2,367
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

Storage Stability of Food Protein Hydrolysates—A Review

, &

REFERENCES

  • Agboola, S. O. and Dalgleish, D. G. (1996). Enzymatic hydrolysis of milk proteins used for emulsion formation. 1. Kinetics of protein breakdown and storage stability of the emulsions. J. Agric. Food. Chem. 44:3631–3636.
  • Aguilera, J. M., Delvalle, J. M. and Karel, M. (1995). Caking phenomena in amorphous food powders. Trends Food Sci. Technol. 6:149–155.
  • Ahhmed, A. M. and Muguruma, M. (2010). A review of meat protein hydrolysates and hypertension. Meat Sci. 86:110–118.
  • Ahmed, A. (2004). Nutrition bar update—The nutrition bar segment has outgrown its ‘fad’ characteristics and is becoming a business after all. Nutraceuticals World. January/February:42–50.
  • Aluko, R. E. (2008). Determination of nutritional and bioactive properties of peptides in enzymatic pea, chickpea, and mung bean protein hydrolysates. J. AOAC Int. 91:947–956.
  • Belitz, H. D., Grosch, W. and Schieberle, P. (2009). Milk and dairy products. In: Food Chemistry, pp. 498–545. Springer, Berlin, Heidelberg, Germany.
  • Bell, L. N. (2007). Moisture effects on food's chemical stability. In: Water Activity in Foods: Fundamentals and Applications, pp. 173–198. Barbosa-Cánovas, G. V., Anthony J., Fontana, J., Schmidt, S. J. and Labuza, T. P. (Eds.), Blackwell Publishing, Ames, IA, USA.
  • Bell, L. N. and Labuza, T. P. (2000a). Moisture sorption isotherms. In: Moisture Sorption: Practical Aspects of Isotherm Measurement and Use, pp. 14–32. American Association of Cereal Chemists, St. Paul, MN, USA.
  • Bell, L. N. and Labuza, T. P. (2000b). Using moisture sorption isotherms: food stability. In: Moisture Sorption: Practical Aspects of Isotherm Measurement and Use, pp. 57–69. American Association of Cereal Chemists, St. Paul, MN, USA.
  • Bello, A. E. and Oesser, S. (2006). Collagen hydrolysate for the treatment of osteoarthritis and other joint disorders: a review of the literature. Curr. Med. Res. Opin. 22:2221–2232.
  • Berry, D. (2011). Discriminating bars. Food Prod. Des. April:64–77.
  • Biliaderis, C. G., Lazaridou, A., Mavropoulos, A. and Barbayiannis, N. (2002). Water plasticization effects on crystallization behavior of lactose in a co-lyophilized amorphous polysaccharide matrix and its relevance to the glass transition. Int. J. Food Prop. 5:463–482.
  • Bruins, M. E., Creusot, N., Gruppen, H., Janssen, A. E. M. and Boom, R. M. (2009). Pressure-aided proteolysis of beta-casein. J. Agric. Food. Chem. 57:5529–5534.
  • Canfield, R. E. (1963). The amino acid sequence of egg white lysozyme. J. Biol. Chem. 238:2698–2707.
  • Chevalier, F., Chobert, J. M., Dalgalarrondo, M. and Haertle, T. (2001). Characterization of the Maillard reaction products of beta-lactoglobulin glucosylated in mild conditions. J. Food Biochem. 25:33–55.
  • Cho Myong, J. (2010). Soy protein functionality and food bar texture. In: Chemistry, Texture, and Flavor of Soy, pp. 293–319. Cadwallader, K. R. and Chang, S. K. C. (Eds.), American Chemical Society, Washington, DC, USA.
  • Chuy, L. E. and Labuza, T. P. (1994). Caking and stickiness of dairy-based food powders as related to glass transition. J. Food Sci. 59:43–46.
  • Contreras, M. D., Sevilla, M. A., Monroy-Ruiz, J., Amigo, L., Gomez-Sala, B., Molina, E., Ramos, M. and Recio, I. (2011). Food-grade production of an antihypertensive casein hydrolysate and resistance of active peptides to drying and storage. Int. Dairy J. 21:470–476.
  • Creusot, N. and Gruppen, H. (2007a). Enzyme-induced aggregation and gelation of proteins. Biotechnol. Adv. 25:597–601.
  • Creusot, N. and Gruppen, H. (2007b). Protein–peptide interactions in mixtures of whey peptides and whey proteins. J. Agric. Food. Chem. 55:2474–2481.
  • Creusot, N. and Gruppen, H. (2008). Hydrolysis of whey protein isolate with Bacillus licheniformis protease: aggregating capacities of peptide fractions. J. Agric. Food. Chem. 56:10332–10339.
  • Creusot, N., Gruppen, H., van Koningsveld, G. A., de Kruif, C. G. and Voragen, A. G. J. (2006). Peptide–peptide and protein–peptide interactions in mixtures of whey protein isolate and whey protein isolate hydrolysates. Int. Dairy J. 16:840–849.
  • Dairymark.com. Casein/caseinates—a strategic review of opportunities and applications. Available from http://www.dairymark.com/casein.html . Accessed February 10, 2012.
  • Davis, L. A. (2005). Effect of protein source on the textural properties of a model protein bar system. MS Thesis. University of Minnesota, St Paul, MN, USA.
  • Dewit, J. N. and Klarenbeek, G. (1984). Effects of various heat treatments on structure and solubility of whey proteins. J. Dairy Sci. 67:2701–2710.
  • Di Bernardini, R., Harnedy, P., Bolton, D., Kerry, J., O’Neill, E., Mullen, A. M. and Hayes, M. (2011). Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chem. 124:1296–1307.
  • Dickinson, E. (2006). Structure formation in casein-based gels, foams, and emulsions. Colloids and Surf. a-Physicochemical and Engineering Aspects. 288:3–11.
  • Downton, G. E., Floresluna, J. L. and King, C. J. (1982). Mechanism of stickiness in hygroscopic, amorphous powders. Ind. Eng. Chem. Fundam. 21:447–451.
  • Eigel, W. N., Butler, J. E., Ernstrom, C. A., Farrell, H. M., Harwalkar, V. R., Jenness, R. and Whitney, R. M. (1984). Nomenclature of the proteins of cows’ milk—fifth revision. J. Dairy Sci. 67:1599–1631.
  • Erickson, L. E. (1982). Recent developments in intermediate moisture foods. J. Food Prot. 45:484–491.
  • Euromonitor International. Available from http://www.euromonitor.com/passport-gmid . Accessed January 25, 2012.
  • Farrell, H. M., Jimenez-Flores, R., Bleck, G. T., Brown, E. M., Butler, J. E., Creamer, L. K., Hicks, C. L., Hollar, C. M., Ng-Kwai-Hang, K. F. and Swaisgood, H. E. (2004). Nomenclature of the proteins of cows’ milk—sixth revision. J. Dairy Sci. 87:1641–1674.
  • Fontes, E. P. B., Moreira, M. A., Davies, C. S. and Nielsen, N. C. (1984). Urea-elicited changes in relative electrophoretic mobility of certain glycinin and beta-conglycinin subunits. Plant Physiol. 76:840–842.
  • Fothergill, L. A. and Fothergill, J. E. (1970). Thiol and disulphide contents of hen ovalbumin. C-terminal sequence and location of disulphide bond. Biochem. J. 116:555–561.
  • Frost & Sullivan. Strategic insight into the global animal protein ingredients market. Available from http://www.frost.com/prod/servlet/home.pag . Accessed September 18, 2012a.
  • Frost & Sullivan. Strategic insight into the global plant protein ingredients market. Available from http://www.frost.com/prod/servlet/home.pag . Accessed September 18, 2012b.
  • Global Industry Analysts. Protein ingredients: a global strategic business report. Available from http://www.strategyr.com/Protein_Ingredients_Mar-ket_Report.asp . Accessed September 18, 2012.
  • Gordon, M. and Taylor, J. S. (1952). Ideal copolymers and the second-order transitions of synthetic rubbers. i. non-crystalline copolymers. J. Appl. Chem. 2:493–500.
  • Groleau, P. E., Gauthier, S. F. and Pouliot, Y. (2003a). Effect of residual chymotryptic activity in a trypsin preparation on peptide aggregation in a beta-lactoglobulin hydrolysate. Int. Dairy J. 13:887–895.
  • Groleau, P. E., Morin, P., Gauthier, S. F. and Pouliot, Y. (2003b). Effect of physicochemical conditions on peptide–peptide interactions in a tryptic hydrolysate of beta-lactoglobulin and identification of aggregating peptides. J. Agric. Food. Chem. 51:4370–4375.
  • Guerin-Dubiard, C., Pasco, M., Molle, D., Desert, C., Croguennec, T. and Nau, F. (2006). Proteomic analysis of hen egg white. J. Agric. Food. Chem. 54:3901–3910.
  • Hancock, B. C. and Zografi, G. (1994). The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm. Res. 11:471–477.
  • Hazen, C. (2010). Texture solutions for snack bars. Food Prod. Des. June: 40–57.
  • Herpandi, N. H., Rosma, A. and Nadiah, W. A. W. (2011). The tuna fishing industry: a new outlook on fish protein hydrolysates. Compr. Rev. Food Sci. and Food Saf. 10:195–207.
  • Hoyle, N. T. and Merritt, J. H. (1994). Quality of fish protein hydrolysates from herring (Clupea harengus). J. Food Sci. 59:76–79.
  • Hutchinson, M. (2009). Meeting snack bar challenges. Available from http://www.preparedfoods.com/articles/r-d-meeting-snack-bar-challenges-june-2009 . Accessed July 18, 2012.
  • Itoh, T., Miyazaki, J., Sugawara, H. and Adachi, S. (1987). Studies on the characterization of ovomucin and chalaza of the hen's egg. J. Food Sci. 52:1518–1521.
  • Jang, A., Jo, C. and Lee, M. (2007). Storage stability of the synthetic angiotensin converting enzyme (ACE) inhibitory peptides separated from beef sareoplasmic protein extracts at different pH, temperature, and gastric digestion. Food Sci. Biotechnol. 16:572–575.
  • Jardim, D. C. P., Candido, L. M. B. and Netto, F. M. (1999). Sorption isotherms and glass transition temperatures of fish protein hydrolysates with different degrees of hydrolysis. Int. J. Food Prop. 2:227–242.
  • Johari, G. P., Hallbrucker, A. and Mayer, E. (1987). The glass—liquid transition of hyperquenched water. Nature. 330:552–553.
  • Johnson, T. M. and Zabik, M. E. (1981). Gelation properties of albumin proteins, singly and in combination. Poul. Sci. 60:2071–2083.
  • Karel, M. and Heidelbaugh, N. D. (1973). Recent research and development in the field of low-moisture and intermediate-moisture foods. CRC Crit. Rev. Food Technol. 3:329–373.
  • Katkov, I. I. and Levine, F. (2004). Prediction of the glass transition temperature of water solutions: comparison of different models. Cryobiology. 49:62–82.
  • Kato, I., Schrode, J., Kohr, W. J. and Laskowski, M. (1987). Chicken ovomucoid: determination of its amino acid sequence, determination of the trypsin reactive site, and preparation of all three of its domains. Biochemistry. 26:193–201.
  • Kato, Y., Matsuda, T., Kato, N. and Nakamura, R. (1990). Maillard reaction in sugar–protein systems. In: Advances in Life Sciences: The Maillard Reaction in Food Processing, Human Nutrition, and Physiology, pp. 97–102. Finot, P. A., Aeschbacher, H. U., Hurrell, R. F. and Liardon, R. (Eds.), Birkhäuser Verlag, Basel, Switzerland.
  • Khalloufi, S., El-Maslouhi, Y. and Ratti, C. (2000). Mathematical model for prediction of glass transition temperature of fruit powders. J. Food Sci. 65:842–848.
  • Khan, M. A., Hossain, M. A., Hara, K., Osatomi, K., Ishihara, T. and Nozaki, Y. (2003). Effect of enzymatic fish-scrap protein hydrolysate on gel-forming ability and denaturation of lizard fish Saurida wanieso surimi during frozen storage. Fish. Sci. 69:1271–1280.
  • Kitts, D. D. and Weiler, K. (2003). Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des. 9:1309–1323.
  • Koide, T. and Ikenaka, T. (1973). Studies on soybean trypsin inhibitors. 1. Fragmentation of soybean trypsin inhibitor (Kunitz) by limited proteolysis and by chemical cleavage. Euro. J. Biochem./FEBS. 32:401–407.
  • Koshiyama, I. (1972). A comparison of soybean globulins and the protein bodies in the protein composition. Agricult. Biol. Chem. 36:62–67.
  • Kristinsson, H. G. and Rasco, B. A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Crit. Rev. Food Sci. Nutr. 40:43–81.
  • Kurosaki, T., Maeno, M., Mennear, J. H. and Bernard, B. K. (2005). Studies of the toxicological potential of tripeptides (l-valyl-l-prolyl-l-proline and l-isoleucyl-l-prolyl-l-proline): VI. Effects of Lactobacillus helveticus-fermented milk powder on fertility and reproductive performance of rats. Int. J. Toxicol. 24:61–89.
  • Kurozawa, L. E., Park, K. J. and Hubinger, M. D. (2009). Effect of maltodextrin and gum arabic on water sorption and glass transition temperature of spray dried chicken meat hydrolysate protein. J. Food Eng. 91:287–296.
  • Labuza, T. P. (1971). Kinetics of lipid oxidation in foods. CRC Crit. Rev. Food Technol. 2:355–405.
  • Labuza, T. P. (1980). The effect of water activity on reaction kinetics of food deterioration. Food Technol. 34:36–41.
  • Labuza, T. P. (1982). Shelf-life Dating of Foods. Food & Nutrition Press, Westport, CT, USA.
  • Labuza, T. P., Kaanane, A. and Chen, J. Y. (1985). Effect of temperature on the moisture sorption isotherms and water activity shift of two dehydrated foods. J. Food Sci. 50:385–391.
  • Labuza, T. P. and Labuza, P. S. (2004). Influence of temperature and relative humidity on the physical states of cotton candy. J. Food Process. Preserv. 28:274–287.
  • Labuza, T. P., McNally, L., Gallagher, D., Hawkes, J. and Hurtado, F. (1972). Stability of intermediate moisture foods. 1. Lipid oxidation. J. Food Sci. 37:154–159.
  • Labuza, T. P., Roe, K., Payne, C., Panda, F., Labuza, T. J., Labuza, P. S. and Krusch, L. (2004). Storage stability of dry food systems: influence of state changes during drying and storage. In: Drying 2004—Proceedings of the 14th International Drying Symposium (IDS 2004), pp. 48–68. Silva, M. A. and Rocha, S. C. S. (Eds.), Elsevier, Sao Paulo, Brazil.
  • Labuza, T. P., Tannenbaum, S. R. and Karel, M. (1970). Water content and stability of low moisture and intermediate moisture foods. Food Technol. 24:543–550.
  • Lajoie, N., Gauthier, S. F. and Pouliot, Y. (2001). Improved storage stability of model infant formula by whey peptides fractions. J. Agric. Food. Chem. 49:1999–2007.
  • Le Meste, M., Champion, D., Roudaut, G., Blond, G. and Simatos, D. (2002). Glass transition and food technology: a critical appraisal. J. Food Sci. 67:2444–2458.
  • Levine, H. and Slade, L. (1986). A polymer physicochemical approach to the study of commercial starch hydrolysis products (SHPs). Carbohydr. Polym. 6:213–244.
  • Li-Chan, E. C. Y. and Kim, H.-O. (2007). Structure and chemical compositions of eggs. In: Egg Bioscience and Biotechnology, pp. 1–95. John Wiley & Sons, Hoboken, NJ, USA.
  • Li-Chan, E. C. Y., Powrie, W. D. and Nakai, S. (1995). The chemistry of eggs and egg products. In: Egg Science and Technology, pp. 105–175. Stadelman, W. J. and Cotterill, O. J., Eds., Food Products Press, New York, NY, USA.
  • Li, Y., Szlachetka, K., Chen, P., Lin, X. Y. and Ruan, R. (2008). Ingredient characterization and hardening of high-protein food bars: an NMR state diagram approach. Cereal Chem. 85:780–786.
  • Liu, X. M., Zhou, P., Tran, A. and Labuza, T. P. (2009). Effects of polyols on the stability of whey proteins in intermediate-moisture food model systems. J. Agric. Food. Chem. 57:2339–2345.
  • Loveday, S. M., Hindmarsh, J. P., Creamer, L. K. and Singh, H. (2009). Physicochemical changes in a model protein bar during storage. Food Res. Int. 42:798–806.
  • Lv, Y., Guo, S. T. and Yang, B. C. (2009). Aggregation of hydrophobic soybean protein hydrolysates: changes in molecular weight distribution during storage. Lwt-Food Sci. Technol. 42:914–917.
  • Maeno, M., Mizuno, S., Mennear, J. H. and Bernard, B. K. (2005a). Studies of the toxicological potential of tripeptides (l-valyl-l-prolyl-l-proline and l-isoleucyl-l-prolyl-l-proline): VIII. Assessment of cytotoxicity and clastogenicity of tripeptides-containing casein hydrolysate and Lactobacillus helveticus-fermented milk powders in Chinese hamster lung cells. Int. J. Toxicol. 24:97–105.
  • Maeno, M., Nakamura, Y., Mennear, J. H. and Bernard, B. K. (2005b). Studies of the toxicological potential of tripeptides (l-valyl-l-prolyl-l-proline and l-isoleucyl-l-prolyl-l-proline): III. Single—and/or repeated-dose toxicity of tripeptides-containing Lactobacillus helveticus-fermented milk powder and casein hydrolysate in rats. Int. J. Toxicol. 24:13–23.
  • Manninen, A. H. (2009). Protein hydrolysates in sports nutrition. Nutr. Metab. 6. doi:10.1186/1743-7075-6-38.
  • Masuda, H., Gotoh, K., Higashitani, K. and Matsusaka, S. (2006). Adhesive force of a single particle. In: Powder Technology Handbook, pp. 157–170. Masuda, H., Higashitani, K. and Yoshida, H., Eds., Taylor & Francis, Boca Raton, FL, USA.
  • Matsuura, K., Mennear, J. H., Maeno, M. and Bernard, B. K. (2005). Studies of the toxicological potential of tripeptides (l-valyl-l-prolyl-l-proline and l-isoleucyl-l-prolyl-l-proline): VII. Micronucleus test of tripeptides-containing casein hydrolysate and Lactobacillus helveticus-fermented milk powders in rats and mice. Int. J. Toxicol. 24:91–96.
  • McMahon, D. J., Adams, S. L. and McManus, W. R. (2009). Hardening of high-protein nutrition bars and sugar/polyol-protein phase separation. J. Food Sci. 74:E312–E321.
  • Mintel. Baby food and drink - US - June 2012. Available from http://academic.mintel.com/ . Accessed September 20, 2012.
  • Mintel. Nutrition and energy bars—US—February 2012. Available from http://academic.mintel.com/ . Accessed March 12, 2012.
  • Mizuno, S., Mennear, J. H., Matsuura, K. and Bernard, B. K. (2005). Studies of the toxicological potential of tripeptides (l-valyl-l-prolyl-l-proline and l-isoleucyl-l-prolyl-l-proline): V. A 13-week toxicity study of tripeptides-containing casein hydrolysate in male and female rats. Int. J. Toxicol. 24:41–59.
  • Moskowitz, R. W. (2000). Role of collagen hydrolysate in bone and joint disease. Semin. Arthritis and Rheumatism. 30:87–99.
  • Murphy, P. A. and Resurreccion, A. P. (1984). Varietal and environmental differences in soybean glycinin and beta-conglycinin content. J. Agric. Food. Chem. 32:911–915.
  • Nagase, H., Harris, E. D., Woessner, J. F. and Brew, K. (1983). Ovostatin: a novel proteinase inhibitor from chicken egg white. I. Purification, physicochemical properties, and tissue distribution of ovostatin. J. Biol. Chem. 258:7481–7489.
  • Netto, F. M., Desobry, S. A. and Labuza, T. P. (1998). Effect of water content on the glass transition, caking and stickiness of protein hydrolysates. Int. J. Food Prop. 1:141–161.
  • Nielsen, P. M., Petersen, D. and Dambmann, C. (2001). Improved method for determining food protein degree of hydrolysis. J. Food Sci. 66:642–646.
  • Otte, J., Lomholt, S. B., Halkier, T. and Qvist, K. B. (2000). Identification of peptides in aggregates formed during hydrolysis of beta-lactoglobulin B with a Glu and Asp specific microbial protease. J. Agric. Food. Chem. 48:2443–2447.
  • Otte, J., Lomholt, S. B., Ipsen, R., Stapelfeldt, H., Bukrinsky, J. T. and Qvist, K. B. (1997). Aggregate formation during hydrolysis of beta-lactoglobulin with a Glu and Asp specific protease from Bacillus licheniformis. J. Agric. Food. Chem. 45:4889–4896.
  • Owusu-Apenten, R. (2005). Colorimetric analysis of protein sulfhydyl groups in milk: applications and processing effects. Crit. Rev. Food Sci. Nutr. 45:1–23.
  • Paul, M. and Somkuti, G. A. (2009). Degradation of milk-based bioactive peptides by yogurt fermentation bacteria. Lett. Appl. Microbiol. 49:345–350.
  • Paul, M. and Somkuti, G. A. (2010). Hydrolytic breakdown of lactoferricin by lactic acid bacteria. J. Ind. Microbiol. Biotechnol. 37:173–178.
  • Pavey, R. L. and Schack, W. R. (1969). Formulation of intermediate moisture bite-size food cubes. Technical Report Contract F4160967-C-0054: U.S. Air Force School of Aerospace Medicine, San Antonio, Texas.
  • Peleg, M. (1993). Mapping the stiffness-temperature-moisture relationship of solid biomaterials at and around their glass-transition. Rheol. Acta. 32:575–580.
  • Pena-Ramos, E. A. and Xiong, Y. L. L. (2003). Whey and soy protein, hydrolysates inhibit lipid oxidation in, cooked pork patties. Meat Sci. 64:259–263.
  • Penas, E., Prestamo, G. and Gomez, R. (2004). High pressure and the enzymatic hydrolysis of soybean whey proteins. Food Chem. 85:641–648.
  • Pittia, P. and Sacchetti, G. (2008). Antiplasticization effect of water in amorphous foods. A review. Food Chem. 106:1417–1427.
  • Potier, M. and Tome, D. (2008). Comparison of digestibility and quality of intact proteins with their respective hydrolysates. J. AOAC Int. 91:1002–1005.
  • Quiros, A., Chichon, R., Recio, I. and Lopez-Fandino, R. (2007). The use of high hydrostatic pressure to promote the proteolysis and release of bioactive peptides from ovalbumin. Food Chem. 104:1734–1739.
  • Rao, Q. C. and Labuza, T. P. (2012). Effect of moisture content on selected physicochemical properties of two commercial hen egg white powders. Food Chem. 132:373–384.
  • Rao, Q. C., Rocca-Smith, J. R. and Labuza, T. P. (2012). Moisture-induced quality changes of hen egg white proteins in a protein/water model system. J. Agric. Food. Chem. 60:10625–10633.
  • Rao, Q. C., Rocca-Smith, J. R. and Labuza, T. P. (2013). Storage stability of hen egg white powders in three protein/water dough model systems. Food Chem: 138, 1087–1094.
  • Rao, Q. C., Rocca-Smith, J. R., Schoenfuss, T. C. and Labuza, T. P. (2012b). Accelerated shelf-life testing of quality loss for a commercial hydrolysed hen egg white powder. Food Chem. 135:464–472.
  • Rivas, A., Rodrigo, D., Company, B., Sampedro, F. and Rodrigo, M. (2007). Effects of pulsed electric fields on water-soluble vitamins and ACE inhibitory peptides added to a mixed orange juice and milk beverage. Food Chem. 104:1550–1559.
  • Roos, Y. H. and Karel, M. (1990). Differential scanning calorimetry study of phase-transitions affecting the quality of dehydrated materials. Biotechnol. Progr. 6:159–163.
  • Rutherfurd, S. M. (2010). Methodology for determining degree of hydrolysis of proteins in hydrolysates: a review. J. AOAC Int. 93:1515–1522.
  • Ryhanen, E. L., Pihlanto-Leppala, A. and Pahkala, E. (2001). A new type of ripened, low-fat cheese with bioactive properties. Int. Dairy J. 11:441–447.
  • Sakanaka, S., Tachibana, Y., Ishihara, N. and Juneja, L. R. (2004). Antioxidant activity of egg-yolk protein hydrolysates in a linoleic acid oxidation system. Food Chem. 86:99–103.
  • Samaranayaka, A. G. P. and Li-Chan, E. C. Y. (2008). Autolysis-assisted production of fish protein hydrolysates with antioxidant properties from Pacific hake (Merluccius productus). Food Chem. 107:768–776.
  • Sathe, S. K., Lilley, G. G., Mason, A. C. and Weaver, C. M. (1987). High-resolution sodium dodecyl-sulfate polyacrylamide-gel electrophoresis of soybean (glycine-max L) seed proteins. Cereal Chem. 64:380–384.
  • Sato, K., Yamagishi, T., Kamata, Y. and Yamauchi, F. (1987). Subunit structure and immunological properties of a basic 7s globulin from soybean seeds. Phytochemistry. 26:903–908.
  • Sato, K., Yamagishi, T. and Yamauchi, F. (1986). Quantitative-analysis of soybean proteins by densitometry on gel-electrophoresis. Cereal Chem. 63:493–496.
  • Sato, W., Kamata, Y., Fukuda, M. and Yamauchi, F. (1984). Improved isolation method and some properties of soybean gamma-conglycinin. Phytochemistry. 23:1523–1526.
  • Shurtleff, W. and Aoyagi, A. (2012). History of Soy Sauce (160 CE to 2012): Extensively Annotated Bibliography and Sourcebook. Soyinfo Center, Lafayette, CA, USA.
  • Silva, V. M., Kurozawa, L. E., Park, K. J. and Hubinger, M. D. (2011). Water sorption and glass transition temperature of spray-dried mussel meat protein hydrolysate. Drying Technol. 30:175–184.
  • Singh, A. M. and Dalgleish, D. G. (1998). The emulsifying properties of hydrolyzates of whey proteins. J. Dairy Sci. 81:918–924.
  • Slade, L. and Levine, H. (1991). Beyond water activity—recent advances based on an alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci. Nutr. 30:115–360.
  • Slizyte, R., Dauksas, E., Falch, E., Storro, I. and Rustad, T. (2005). Characteristics of protein fractions generated from hydrolysed cod (Gadus morhua) by-products. Process Biochem. 40:2021–2033.
  • Sohn, J. H., Taki, Y., Ushido, H., Kohata, T., Shioya, I. and Oshima, T. (2005). Lipid oxidations in ordinary and dark muscles of fish: influences on rancid off-odor development and color darkening of yellowtail flesh during ice storage. J. Food Sci. 70:S490–S496.
  • Spellman, D., Kenny, P., O’Cuinn, G. and FitzGerald, R. J. (2005). Aggregation properties of whey protein hydrolysates generated with Bacillus licheniformis proteinase activities. J. Agric. Food. Chem. 53:1258–1265.
  • Su, R. X., He, Z. M. and Qi, W. (2008). Pancreatic hydrolysis of bovine casein: changes in the aggregate size and molecular weight distribution. Food Chem. 107:151–157.
  • Sun, X. D. (2011). Enzymatic hydrolysis of soy proteins and the hydrolysates utilisation. Int J. Food Sci. Technol. 46:2447–2459.
  • Taillie, S. A. (2006). Food bars. In: Soy Applications in Food, pp. 185–198. Riaz, M. N. (Ed.), CRC Press, Taylor & Francis, Boca Raton, FL, USA.
  • Tang, C. H., Choi, S. M. and Ma, C. Y. (2007). Study of thermal properties and heat-induced denaturation and aggregation of soy proteins by modulated differential scanning calorimetry. Int. J. Biol. Macromol. 40:96–104.
  • Taoukis, P. S., Elmeskine, A. and Labuza, T. P. (1988). Moisture transfer and shelf life of packaged foods. In: Food and Packaging Interactions, pp. 243–261. Hotchkiss, J. H. (Ed.), American Chemical Society, Washington DC, USA.
  • Taoukis, P. S. and Richardson, M. (2007). Principles of intermediate-moisture foods and related technology. In: Water Activity in Foods: Fundamentals and Applications, pp. 273–312. Barbosa-Cánovas, G. V., Fontana, A. J., Schmidt, S. J. and Labuza, T. P. (Eds.), Blackwell Publishing, Ames, IA, USA.
  • Taterka, H. M. (2009). The effect of water activity and humectants on protein bar quality loss during storage. MS Thesis. University of Minnesota, St Paul, MN, USA.
  • Terracciano, L., Isoardi, P., Arrigoni, S., Zoja, A. and Martelli, A. (2002). Use of hydrolysates in the treatment of cow's milk allergy. Ann. Allergy Asthma & Immunol. 89:86–90.
  • Thiansilakul, Y., Benjakul, S. and Shahidi, F. (2007). Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chem. 103:1385–1394.
  • Tran, A. (2009). Evaluation of quality loss in model protein bars during storage. MS Thesis. University of Minnesota, St Paul, MN, USA.
  • Turgeon, S. L., Sanchez, C., Gauthier, S. F. and Paquin, P. (1996). Stability and rheological properties of salad dressing containing peptidic fractions of whey proteins. Int. Dairy J. 6:645–658.
  • Udenigwe, C. C. and Aluko, R. E. (2012). Food protein-derived bioactive peptides: production, processing, and potential health benefits. J. Food Sci. 77:R11–R24.
  • Utsumi, S., Matsumura, Y. and Mori, T. (1997). Structure–function relationships of soy proteins. In: Food Proteins and Their Applications, pp. 257–291. Damodaran, S. and Paraf, A. (Eds.), Marcel Dekker, New York, NY, USA.
  • Vallejo-Cordoba, B., Nakai, S., Powrie, W. D. and Beveridge, T. (1987). Extended shelf life of frankfurters and fish frankfurter—analogs with added soy protein hydrolysates. J Food Sci. 52:1133–1136.
  • Van den Berg, C. and Bruin, S. (1981). Water activity and estimation in food systems. In: Water Activity: Influences on Food Quality, pp. 1–61. Rockland, L. B. and Stewart, G. F. (Eds.), Academic Press, New York, NY, USA.
  • Vaslin, S. Protection of bioactive food ingredients by means of encapsulation. US20080050355A1, http://www.google.com/patents/US20080050355, Accessed February 28, 2008.
  • Velikov, V., Borick, S. and Angell, C. A. (2001). The glass transition of water, based on hyperquenching experiments. Science. 294:2335–2338.
  • Wade, M. A. (2005). Extended shelflife: Bar none. Available from http://www.preparedfoods.com/articles/extended-shelflife-bar-none . Accessed August 20, 2012.
  • Walstra, P., Wouters, J. T. M. and Geurts, T. J. (2006). Milk components. In: Dairy Science and Technology, pp. 17–108. CRC/Taylor & Francis, Boca Raton, FL, USA.
  • Wang, L. L. and Xiong, Y. L. (2005). Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability. J. Agric. Food. Chem. 53:9186–9192.
  • Weiss, W. F., Young, T. M. and Roberts, C. J. (2009). Principles, approaches, and challenges for predicting protein aggregation rates and shelf life. J Pharm. Sci. 98:1246–1277.
  • Williams, J. (1982). The evolution of transferrin. Trends in Biochem. Sci. 7:394–397.
  • Wolf, W. J. (1993). Sulfhydryl content of glycinin—Effect of reducing agents. J. Agric. Food. Chem. 41:168–176.
  • Wright, R. The next frontier for nutrition bars—The market continues to hold its own, but falling consumption and product saturation may threaten future growth. Available from http://www.nutraceuticalsworld.com/contents/view/30497 . Accessed September 18, 2012.
  • Yamashita, Y., Zhang, N. and Nozaki, Y. (2003). Effect of chitin hydrolysate on the denaturation of lizard fish myofibrillar protein and the state of water during frozen storage. Food Hydrocolloids. 17:569–576.
  • Yarnpakdee, S., Benjakul, S. and Kristinsson, H. (2012a). Effect of pretreatments on chemical compositions of mince from Nile tilapia (Oreochromis niloticus) and fishy odor development in protein hydrolysate. Int. Aquat. Res. 4:1–16.
  • Yarnpakdee, S., Benjakul, S., Nalinanon, S. and Kristinsson, H. G. (2012b). Lipid oxidation and fishy odour development in protein hydrolysate from Nile tilapia (Oreochromis niloticus) muscle as affected by freshness and antioxidants. Food Chem. 132:1781–1788.
  • Zhang, N., Yamashita, Y. and Nozaki, Y. (2002). Effect of protein hydrolysate from antarctic krill on the state of water and denaturation of lizard fish myofibrils during frozen storage. Food Sci. Technol. Res. 8:200–206.
  • Zhou, P. and Labuza, T. P. (2007). Effect of water content on glass transition and protein aggregation of whey protein powders during short-term storage. Food Biophy. 2:108–116.
  • Zhou, P., Liu, X. M. and Labuza, T. P. (2008a). Effects of moisture-induced whey protein aggregation on protein conformation, the state of water molecules, and the microstructure and texture of high-protein-containing matrix. J. Agric. Food. Chem. 56:4534–4540.
  • Zhou, P., Liu, X. M. and Labuza, T. P. (2008b). Moisture-induced aggregation of whey proteins in a protein/buffer model system. J. Agric. Food. Chem. 56:2048–2054.
  • Zhu, D. and Labuza, T. P. (2010). Effect of cysteine on lowering protein aggregation and subsequent hardening of whey protein isolate (WPI) protein bars in WPI/buffer model systems. J. Agric. Food. Chem. 58:7970–7979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.