8,450
Views
49
CrossRef citations to date
0
Altmetric
Original Articles

Formation and Degradation of Beta-casomorphins in Dairy Processing

, , &

REFERENCES

  • Atlan, D., Laloi, P. and Portalier, R. (1990). X-prolyl-dipeptidyl aminopeptidase of lactobacillus delbrueckii subsp. bulgaricus: Characterization of the enzyme and isolation of deficient mutants. Appl. Environ. Microbiol. 56(7):2174–2179.
  • Bell, S., Grochoski, G. and Clarke, A. (2006). Health implications of milk containing beta-casein with the A2 genetic variant. Crit. Rev. Food Sci. Nutr. 46(1):93–100.
  • Benfeldt, C. and Sørensen, J. (2001). Heat treatment of cheese milk: Effect on proteolysis during cheese ripening. Int. Dairy J. 11(4–7):567–574.
  • Birgisdottir, B. E., Hill, J. P., Thorsson, A. V. and Thorsdottir, I. (2006). Lower consumption of cow milk protein A1 beta-casein at 2 years of age, rather than consumption among 11- to 14-year-old adolescents, may explain the lower incidence of type 1 diabetes in Iceland than in Scandinavia. Ann. Nutr. Metabol. 50(3):177–183.
  • Cass, H., Gringras, P., March, J., McKendrick, I., O’Hare, A. E., Owen, L. and Pollin, C. (2008). Absence of urinary opioid peptides in children with autism. Arch. Dis. Chil. 93(9):745–750.
  • Choi, J., Sabikhi, L., Hassan, A. and Anand, S. (2012). Bioactive peptides in dairy products. Int. J. Dairy Technol. 65(1):1–12.
  • Cieślińska, A., Kaminski, S., Kostyyra, E. and Sienkiewicz-Szłapka, E. (2007). Beta-casomorphin 7 in raw and hydrolyzed milk derived from cows of alternative β-casein genotypes. Milchwissenschaft 62(2):125–127.
  • Cieślińska, A., Kostyra, E., Kostyra, H., Oleński, K., Fiedorowicz, E. and Kamiński, S. (2012). Milk from cows of different β-casein genotypes as a source of β-casomorphin-7. Int. J. Food Sci. Nutr. 63(4):426–430.
  • Courtin, P., Monnet, V. and Rul, F. (2002). Cell-wall proteinases PrtS and PrtB have a different role in Streptococcus thermophilus/Lactobacillus bulgaricus mixed cultures in milk. Microbiology 148(11):3413–3421.
  • De Noni, I. (2008). Release of [beta]-casomorphins 5 and 7 during simulated gastro-intestinal digestion of bovine [beta]-casein variants and milk-based infant formulas. Food Chemistry 110(4):897–903.
  • Donkor, O. N., Henriksson, A., Singh, T. K., Vasiljevic, T. and Shah, N. P. (2007). ACE-inhibitory activity of probiotic yoghurt. Int. Dairy J. 17(11):1321–1331.
  • EFSA. (2009). Review of the potential health impact of β-casomorphins and related peptides. EFSA Science Report 231:1–107, Available from http://www.efsa.europa.eu/en/efsajournal/pub/231r.htm
  • Elliott, R. B., Harris, D. P., Hill, J. P., Bibby, N. J. and Wasmuth, H. E. (1999). Type I (insulin-dependent) diabetes mellitus and cow milk: Casein variant consumption. Diabetologia 42(3):292.
  • Elwood, P. C. (2005). Milk and cardiovascular disease: A review of the epidemiological evidence. Aus. J. Dairy Technol. 60(1):58.
  • Elwood, P. C., Pickering, J. E., Fehily, A. M., Hughes, J. and Ness, A. R. (2004a). Milk drinking, ischaemic heart disease and ischaemic stroke I. Evidence from the Caerphilly cohort. Eur. J. Clin. Nutr. 58(5):711–717.
  • Elwood, P. C., Pickering, J. E., Hughes, J., Fehily, A. M. and Ness, A. R. (2004b). Milk drinking, ischaemic heart disease and ischaemic stroke II. Evidence from cohort studies. Eur. J. Clin. Nutr. 58(5):718–724.
  • Elwood, P. C., Strain, J. J., Robson, P. J., Fehily, A. M., Hughes, J., Pickering, J. and Ness, A. (2005). Milk consumption, stroke, and heart attack risk: Evidence from the Caerphilly cohort of older men. [Research Support, Non-U.S. Gov’t]. J. Epidemiol. Commun. Health 59(6):502–505.
  • El-Zahar, K., Chobert, J.-M., Dalgalarrondo, M., Sitohy, M. and HaertlÉ, T. (2004). Proteolysis of ewe's caseins and whey proteins during fermentation of yogurt and storage. Effect of the starter cultures used. J. Food Biochem. 28(4):319–335.
  • El-Zahar, K., Chobert, J.-M., Sitohy, M., Dalgalarrondo, M. and Haertlé, T. (2003). Proteolytic degradation of ewe milk proteins during fermentation of yoghurts and storage. Food/Nahrung 47(3):199–206.
  • Enright, E., Patricia Bland, A., Needs, E. C. and Kelly, A. L. (1999). Proteolysis and physicochemical changes in milk on storage as affected by UHT treatment, plasmin activity and KIO3 addition. Int. Dairy J. 9(9):581–591.
  • Gaucher, I., Mollé, D., Gagnaire, V. and Gaucheron, F. (2008). Effects of storage temperature on physico-chemical characteristics of semi-skimmed UHT milk. Food Hydrocol. 22(1):130–143. doi: 10.1016/j.foodhyd.2007.04.007
  • Gaucheron, F., Mollé, D., Briard, V. and Léonil, J. (1999). Identification of low molar mass peptides released during sterilization of milk. Int. Dairy J. 9(8):515–521.
  • Ginn, R. E., Packard, V. S., Mochrie, J. R. D., Kelley, W. N. and Schultz, L. H. (1985). Methods to detect abnormal milk. In: Standard Methods for the Examination of Dairy Products (15 ed.), G. H. Richardson, Ed. Taylor & Francis, Washington, D.C.
  • Gobbetti, M., Ferranti, P., Smacchi, E., Goffredi, F. and Addeo, F. (2000). Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks started by lactobacillus delbrueckiisubsp. bulgaricus SS1 and Lactococcus lactissubsp. cremoris FT4. Appl. Environ. Microbiology 66(9):3898–3904.
  • Gobbetti, M., Stepaniak, L., De Angelis, M., Corsetti, A. and Di Cagno, R. (2002). Latent bioactive peptides in milk proteins: Proteolytic activation and significance in dairy processing. Critical Reviews in Food Science and Nutrition 42:223–239.
  • Gómez-Ruiz, J. Á., Ramos, M. and Recio, I. (2004). Identification and formation of angiotensin-converting enzyme-inhibitory peptides in Manchego cheese by high-performance liquid chromatography—tandem mass spectrometry. J. Chromatogr. A 1054(1–2):269–277.
  • Haileselassie, S. S., Lee, B. H. and Gibbs, B. F. (1999). Purification and identification of potentially bioactive peptides from enzyme-modified cheese. J. Dairy Sci. 82(8):1612–1617.
  • Hattem, H. E., Manal, A. N., Hanaa, S. S. and Elham, H. A. (2011). A study on the effect of thermal treatment on composition and some properties of camel milk. J. Brew. Distill. 2(4):51–55.
  • Hayaloglu, A., Deegan, K. and McSweeney, P. (2010). Effect of milk pasteurization and curd scalding temperature on proteolysis in Malatya, a Halloumi-type cheese. Dairy Sci. Technol. 90(1):99–109.
  • Hougaard, A. B., Ardö, Y. and Ipsen, R. H. (2010). Cheese made from instant infusion pasteurized milk: Rennet coagulation, cheese composition, texture and ripening. Int. Dairy J. 20(7):449–458.
  • Jaffiol, C. (2008). Milk and dairy products in the prevention and therapy of obesity, type 2 diabetes and metabolic syndrome. Bull. de l’Académie nationale de médecine 192(4):749–758.
  • Jarmołowska, B., Sidor, K., Iwan, M., Bielikowicz, K., Kaczmarski, M., Kostyra, E. and Kostyra, H. (2007). Changes of β-casomorphin content in human milk during lactation. Peptides 28(10):1982–1986.
  • Jarmolowska, B., Kostyra, E., Krawczuk, S. and Kostyra, H. (1999). Beta-casomorphin-7 isolated from Brie cheese. J. Sci. Food Agr. 79(13):1788.
  • Jauhiainen, T. and Korpela, R. (2007). Milk peptides and blood pressure. J. Nutr. 137(3):825S–829S.
  • Jinsmaa, Y. and Yoshikawa, M. (1999). Enzymatic release of neocasomorphin and [beta]-casomorphin from bovine [beta]-casein. Peptides 20(8):957–962.
  • Juan-García, A., Font, G., Juan, C. and Picó, Y. (2009). Nanoelectrospray with ion-trap mass spectrometry for the determination of beta-casomorphins in derived milk products. Talanta 80(1):294–306.
  • Kahala, M., Pahkala, E. and Pihlato, A. (1993). Peptides in fermented Finnish milk products. Agr. Food Sci. Finland 2:379–386.
  • Kamiński, S., Cieślińska, A. and Kostyra, E. (2007). Polymorphism of bovine beta-casein and its potential effect on human health. J. Appl. Genet. 48(3):189–198.
  • Koch, G., Wiedemann, K., Drebes, E., Zimmermann, W., Link, G. and Teschemacher, H. (1988). Human β-casomorphin-8 immunoreactive material in the plasma of women during pregnancy and after delivery. Regulat. Peptides 20(2):107–117.
  • Krasaekoopt, W. (2003). Yogurt from UHT milk: A review. Aust. J. Dairy Technol. 58(1):26.
  • Kuchroo, C. N. and Fox, P. F. (1982). Soluble nitrogen in Cheddar cheese: Comparison of extraction procedures. Milchwissenschaft 37(6):331–335.
  • Kunda, P. B., Benavente, F., Catalá-Clariana, S., Giménez, E., Barbosa, J. and Sanz-Nebot, V. (2012). Identification of bioactive peptides in a functional yogurt by micro liquid chromatography time-of-flight mass spectrometry assisted by retention time prediction. J. Chromatogr. A 1229(0):121–128.
  • Laugesen, M. and Elliott, R. (2003). Ischaemic heart disease, Type 1 diabetes, and cow milk A1 b-casein. NZ Med. J. 116(1168):1–19.
  • Lefier, D., Lamprell, H. and Mazerolles, G. (2000). Evolution of Lactococcus strains during ripening in Brie cheese using Fourier transform infrared spectroscopy. Lait 80(2):247–254.
  • Lotfi, B. (2004). Optimization study for the production of an opioid-like preparation from bovine casein by mild acidic hydrolysis. Int. Dairy J. 14(6):535–539.
  • Matar, C. and Goulet, J. (1996). β-casomorphin 4 from milk fermented by a mutant of Lactobacillus helveticus. Int. Dairy J. 6(4):383–397.
  • McLachlan, C. N. S. (2001). [beta]-casein A1, ischaemic heart disease mortality, and other illnesses. Med. Hypotheses 56(2):262–272.
  • McSweeney, P. L. H. (2004). Biochemistry of cheese ripening. Int. J. Dairy Technol. 57(2–3):127–144.
  • Meltretter, J., Schmidt, A., Humeny, A., Becker, C. and Pischetsrieder, M. (2008). Analysis of the peptide profile of milk and its changes during thermal treatment and storage. J. Agr. Food Chem. 56(9):2899.
  • Mendia, C., Ibañez, F. J., Torre, P. and Barcina, Y. (2000). Effect of pasteurization and use of a native starter culture on proteolysis in a ewes’ milk cheese. Food Control 11(3):195–200.
  • Merriman, T. R. (2009). Type 1 diabetes, the A1 milk hypothesis and vitamin D deficiency. Diabetes Res. Clin. Practice 83(2):149–156.
  • Messens, W., Estepar-Garcia, J., Dewettinck, K. and Huyghebaert, A. (1999). Proteolysis of high-pressure-treated Gouda cheese. Int. Dairy J. 9(11):775–782.
  • Meyer, J. and Jordi, R. (1987). Purification and characterization of X-prolyl-dipeptidyl-aminopeptidase from Lactobacillus lactis and from Streptococcus thermophilus. J. Dairy Sci. 70(4):738–745.
  • Minervini, F., Algaron, F., Rizzello, C. G., Fox, P. F., Monnet, V. and Gobbetti, M. (2003). Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species. Appl. Environ. Microbiol. 69(9):5297–5305.
  • Monogioudi, E., Creusot, N., Kruus, K., Gruppen, H., Buchert, J. and Mattinen, M.-L. (2009). Cross-linking of β-casein by Trichoderma reesei tyrosinase and Streptoverticillium mobaraense transglutaminase followed by SEC–MALLS. Food Hydrocoll. 23(7):2008–2015.
  • Muehlenkamp, M. R. and Warthesen, J. J. (1996). [beta]-Casomorphins: Analysis in cheese and susceptibility to proteolytic enzymes from Lactococcus lactis ssp. cremoris. J. Dairy Sci. 79(1):20–26.
  • Muguerza, B., Ramos, M., Sánchez, E., Manso, M. A., Miguel, M., Aleixandre, A., … and Recio, I. (2006). Antihypertensive activity of milk fermented by Enterococcus faecalis strains isolated from raw milk. Int. Dairy J. 16(1):61–69.
  • Nagpal, R., Behare, P. V., Kumar, M., Mohania, D., Yadav, M., Jain, S., Menon, S., Parkash, F., Marotta, E., Minelli, C., Henry, J. K. and Yadav, H. (2011). Milk, milk products, and disease free health: An updated overview. Crit. Rev. Food Sci. Nutr. 52(4):321–333.
  • Napoli, A., Aiello, D., Di Donna, L., Prendushi, H. and Sindona, G. (2007). Exploitation of endogenous protease activity in raw mastitic milk by MALDI-TOF/TOF. Anal. Chem. 79(15):5941–5948.
  • Nielsen, M. S., Martinussen, T., Flambard, B., Sørensen, K. I. and Otte, J. (2009). Peptide profiles and angiotensin-I-converting enzyme inhibitory activity of fermented milk products: Effect of bacterial strain, fermentation pH, and storage time. Int. Dairy J. 19(3):155-
  • De Noni, I. and Cattaneo, S. (2010). Occurrence of [beta]-casomorphins 5 and 7 in commercial dairy products and in their digests following in vitro simulated gastro-intestinal digestion. Food Chem. 119(2):560–566.
  • Papadimitriou, C. G., Vafopoulou-Mastrojiannaki, A., Silva, S. V., Gomes, A.-M., Malcata, F. X. and Alichanidis, E. (2007). Identification of peptides in traditional and probiotic sheep milk yoghurt with angiotensin I-converting enzyme (ACE)-inhibitory activity. Food Chem. 105(2):647–656.
  • Parrot, S., Degraeve, P., Curia, C. and Martial-Gros, A. (2003). In vitro study on digestion of peptides in Emmental cheese: Analytical evaluation and influence on angiotensin I converting enzyme inhibitory peptides. Die Nahrung 47(2):87–94.
  • Paul, M. and Somkuti, G. A. (2009). Degradation of milk-based bioactive peptides by yogurt fermentation bacteria*. Lett. Appl. Microbiol. 49(3):345–350.
  • Righetti, P. G., Nembri, F., Bossi, A., & Mortarino, M. (1997). Continuous Enzymatic Hydrolysis of β-Casein and Isoelectric Collection of Some of the Biologically Active Peptides in an Electric Field. Biotechnology Progress 13(3):258–264.
  • Rizzello, C. G., Losito, I., Gobbetti, M., Carbonara, T., De Bari, M. D. and Zambonin, P. G. (2005). Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. J. Dairy Sci. 88(7):2348–2360.
  • Robinson, R. K. (1995). A Colour Guide to Cheese and Fermented Milks. Taylor & Francis, London, UK.
  • Rynne, N. M., Beresford, T. P., Kelly, A. L. and Guinee, T. P. (2004). Effect of milk pasteurization temperature and in situ whey protein denaturation on the composition, texture and heat-induced functionality of half-fat Cheddar cheese. Int. Dairy J. 14(11):989–1001.
  • Sabeena Farvin, K. H., Baron, C. P., Nielsen, N. S., Otte, J. and Jacobsen, C. (2010). Antioxidant activity of yoghurt peptides: Part 2—Characterisation of peptide fractions. Food Chem. 123(4):1090–1097.
  • Saito, T., Nakamura, T., Kitazawa, H., Kawai, Y. and Itoh, T. (2000). Isolation and structural analysis of antihypertensive peptides that exist naturally in gouda cheese. J. Dairy Sci. 83(7):1434–1440.
  • Sanli, T., Sezgin, E., Deveci, O., Senel, E. and Benli, M. (2011). Effect of using transglutaminase on physical, chemical and sensory properties of set-type yoghurt. Food Hydrocoll. 25(6):1477–1481.
  • Schieber, A. and Brückner, H. (2000). Characterization of oligo- and polypeptides isolated from yoghurt. Eur. Food Res. Technol. 210(5):310–313.
  • Schmelzer, C. E., Schöps, R., Reynell, L., Ulbrich-Hofmann, R., Neubert, R. H., & Raith, K. (2007). Peptic digestion of β-casein: Time course and fate of possible bioactive peptides. Journal of Chromatography A 1166(1):108–115.
  • Shimazaki, Y., Shirota, T., Uchida, K., Yonemoto, K., Kiyohara, Y., Iida, M., . . Yamashita, Y. (2008). Intake of dairy products and periodontal disease: The Hisayama study. J. Periodontol. 79(1):131–137.
  • Sienkiewicz-Szłapka, E., Jarmołowska, B., Krawczuk, S., Kostyra, E., Kostyra, H. and Iwan, M. (2009). Contents of agonistic and antagonistic opioid peptides in different cheese varieties. Int. Dairy J. 19(4):258–263.
  • Singh, T. K., Fox, P. F. and Healy, A. (1997). Isolation and identification of further peptides in the diafiltration retentate of the water-soluble fraction of Cheddar cheese. J. Dairy Res. 64(03):433–443.
  • Smacchi, E. and Gobbetti, M. (1998). Peptides from several Italian cheeses inhibitory to proteolytic enzymes of lactic acid bacteria, pseudomonas fluorescens ATCC 948 and to the angiotensin I-converting enzyme. Enzyme Microbial Technol. 22(8):687–694.
  • Stepaniak, L., Fox, P. F., Sorhaug, T. and Grabska, J. (1995). Effect of peptides from the sequence 58–72 of .beta.-Casein on the activity of endopeptidase, aminopeptidase, and X-prolyl-dipeptidyl aminopeptidase from Lactococcus lactis ssp. lactis MG1363. J. Agr. Food Chem. 43(3):849–853.
  • Swaigood, H. E. (2003). Chemistry of the caseins. In: Advanced Dairy Chemistry (3 ed., Vol. 1: Proteins, pp. 165), P. F. Fox and P. L. H. McSweene, Eds., Taylor & Francis, NY.
  • Tailford, K. A., Berry, C. L., Thomas, A. C. and Campbell, J. H. (2003). A casein variant in cow's milk is atherogenic. Atherosclerosis 170(1):13–19.
  • Tamime, A. Y. and Robinson, R. K. (1999). Yoghurt: Science and Technology. Taylor & Francis, Cambridge, England.
  • Toelstede, S. and Hofmann, T. (2008). Sensomics mapping and identification of the key bitter metabolites in gouda cheese. J. Agr. Food Chem. 56(8):2795–2804.
  • Truswell, A. S. (2005). The A2 milk case: A critical review. Eur. J. Clin. Nutr. 59(5):623–631.
  • Uenishi, K. (2006). Prevention of osteoporosis by foods and dietary supplements. Prevention of osteoporosis by milk and dairy products. Clin. Calcium 16(10):1606–1614.
  • Woodford, K. (2009). Devil in the Milk: Illness, Health, and the Politics of A1 and A2 Milk. Chelsea Green, Taylor & Francis, Vermont.
  • Yuksel, Z. and Erdem, Y. (2010). The influence of transglutaminase treatment on functional properties of set yoghurt. Int. J. Dairy Technol. 63(1):86–96.