1,257
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Technologies and Mechanisms for Safety Control of Ready-to-eat Muscle Foods: An Updated Review

&

REFERENCES

  • Ahn, D. U. and Lee, E. J. (2007). Mechanisms and prevention of quality changes in meat by irradiation. In: Food Irradiation Research and Technology, pp. 127–142. Sommers, C. H., Fan, X., Eds., Taylor & Francis, Ames, IA, USA.
  • Ananou, S., Garriga, M., Hugas, M., Maqueda, M., Martínez-Bueno, M., Gálvez, A. and Valdivia, E. (2005a). Control of Listeria monocytogenes in model sausages by enterocin AS-48. Int. J. Food Microbiol. 103:179–190.
  • Ananou, S., Maqueda, M., Martínez-Bueno, M., Gálvez, A. and Valdivia, E. (2005b). Control of Staphylococcus aureus in sausages by enterocin AS-48. Meat Sci.. 71:549–556.
  • Aymerich, T., Garriga, M., Ylla, J., Vallier, J., Monfort, J. M. and Hugas, M. (2000). Application of enterocins as biopreservatives against Listeria innocua in meat products. J. Food Prot. 63:721–726.
  • Aymerich, T., Jofré, A., Garriga, M. and Hugas, M. (2005). Inhibition of Listeria monocytogenes and Salmonella by natural antimicrobials and high hydrostatic pressure in sliced cooked ham. J. Food Prot. 68:173–177.
  • Bakal, G. and Diaz, A. (2005). The lowdown on lauric arginate: Food antimicrobial hammers away at plasma membrane, disrupting a pathogen's metabolic process. Food Qual. 12:54–61.
  • Bangel, N. A. (2012). An overview of regulations, guidelines, and intervention strategies for Listeria monocytogenes in ready-to-eat meat and poultry products. Master Thesis, Kansas State University, Manhattan, KS, USA.
  • Baños, A., Ananou, S., Martínez-Bueno, M. Gálvez, A., Maqueda, M. and Valdivia, E. (2012). Prevention of spoilage by enterocin AS-48 combined with chemical preservatives, under vacuum, or modified atmosphere in a cooked ham model. Food Control. 24:15–22.
  • Barmpalia, I. M., Geornaras, I., Belk, K. E., Scanga, J. A., Kendall, P. A., Smith, G. C. and Sofos, J. N. (2004). Control of Listeria monocytogenes on frankfurters with antimicrobials in the formulation and by dipping in organic acid solutions. J. Food Prot. 67:2456–2464.
  • Barmpalia-Davis, I. M. (2008). Fate of Listeria monocytogenes on ready-to-eat meat products, treated with antimicrobials, and under conditions simulating passage through the human stomach and small intestine. PhD thesis. Colorado State University, Fort Collins, CO, USA.
  • Beverly, R. L., Janes, M. E. and Oliver, G. (2006). Acidified sodium chlorite treatment for inhibition of Listeria monocytogenes growth on the surface of cooked roast beef. J. Food Prot. 69:432–435.
  • Bhunia, A. K., Johnson, M. C. and Ray, B. 1988. Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. J. Appl. Bacteriol. 65:261–268.
  • Bhunia, A. K., Johnson, M. C., Ray, B. and Kalchayanand, N. (1991). Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. J. Appl. Bacteriol. 70:25–33.
  • Brandt, A. L., Castillo, A., Harris, K. B., Keeton, J. T., Hardin, M. D. and Taylor, T. M. (2010). Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination. J. Food Sci. 75:M557–M563.
  • Breen, P. J., Salari, H. and Compadre, C. M. (1997). Elimination of Salmonella contamination from poultry tissues by cetylpyridinium chloride solutions. J Food Prot. 60:1019–1021.
  • Breidt, F. and Fleming, H. P. (1998). Modeling of the competitive growth of Listeria monocytogenes and Lactococcus lactis in vegetable broth. Appl. Environ. Microb. 64:3159–3165.
  • Breukink, E. and de Kruijff, B. (1999). The lantibiotic nisin, a special case or not? Biochim. Biophys. Acta. 1462:223–234.
  • Breukink, E., van Kraaij, C., Deme, R. A., Siezen, R. J., Kuipers, O. P. and de Kruijff, B. (1997). The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane. Biochemistry. 36:6968–6976.
  • Brul, S. and Coote, P. (1999). Preservative agents in foods: mode of action and microbial resistance mechanisms. Int. J. Food Microbiol., 50:1–17.
  • Cabedo, L., Barrot, L. P. I. and Canelles, A. T. I. (2008). Prevalence of Listeria monocytogenes and Salmonella in ready-to-eat food in Catalonia, Spain. J. Food Prot. 71:855–859.
  • Cabeza, M. C., Cambero, I., de la Hoz, L. and Ordóñez, J. A. (2007). Optimization of E-beam irradiation treatment to eliminate Listeria monocytogenes from ready-to-eat (RTE) cooked ham. Innov. Food Sci. Emerg. 8:299–305.
  • Cagri, A., Ustunol, Z., Osburn, W. and Ryser, E. (2003). Inhibition of Listeria monocytogenes on hot dogs using antimicrobial whey protein-based edible casings. J. Food Sci. 68:291–299.
  • Campus, M. (2010). High pressure processing of meat, meat products and seafood. Food Engineer. Rev. 2:256–273.
  • Castro, M. P., Palavecino, N. Z., Herman, C., Garro, O. A. and Campos, C. A. (2011). Lactic acid bacteria isolated from artisanal dry sausages: Characterization of antibacterial compounds and study of the factors affecting bacteriocin production. Meat Sci. 87:321–329.
  • Chen, C. M., Sebranek, J. G., Dickson, J. S. and Mendonca, A. F. (2004). Combining pediocin with post-packaging thermal pasteurization for control of Listeria monocytogenes on frankfurters. J. Food Prot. 67:1855–1865.
  • Clariana, M., Guerrero, L., Sárraga, C. and Garcia-Regueiro, J. A. (2011). Effects of high pressure application (400 and 900 MPa) and refrigerated storage time on the oxidative stability of sliced skin vacuum packed dry-cured ham. Meat Sci. 90:323–329.
  • Cleveland, J., Montville, T. J., Nes, I. F. and Chikindas, M. L. (2001). Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71:1–20.
  • Contijoch, A., Rodriguez, F. J. and Seguer, J. inventors; Laboratories Miret, S. A., assignee. (2003). Process for the preparation of cationic surfactants. E.U. patent EP 1294678 B1.
  • Cressy, H. K., Jerrett, A. R., Osborne, C. M. and Bremer, P. J. (2003). A novel method for the reduction of numbers of Listeria monocytogenes cells by freezing in combination with an essential oil in bacteriological media. J. Food Prot. 66:390–395.
  • Cueva, C., Moreno-Arribas, M. V., Martin-Alvarez, P. J., Bills, G., Vicente, M. F., Basilio, A., Rivas, C. L., Requena, T., Rodriguez, J. M. and Bartolome, B. (2010). Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res Microbiol. 161:372–382.
  • Cushnie, T. and Lamb A. (2005). Antimicrobial activity of flavonoids. Int. J. Antimicrob. Ag. 26:343–356.
  • Cutter, C. N., Dorsa, W. J., Handie, A., Rodriguez-Morales, S., Zhou, X., Breen, P. J. and Compadre, C. M. (2000). Antimicrobial activity of cetylpyridinium chloride washes against pathogenic bacteria on beef surfaces. J. Food Prot. 63:593–600.
  • De Wit, J. C. and Rombouts, F. M. (1990). Antimicrobial activity of sodium lactate. Food Microbiol. 7:112–120.
  • Delves-Broughton, J. (2005). Nisin as a food preservative. Food Aust. 57:525–527.
  • Fan, X. and Sommers, C. H. (2006). Effect of ionizing radiation on the formation of furan in ready-to-eat products and their ingredients. J. Food Sci. 71:C407–C412.
  • Farag, R. S., Daw, Z. Y., Hewedi, F. M. and El-baroty, G. S. A. (1989). Antimicrobial activity of some Egyptian spice essential oils. J. Food Prot. 52:665–667.
  • Farnaud, S. and Evans, R. W. (2003). Lactoferrin—a multifunctional protein with antimicrobial properties. Mol. Immunol. 40:395–405.
  • FDA. (2003). Listeria monocytogenes Risk Assessment: Interpretive Summary. Available from http://www.fda.gov/Food/ScienceResearch/ResearchAreas/RiskAssessmentSafetyAssessment/ucm185291.htm. Assessed: March 24, 2012.
  • Fimland, G., Johnsen, L., Dalhus, B. and Nissen-Meyer, J. (2005). Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J. Pept. Sci. 11:688–696.
  • Food Safety and Inspection Service (FSIS). (2012). Safe and suitable ingredients used in the production of meat, poultry, and egg products. Available from http://www.fsis.usda.gov/OPPDE/rdad/FSISDirectives/7120.1.pdf. Assessed: May 24, 2012.
  • Food Safety and Inspection Service (FSIS). (2003). FSIS rule designed to reduce Listeria monocytogenes in ready-to-eat meat and poultry products. Available from http://www.fsis.usda.gov/oa/background/lmfinal.htm. Assessed: May 24, 2012.
  • Food Safety and Inspection Service (FSIS). (2009). USDA FSIS Directive 7120.1, Amendment 20. Safe and suitable ingredients used in the production of meat and poultry products. Available from http://www.fsis.usda.gov/Regulations_&_Policies/Ingredients_Guidance/index.asp. Assessed: March 24, 2012.
  • Food Safety and Inspection Service (FSIS). (2011). Compliance guidelines for meeting lethality performance standards for cooked ready-to-eat meat and poultry products. Available from http://www.fsis.usda.gov/oa/fr/95033f-a.htm. Assessed: May 24, 2012.
  • Foong, S. C. C., Gonzalez, G. L. and Dickson, J. S. (2004). Reduction and survival of Listeria monocytogenes in ready-to-eat meats after irradiation. J. Food Prot. 67:77–82.
  • Fu, A. H., Sebranek, J. G. and Murano, E. A. (1995a). Survival of Listeria monocytogenes Yersinia enterocolitica, and Escherichia coli O157:H7 and quality changes after irradiation of beef steaks and ground beef. J. Food Sci. 60:972–977.
  • Fu, A. H., Sebranek, J. G. and Murano, E. A. (1995b). Survival of Listeria monocytogenes and Salmonella typhimurium and quality attributes of cooked pork chops and cured ham after irradiation. J. Food Sci. 60:1001–1005, 1008.
  • Glass, K. A., McDonnell, L. M., Rassel, R. C. and Zierke, K. L. (2007). Controlling Listeria monocytogenes on sliced ham and turkey products using benzoate, propionate, and sorbate. J. Food Prot. 70:2306–2312.
  • Gormley, F. J., Little, C. L., Grant, K. A., de Pinna, E. and McLauchlin, J. (2010a). The microbiological safety of ready-to-eat specialty meats from markets and specialty food shops: a UK wide study with a focus on Salmonella and Listeria monocytogenes. Food Microbiol. 27:243–249.
  • Gormley, F. J., Little, C. L., Rawal, N., Gillespie, I. A., Lebaigue, S. and Adak, G. K. (2010b). A 17-year review of foodborne outbreaks: describing the continuing decline in England and Wales (1992–2008). Epidemiol. Infect. 9:1–12.
  • Gudbjörnsdóttir, B., Suihko, M. L., Gustavsson, P., Thorkelsson, G., Salo, S., Sjöberg, A. M., Niclasen, O. and Bredholt, S. (2004). The incidence of Listeria monocytogenes in meat, poultry and seafood plants in the Nordic countries. Food Microbiol. 21:217–225.
  • Hao, Y. Y., Brackett, R. E. and Doyel, M. P. (1998). Inhibition of Listeria monocytogenes and Aeromonas hydrophila by plant extracts in refrigerated cooked beef. J. Food Prot. 61:307–312.
  • Henderson, J. T., Chopko, A. L. and van Wassenaar, P. D. (1992). Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. Arch. Biochem. Biophys. 295:5–12.
  • Hereu, A., Bover-Cid, S., Garriga, M. and Aymerich, T. (2012). High hydrostatic pressure and biopreservation of dry-cured ham to meet the food safety objectives for Listeria monocytogenes. Int. J. Food Microbiol. 154:107–112.
  • Hoover, D. G., Metrick, C., Papineau, A. M. Farkas, D. F. and Knorr, D. (1989). Biological effects of high hydrostatic pressure on food microorganisms. Food Technol. 43(3):99–107.
  • Houben, J. H. and Eckenhausen, F. (2006). Surface pasteurization of vacuum-sealed precooked ready-to-eat meat products. J. Food Prot. 69:459–468.
  • Houtsma, P. C., Kant-Muermans, M. L., Rombouts, F. M. and Zwietering, M. H. (1996). Model for the combined effects of temperature, pH, and sodium lactate on growth rates of Listeria innocua in broth and bologna-type sausages. Appl. Environ. Microbiol. 62:1616–1622.
  • Hugas, M., Garriga, M. and Monfort, J. M. (2002). New mild technologies in meat processing: high pressure as a model technology. Meat Sci. 62:359–371.
  • Infante, M. R., Molinero, J., Erra, P., Juliá, M. R. and Domínguez, J. J. G. (1985). A comparative study on surface active and antimicrobial properties of some N α-Lauroyl-l α,ω dibasic aminoacids derivatives. Fette, Seifen, Anstrichmittel. 87:309–313.
  • Iseppi, R., Pilati, F., Marini, M., Toselli, M., de Niederhäusern, S., Guerrieri, E., Messi, P., Sabia, C., Manicardi, G., Anacarso, I. and Bondi, M. (2008). Anti-listerial activity of a polymeric film coated with hybrid coatings doped with enterocin 416K1 for use as bioactive food packaging. Int. J. Food Microbiol. 123:281–287.
  • Ita, P. S. and Hutkins, R. W. (1991). Intracellular pH and survival of Listeria monocytogenes Scott A in tryptic soy broth containing acetic, lactic, citric and hydrochloric acids. J. Food Prot. 54:15–19.
  • Ivy, R. A., Wiedmann, M. and Boor, K. J. (2012). Listeria monocytogenes grown at 7°C shows reduced acid survival and an altered transcriptional response to acid shock compared to L. monocytogenes grown at 37°C. Appl. Environ. Microbiol. 78:3824–3836.
  • Jack, R. W., Tagg, J. R. and Ray, B. (1995). Bacteriocins of Gram-positive bacteria. Microbiol Rev. 59:171–200.
  • Jofré, A., Aymerich, T. and Garriga, M. (2008). Assessment of the effectiveness of antimicrobial packaging combined with high pressure to control Salmonella sp. in cooked ham. Food Control. 19:634–638.
  • Juneja, V. (2012). Novel natural food antimicrobials. Ann. Rev. Food Sci. Technol. 3:381–403.
  • Keklik, N. M., Demirci, A. and Puri, V. M. (2009). Inactivation of Listeria monocytogenes on unpackaged and vacuum-packaged chicken frankfurters using pulsed UV-light. J. Food Sci. 74:M431–M439.
  • Knipe, C. L. (2010). Processing interventions to inhibit Listeria monocytogenes growth in ready-to-eat meat products. In: Thermal Processing of Ready-To-Eat Meat Products, pp. 87–125. Knipe, C. L., Rust, R. E., Eds., Taylor & Francis, Oxford, UK.
  • Kong, B. H., Wang, J. Z. and Xiong, Y. L. (2007). Antimicrobial activity of several herb and spice extracts in culture medium and in vacuum-packaged pork. J. Food Prot. 70:641–647.
  • Konisky, J. (1982). Colicins and other bacteriocins with established modes of action. Ann. Rev. Microbiol. 36:125–144.
  • Kouakou, P., Ghalfi, H., Destin, J., Duboisdauphin, R., Evrard, P. and Thonart, P. (2008). Enhancing the antilisterial effect of Lactobacillus curvatus CWBI-B28 in pork meat and cocultures by limiting bacteriocin degradation. Meat Sci. 80:640–648.
  • Lauková, A., Czikková, S. and Burdová, O. (1999). Anti-staphylococcal effect of enterocin in Sunar® and yogurt. Folia Microbiol. 44:707–711.
  • Lim, K. and Mustapha, A. (2007). Inhibition of Escherichia coli O157:H7, Listeria monocytogenes and Staphylococcus aureus on sliced roast beef by cetylpyridinium chloride and acidified sodium chlorite. Food Microbiol. 24:89–94.
  • Limjaroen, P., Ryser, E., Lockhart, H. and Harte, B. (2005). Inactivation of Listeria monocytogenes on beef bologna and cheddar cheese using polyvinyl-idene chloride films containing sorbic acid. J. Food Sci. 70:M267–M271.
  • Lindgren, S. E. and Dobrogosz, W. J. (1990). Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol. Lett. 87:149–164.
  • Luchansky, J. B., Call, J. E., Hristova, B., Rumery, L., Yoder, L. and Oser, A. (2005). Viability of Listeria monocytogenes on commercially-prepared hams surface treated with acidic calcium sulfate and lauric arginate and stored at 4°C. Meat Sci. 71:92–99.
  • Luchansky, J. B., Call, J. E., Smith, J. L., Smith, J. and Oser, A. (2007). Viability of Listeria monocytogenes on commercially-prepared roast beef logs, turkey breast logs and frankfurters surface treated with lauric arginate and stored at 4°C for 24 hours. In: Abstract of International Association of Food Protections’ Annual Meeting, pp. 2–24.
  • Luchansky, J. B., Cocoma, G. and Call, J. E. (2006). Hot water post process pasteurization of cook-in-bag turkey breast treated with and without potassium lactate and sodium diacetate and acidified sodium chlorite for control of Listeria monocytogenes. J. Food Prot. 69:39–46.
  • Maas, M. R., Glass, K. A. and Doyle, M. P. (1989). Sodium lactate delays toxin production by Clostridium botulinum in cook-in-bag turkey products. Appl. Environ. Microbiol. 55:2226–2229.
  • Mangalassary, S., Han, I., Rieck, J., Acton, J. and Dawson, P. (2008). Effect of combining nisin and/or lysozyme with in-package pasteurization for control of Listeria monocytogenes in ready-to-eat turkey bologna during refrigerated storage. Food Microbiol. 28:866–870.
  • Marcos, B., Aymerich, T., Monfort, J. M. and Garriga, M. (2007). Use of antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham. Int. J. Food Microbiol. 120:152–158.
  • Marcos, B., Jofré, A., Aymerich, T., Monfort, J. M. and Garriga, M. (2008). Combined effect of natural antimicrobials and high pressure processing to prevent Listeria monocytogenes growth after a cold chain break during storage of cooked ham. Food Control 19:76–81.
  • Martin, E. M., Griffis, C. L., Vaughn, K. L., O’Bryan, C. A., Friedly, E. C., Marcy, J. A., Ricke, S. C., Crandall, P. G. and Lary, R. Y. Jr. (2009). Control of Listeria monocytogenes by lauric arginate on frankfurters formulated with or without lactate/diacetate. J. Food Sci. 74:M237–41.
  • Martin-Visscher, L. A., Yoganathan, S., Sit, C. S., Lohans, C. T. and Vederas, J. C. (2011). The activity of bacteriocins from Carnobacterium maltaromaticum UAL307 against Gram-negative bacteria in combination with EDTA treatment. FEMS Microbiol. Lett. 317:152–159.
  • McClure, P. J., Beaumont, A. L., Sutherland, J. P. and Roberts, T. A. (1997). Predictive modelling of growth of Listeria monocytogenes. The effects on growth of NaCl, pH, storage temperature and NaNO2. Int. J. Food Microbiol. 3:221–232.
  • McCormick, K., Han, I. Y., Acton, J. C., Sheldon, B. W. and Dawson, P. L. (2003). D and Z-values for Listeria monocytogenes and Salmonella typhimurium in packaged low-fat ready-to-eat turkey bologna subjected to a surface pasteurization treatment. Poult. Sci. 82:1337–1342.
  • Meeting Abstract (P 2-24). International Association of Food Protections. Des Moines, Iowa.
  • Min, S., Han, J. H., Harris, L. J. and Krochta, J. M. (2005). Listeria monocytogenes inhibition by whey protein films and coatings incorporating lysozyme. J. Food Protec. 68:2317–2325.
  • Ming, X., Weber, G. H., Ayres, J. W. and Sandine, W. E. (1997). Bacteriocins applied to food packaging materials to inhibit Listeria monocytogenes on meats. J. Food Sci. 62:413–415.
  • Montville, T. J. and Bruno, M. E. C. (1994). Evidence that dissipation of proton motive force is a common mechanism of action for bacteriocins and other antimicrobial proteins. Int. J. Food Microbiol. 24:53–74.
  • Moreno, S., Scheyer, T., Romano, C. and Vojnov, A. (2006). Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Rad. Res. 40:223–231.
  • Muriana, P. M., Quimby, W., Davidson, C. A. and Grooms, J. (2002). Postpackage pasteurization of ready-to-eat deli meats by submersion heating for reduction of Listeria monocytogenes. J. Food Prot. 65:963–969.
  • Murphy, R. Y., Hanson, R. E., Johnson, N. R., Scott, L. L., Feze, N. and Chappa, K. (2005). Combining antimicrobial and steam treatments in a vacuum-packaging system to control Listeria monocytogenes on ready-to-eat franks. J. Food Sci. 70:M138–M140.
  • Mytle, N., Anderson, G. L., Doyle, M. P. and Smith, M. A. (2006). Antimicrobial activity of clove (Syzygium aromaticum) oil in inhibiting Listeria monocytogenes on chicken frankfurters. Food Control. 17:102–107.
  • New South Wales (NSW) Food Authority. (2009). Microbiological quality of packaged sliced ready-to-eat meat products. A survey to determine the safety of ready-to-eat meat products sold in NSW. Available from http://www.foodauthority.nsw.gov.au/science/market-analysis/smallgood-meats-rte. Assessed: May 11, 2012.
  • Nohynek, L. J., Alakomi, H.-L., Kähkönen, M. P., Heinonen, M., Helander, I. M., Oksman-Caldentey, K. M. and Puupponen-Pimiä, R. H. (2006). Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutr. Cancer. 54:18–32.
  • Oussalah, M., Caillet, S., Saucier, L. and Lacroix, M. (2007). Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control. 18:414–420.
  • Palumbo, S. A. and Williams, A. C. (1994). Control of Listeria monocytogenes on the surface of frankfurters by acid treatments. Food Microbiol. 11:293–300.
  • Patterson, M. F., Quinn, M., Simpson, R. and Gilmour, A. (1995). Effects of high pressure on vegetative pathogens. In: High Pressure Processing of Foods. pp. 47–64. Ledward, D. A., Johnston, D. E., Earnshaw, R. G., and Hasting, A. P. M., Eds., Taylor & Francis, Nottingham, UK.
  • Porto, A. C. S., Franco, B. D. G. M., Sant'anna, E. S., Call, J. E., Piva, A. and Luchansky, J. B. (2002). Viability of a five-strain mixture of Listeria monocytogenes in vacuum-sealed packages of frankfurters, commercially prepared with and without 2.0 or 3.0% added potassium lactate, during extended storage at 4 and 10°C. J. Food Prot. 65:308–315.
  • Porto-Fett, A. C., Campano, S. G., Smith, J. L., Oser, A., Shoyer, B., Call, J. E. and Luchansky, J. B. (2010). Control of Listeria monocytogenes on commercially-produced frankfurters prepared with and without potassium lactate and sodium diacetate and surface treated with lauric arginate using the Sprayed Lethality in Container (SLICTM) delivery method. Meat Sci. 85:312–318.
  • Quintavalla, S. and Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Sci. 62:373–380.
  • Rehaiem, A., Martinez, B., Manai, M. and Rodriguez, A. (2010). Production of enterocin A by Enterococcus faecium MMRA isolated from “Rayeb,” a traditional Tunisian dairy beverage. J. Appl. Microbiol. 108:1685–1693.
  • Rivas-Cañedo, A., Juez-Ojeda, C., Nuñez, M. and Fernández-García, E. (2012). Volatile compounds in low-acid fermented sausage “espetec” and sliced cooked pork shoulder subjected to high pressure processing. A comparison of dynamic headspace and solid-phase microextraction. Food Chem. 132:18–26.
  • Rodríguez, E., Seguer, J., Rocabayera, X. and Manresa, A. (2004). Cellular effects of monohydrochloride of L-arginine, N-lauroyl ethylester (LAE) on exposure to Salmonella typhimurium and Staphylococcus aureus. J. Appl. Microbiol. 96:903–912.
  • Rodriguez, J. M., Martínez, M. I. and Kok, J. (2002). Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 42:91–121.
  • Rubio, B., Martínez, B., García-Gachán, M. D., Rovira, J. and Jaime, I. (2007). Effect of high pressure preservation on the quality of dry cured beef “Cecina de Leon”. Innov. Food Sci. Emerg. 8:102–110.
  • Ruiz, A., Williams, S. K., Djeri, N., Hinton, A., Jr. and Rodrick, G. E. (2010). Nisin affects the growth of Listeria monocytogenes on ready-to-eat turkey ham stored at four degrees Celsius for sixty-three days. Poult. Sci. 89:353–358.
  • Ruiz-Capillas, C. and Jiménez-Colmenero, F. (2004). Biogenic amine content in Spanish retail market meat products treated with protective atmosphere and high pressure. Eur. Food Res. Technol. 218:237–241.
  • Russell, J. B. (1992). Another explanation for the toxicity of fermentation acids at low pH—anion accumulation versus uncoupling. J. Appl. Bacteriol. 73:363–370.
  • Russell, A. D. (2002). Mechanisms of antimicrobial action of antiseptics and disinfectants: an increasingly important area of investigation. J. Antimicrob. Chemoth. 49:597–599.
  • Salton, M. R. J. (1968). Lytic agents, cell permeability, and monolayer penetrability. J. Gen. Physiol. 52:252–277.
  • Samelis, J., Bedie, G. K., Sofos, J. N., Belk, K. E., Scanga, J. A. and Smith, G. C. (2002). Control of Listeria monocytogenes with combined antimicrobials after post process contamination and extended storage of frankfurters at 4°C in vacuum package. J. Food Prot. 65:299–307.
  • Seman, D. L., Borger, A. C., Meyer, J. D., Hall, P. A. and Milkowski, A. L. (2002). Modeling the growth of Listeria monocytogenes in cured ready-to-eat processed meat products by manipulation of sodium chloride, sodium diacetate, potassium lactate, and product moisture content. J. Food Prot. 65:651–658.
  • Shelef, L. A. (1994). Antimicrobial effects of lactates: a review. J. Food Prot. 57:445–450.
  • Singh, M., Gill, V. S., Thippareddi, H., Phebus, R. K., Marsden, J. L., Herald, T. J. and Nutsch, A. L. (2005a). Cetylpyridinium chloride treatment of ready-to-eat polish sausages: effects on Listeria monocytogenes populations and quality attributes. Foodborne Pathog. Dis. 2:233–241.
  • Singh, M., Gill, V. S., Thippareddi, H., Phebus, R. K., Marsden, J. L., Herald, T. J. and Nutsch, A. L. (2005b). Efficacy of cetylpyridinium chloride against Listeria monocytogenes and its influence on color and texture of cooked roast beef. J. Food Prot. 68:2349–2355.
  • Singh, A., Singh, R. K., Bhunia, A. K. and Singh, N. (2003). Efficacy of plant essential oils as antimicrobial agents against Listeria monocytogenes in hotdogs. LWT-Food Sci. Technol. 36:787–794.
  • Sivarooban, T., Hettiarachchy, N. S. and Johnson, M. G. (2008). Physical and antimicrobial properties of grape seed extract, nisin, and EDTA-incorporated soy protein edible films. Food Res. Int. 41:781–785.
  • Sofos, J. N. and Geornaras, I. (2010). Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products. Meat Sci. 86:2–14.
  • Sommers, C. H., Cooke, P., Fan, X. and Sites, J. (2009). Ultraviolet light inactivation of Listeria monocytogenes on frankfurters that contain potassium lactate and sodium diacetate. J. Food Sci. 74:M114–M119.
  • Sommers, C. H. and Fan, X. (2002). Antioxidant power, lipid oxidation, color, and viability of Listeria monocytogenes in beef bologna treated with gamma radiation and containing various levels of glucose. J. Food Prot. 65:1750–1755.
  • Sommers, C. H., Mackay, W., Geveke, D., Lemmenes, B. and Pulsfus, S. (2012). Inactivation of Listeria innocua on frankfurters by flash pasteurization and lauric arginate ester. J. Food Process Technol. 3:147.
  • Sommers, C. H., Scullen, O. J. and Sites, J. E. (2010). Inactivation of foodborne pathogens on frankfurters using ultraviolet light and GRAS antimicrobials. J. Food Safety. 30:668–678.
  • Theinsathid, P., Visessanguan, W., Kingcha, Y. and Keeratipibul, S. (2001). Antimicrobial effectiveness of biobased film against Escherichia coli O157:H7, Listeria monocytogenes and Salmonella typhimurium. Adv. J. Food Sci. Technol. 3:294–302.
  • Theinsathid, P., Visessanguan, W., Kruenate, J., Kingcha, Y. and Keeratipibul, S. (2012). Antimicrobial activity of lauric arginate-coated polylactic acid films against Listeria monocytogenes and Salmonella typhimurium on cooked sliced ham. J. Food Sci. 77:M142–M149.
  • Thompson, R. L., Carpenter, C. E., Martini, S. and Broadbent, J. R. (2008). Control of Listeria monocytogenes in ready-to-eat meats containing sodium levulinate, sodium lactate, or a combination of sodium lactate and sodium diacetate. J. Food Sci. 73:M239–M244.
  • Uppal, K. K., Getty, K. J. K., Boyle, E. A. E., Harper, N. M., Lobaton-Sulabo, A. S. S. and Barry, B. (2012). Effect of packaging and storage time on survival of Listeria monocytogenes on kippered beef steak and turkey tenders. J. Food Sci. 71:M57–M60.
  • Vandenberg, P. A. (1993). Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol. Rev. 12:221–238.
  • Vattem, D. A., Lin, Y. T., Ghaedian, R. and Shetty, K. (2005). Cranberry synergies for dietary management of Helicobacter pylori infections. Process Biochem. 40:1583–1592.
  • Warf, C. C., and Kemp, G. K. (2001). The chemistry and mode of action of acidified sodium chlorite. In: 2001 IFT Annual Meeting, Session 911. New Orleans, LA, USA.
  • Wouters, P., Glaasker, E., and Smelt, J. P. P.M. (1998). Effects of high pressure on inactivation kinetics and events related to proton efflux in Lactobacillus plantarum. Appl. Environ. Microbiol. 64:509–514.
  • Yaldagard, M., Mortazavi, S. A. and Tabatabaie, F. (2008). The principles of ultra high pressure technology and its application in food processing/preservation: a review of microbiological and quality aspects. African J. Biotechnol. 7:2739–2767.
  • Ye, M., Chen, H. and Neetoo, H. (2008). Control of Listeria monocytogenes on ham steaks by antimicrobials incorporated into chitosan-coated plastic films. Food Microbiol. 25:260–268.
  • Yi, B. H. and Kim, D. H. (1982). Antioxidant activity of maltol, kojak acid, levulinic acid, furfural, 5-hydroxymethyl furfural, and pyrazine. Kor. J. Food Sci. 14:265–270.
  • Zhang, H., Kong, B., Xiong, Y. L. and Sun, X. (2009). Antimicrobial activities of spice extracts against pathogenic and spoilage bacteria in modified atmosphere packaged fresh pork and vacuum packaged ham slices stored at 4°C. Meat Sci. 81:686–692.
  • Zhu, M. J., Du, M., Cordray, J. and Ahn, D. U. (2005). Control of Listeria monocytogenes contamination in ready-to-eat meat products. Compre. Rev. Food Sci. Food Safety. 4:34–42.
  • Zhu, M. J., Mendonca, A., Ismail, H. A. and Ahn, D. U. (2009). Fate of Listeria monocytogenes in ready-to-eat turkey breast rolls formulated with antimicrobials following electron-beam irradiation. Poult. Sci. 88:205–213.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.