871, 7–12.
  • March, J. G.; Simonet, B. M.; Grases, F. Determination of Phytic Acid by Gas Chromatography–Mass Spectroscopy: Application to Biological Samples. J. Chromatogr. B Biomed. Sci. Appl. 2001, 757, 247–255.
  • Ma, G.; Jin, Y.; Piao, J.; Kok, F. J.; Bonnema, G.; Jacobsen, E. Phytate, Calcium, Iron and Zinc Content and Their Molar Ratio in Common Foods Commonly Consumed in China. J. Agric. Food Chem. 2005, 53, 10285–10290.
  • Park, H.-R.; Ahn, H.-J.; Kim, S.-H.; Lee, C.-H.; Byun, M.-W.; Lee, G.-W. Determination of the Phytic Acid Levels in Infant Foods Using Different Analytical Methods. Food Control 2006, 17, 727–732.
  • Norhaizan, M. E. N.; Faizadatul, A. A. W. Determination of Phytate, Iron, Zinc, Calcium Contents and Their Molar Ratios in Commonly Consumed Raw and Prepared Food in Malaysia. Malaysian J. Nutr. 2009, 15, 213–222.
  • Kwanyuen, P.; Burton, J. W. A Simple and Rapid Procedure for Phytate Determination in Soybeans and Soy Products. J. Am. Oil Chem. Soc. 2005, 82, 81–85.
  • McKie, V. A.; McCleary, B. V. A Novel and Rapid Colorimetric Method for Measuring Total Phosphorus and Phytic Acid in Foods and Animal Feeds. J. AOAC Int. 2016, 99, 738–743.
  • Sivakumaran, K.; Wansapala, M. A. J.; Herath, H. M. T. Comparison of Contents of Phytates and Saponins and the Effect of Processing in Some Selected Edible Beans in Sri Lanka. Int. J. Food Sci. Nutr. 2017, 2, 96–100.
  • Qu, Z.; Na, W.; Nie, Y.; Su, X. A Novel Fluorimetric Sensing Strategy for Highly Sensitive Detection of Phytic Acid and Hydrogen Peroxide. Anal. Chim. Acta 2018, 1039, 74–81.
  • Smit, C. J. B.; Joslyn, M. A.; Lukton, A. Determination of Tannins and Related Polyphenols in Foods. Anal. Chem. 1955, 27, 1159–1162. doi:10.1021/ac60103a035
  • Owades, J. L.; Rubin, G.; Brenner, M. W. Food Tannins Measurement, Determination of Food Tannins by Ultraviolet Spectrophotometry. J. Agric. Food Chem. 1958, 6, 44–46. doi:10.1021/jf60083a008
  • Bajaj, K. L.; Devsharma, A. K. A Colorimetric Method for the Determination of Tannins in Tea. Mikrochim. Acta 1977, 68, 249–253. doi:10.1007/BF01196209
  • Hagerman, A. E.; Butler, L. G. Protein Precipitation Method for the Quantitative Determination of Tannins. J. Agric. Food Chem. 1978, 26, 809–812. doi:10.1021/jf60218a027
  • Deshpande, S. S.; Cheryan, M. Determination of Phenolic Compounds of Dry Beans Using Vanillin, Redox and Precipitation Assays. J Food Sci. 1987, 52, 332–334.
  • Makkar, H. P. S.; Lummel, M.; Borowy, N.; Becker, K. Gravimetric Determination of Tannins and Their Correlations with Chemical and Protein Precipitation Methods. J. Sci. Food Agric. 1993, 61, 161–165.
  • Yebra, M. C.; Gallego, M.; Valcárcel, M. Indirect Flow-Injection Determination of Tannins in Wines and Tea by Atomic Absorption. Anal. Chim. Acta 1995, 308, 357–363.
  • Tinkilic, N.; Uyanik, A. Spectrophotometric Determination of the Tannin Contents of Various Turkish Black Tea, Beer and Wine Samples. Int. J. Food Sci. Nutr. 2001, 52, 289–294.
  • Hung, Y. T.; Chen, P. C.; Chen, R. L. C.; Cheng, T. J. Sequential Determination of Tannin and Total Amino Acid Contents in Tea for Taste Assessment by a Fluorescent Flow-Injection Analytical System. Food Chem. 2010, 118, 876–881.
  • Lima, M. B.; Andrade, S. I. E.; Harding, D. P.; Pistonesi, M. F.; Band, B. S. F.; Araujo, M. C. U. Turbidimetric and Photometric Determination of Total Tannins in Tea Using a Micro-Flow-Batch Analyzer. Talanta 2012, 88, 717–723.
  • Khasnabis, J.; Rai, C.; Roy, A. Determination of Tannin Content by Titrimetric Method from Different Types of Tea. J. Chem. Pharm. Res. 2015, 7, 238–241.
  • Kumar, A.; Chauhan, B. M. Effect of Phytic Acid on Protein Digestibility (in Vitro) and HCl-Extractability of Minerals in Pearl Millet Sprouts. Cereal Chem. 1993, 70, 504–506.
  • Almana, H. A. Extent of Phytate Degradation in Breads and Various Foods Consumed in Saudi Arabia. Food Chem. 2000, 70, 451–456.
  • Hotz, C.; Gibson, R. S.; Temple, L. A Home-Based Method to Reduce Phytate Content and Increase Zinc Bioavailability in Maize Based Complementary Diets. Int. J. Food Sci. Nutr. 2001, 52, 133–142.
  • Ghavidel, R. A.; Prakash, J. The Impact of Germination and Dehulling on Nutrients, Antinutrients, in Vitro Iron and Calcium Bioavailability and in Vitro Starch and Protein Digestibility of Some Legume Seeds. LWT Food Sci. Tech. 2007, 40, 1292–1299. doi:10.1016/j.lwt.2006.08.002
  • Gupta, R. K.; Gangoliya, S. S.; Singh, N. K. Reduction of Phytic Acid and Enhancement of Bioavailable Micronutrients in Food Grains. J. Food Sci. Tech. 2015, 52, 676–684.
  • World Health Organization (WHO). The World Health Report 2002. WHO: Geneva, 2002.
  • Simic, D.; Sudar, R.; Ledencan, T.; Jambrovic, A.; Zvonimir Zdunic, Z.; Brkic, I.; Vlado Kovacevic, V. Genetic Variation of Bioavailable Iron and Zinc in Grain of a Maize Population. J. Cereal Sci. 2009, 50, 392–397. doi:10.1016/j.jcs.2009.06.014
  • Harvey, R.; Vatucawaqa, P. T. Report on the Micronutrient Status of Women in Fiji. National Food & Nutrition Centre, Suva, Fiji, 2007. www.worldcat.org/report-on-the-micronutrient-status-of-women-in-fiji./691073843 (accessed Feb 16, 2018).
  • Roshni, R.; Prasad, S.; Bhati, J. Enhancing Leafy Foods’ Intake for Optimal Nutrition and Human Security in the South Pacific. South Pac. J. Nat. Appl. Sci. 2014, 32, 27–32. doi:10.1071/SP14004
  • Prasad, S.; Chetty, A. A. Nitrate-N Determination in Leafy Vegetables: Study of the Effects of Cooking and Freezing. Food Chem. 2008, 106, 772–780. doi:10.1016/j.foodchem.2007.06.005
  • Chetty, A. A.; Prasad, S. Flow Injection Analysis of Nitrate-N Determination in Root Vegetables: Study of the Effects of Cooking. Food Chem. 2009, 116, 561–566. doi:10.1016/j.foodchem.2009.03.006
  • Prasad, S.; Chetty, A. A. Flow Injection Assessment of Nitrate Contents in Fresh and Cooked Fruits and Vegetables Grown in Fiji. J. Food Sci. 2011, 76, C1143–C1148. doi:10.1111/j.1750-3841.2011.02346.x
  • Chetty, A. A.; Prasad, S. Flow Injection Analysis of Nitrates and Nitrites in Commercial Baby Foods. Food Chem. 2016, 197, 503–508. doi:10.1016/j.foodchem.2015.10.079
  • Maharaj, P.; Prasad, S.; Devi, R.; Gopalan, R. Folate Content and Retention in Commonly Consumed Vegetables in the South Pacific. Food Chem. 2015, 182, 327–332. doi:10.1016/j.foodchem.2015.02.096
  • Singh, P.; Prasad, S.; Aalbersberg, W. Bioavailability of Fe and Zn in Selected Legumes, Cereals, Meat and Milk Products Consumed in Fiji. Food Chem. 2016, 207, 125–131. doi:10.1016/j.foodchem.2016.03.029
  • Singh, P.; Prasad, S. Determination of Ascorbic Acid and Its Influence on the Bioavailability of Iron, Zinc and Calcium in Fijian Food Samples. Microchem. J. 2018, 139, 119–124. doi:10.1016/j.microc.2018.02.019
  • Chetty, A. A.; Prasad, S.; Pinho, O. C.; de Morais, C. M. Estimated Dietary Intake of Nitrate and Nitrite from Meat Consumed in Fiji. Food Chem. 2019, 278, 630–635. doi:10.1016/j.foodchem.2018.11.081
  • Maxson, E. D.; Rooney, L. W. Evaluation of Methods for Tannin Analysis in Sorghum Grain. Cereal Chem. 1972, 49, 719–729.
  • Rao, N. B. S.; Prabhavathi, T. An in Vitro Method for Predicting the Bioavailability of Iron from Foods. Am. J. Clin. Nutr. 1978, 31, 169–175. doi:10.1093/ajcn/31.1.169
  • Hemalatha, S.; Platel, K.; Srinivasan, K. Influence of Germination and Fermentation on Bioaccessibility of Zinc and Iron from Food Grains. Eur. J. Clin. Nutr. 2007, 61, 342–348. doi:10.1038/sj.ejcn.1602524
  • Hunt, J. R. Bioavailability of Iron, Zinc, and Other Trace Minerals from Vegetarian Diets. Am. J. Clin. Nutr. 2003, 78, 633S–639S.
  • Wu, G.; Ashton, J.; Simic, A.; Fang, Z.; Johnson, S. K. Mineral Availability Is Modified by Tannin and Phytate Content in Sorghum Flaked Breakfast Cereals. Food Res. Int. 2018, 103, 509–514.
  • Luo, Y.; Gu, Z.; Han, Y.; Chen, Z. The Impact of Processing on Phytic Acid, in Vitro Soluble Iron and Phy/Fe Molar Ratio of Faba Bean (Vicia Faba L.). J. Sci. Food Agric. 2009, 89, 861–866.
  • Morris, E. R.; Ellis, R. Bioavailability of Dietary Calcium—Effect of Phytate on Adult Men Consuming Non-Vegetarian Diets. ACS Symp. Ser. 1985, 275, 63–72.
  • World Health Organization (WHO). Interactions Limiting Element Mobility. Trace Elements in Human Nutrition and Health. World Health Organization: Geneva, 1996; p 33. http://whqlibdoc.who.int/publications/1996/9241561734_eng.pdf (accessed Jun 8, 2019).
  • Das, P.; Raghuramulu, N.; Rao, K. C. Determination of in Vitro Availability of Iron from Common Foods. Hum. Ecol. 2005, 18, 13–20.
  • Amalraj, A.; Pius, A. In Vitro Study on the Bioavailability of Calcium and Its Absorption Inhibitors in Raw and Cooked Pulses Commonly Consumed in India. Inter. Food Res. J. 2015, 22, 1525–1532.
  • Sotelo, A.; Gonzalez-Osnaya, L.; Sanchez-Chinchillas, A.; Trejo, A. Role of Oxalate, Phytate, Tannins and Cooking on Iron Bioavailability from Foods Commonly Consumed in Mexico. Int. J. Food Sci. Nutr. 2010, 61, 29–39. doi:10.3109/09637480903213649
  • Hurrell, R. F.; Reddy, M. B.; Burri, J.; Cook, J. D. An Evaluation of EDTA Compounds for Iron Fortification of Cereal-Based Foods. Br. J. Nutr. 2000, 84, 903–910. doi:10.1017/S0007114500002531
  • Beninger, C. W.; Hosfield, G. L. Antioxidant Activity of Extracts. Condensed Tannin Fractions, and Pure Flavonoids from Phaseolus vulgaris L. seed Coat Color Genotypes. J. Agric. Food Chem. 2003, 51, 7879–7883. doi:10.1021/jf0304324
  • Salunkhe, D. K.; Kadam, S. S.; Chavan, J. K. Chapter 5, Nutritional Consequences of Dietary Tannins. In Dietary Tannins: Consequences and Remedies; CRC Press: Boca Raton, Florida, USA; p 54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.