1,378
Views
45
CrossRef citations to date
0
Altmetric
Articles

In vivo and in vitro testing for selenium and selenium compounds bioavailability assessment in foodstuff

, &

References

  • Alexander, A. R., Whanger, P. D. and Miller, L. T. (1983). Bioavailability to rats of selenium in various tuna and wheat products. J. Nutr. 113:196–204.
  • Alférez, M. J. M., López-Aliaga, I., Barrionuevo, M. and Campos, M. S. (2003). Effect of dietary inclusion of goat milk on the bioavailabilityof zinc and selenium in rats. J. Dairy Res. 70:181–187.
  • Alfthan, G., Aro, A., Arvilommi, H. and Huttunen, J. K. (1991). Selenium metabolism and platelet glutathione peroxidase activity in healthy Finnish men: effects of selenium yeast, selenite, and selenate. Am. J. Clin. Nutr. 53:120–125.
  • Alfthan, G., Xu, G.-L., Tan, W.-H., Aro, A., Wu, J., Yang, Y.-X., Liang, W.-S., Xue, W.-L. and Kong, L.-H. (2000). Selenium supplementation of children in a selenium-deficient area in China. Blood selenium levels and glutathione peroxidase activities. Biol. Trace Elem. Res. 73:113–125.
  • Alzate, A., Pérez-Conde, M. C., Gutiérrez, A. M. and Cámara, C. (2010). Selenium-enriched fermented milk: a suitable dairy product to improve selenium intake in humans. Int. Dairy J. 20:761–769.
  • Barrionuevo, M., López-Aliaga, I., Alférez, M. J. M., Mesa, E., Nestares, T. and Campos, M. S. (2003). Beneficial effect of goat milk on bioavailability of copper, zinc and selenium in rats. J. Physiol. Biochem. 59:111–118.
  • Bhatia, P., Aureli, F., D'Amato, M., Prakash, R., Cameotra, S. S., Nagaraja, T. P. and Cubadda, F. (2013). Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues. Food Chem. 140:225–230.
  • Bogye, G., Alfthan, G. and Machay, T. (1988). Bioavailability of enteral yeast-selenium in preterm infants. Biol. Trace Elem. Res. 65:143–151.
  • Bost, M. and Blouin, E. (2009). Effect of supplementation with Se-enriched yeast and factors influencing Se concentration in plasma of transplant recipients. J. Trace Elem. Med. Biol. 23:36–42.
  • Brandt-Kjelsen, A., Govasmark, E., Vegarud, G., Haug, A., Szpunar, J. and Salbu, B. (2012). In vitro digestion of selenium from seleniumenriched chicken. Pure Appl. Chem. 84:249–258.
  • Briens, M., Mercier, Y., Rouffineau, F., Vacchina, V. and Geraert, P. A. (2013). Comparative study of a new organic selenium source vs. seleno-yeast and mineral selenium sources on muscle selenium enrichment and selenium digestibility in broiler chickens. Brit. J. Nutr. 110:617–624.
  • Bügel, S. H., Sandström, B. and Larsen, E. H. (2001). Absorption and retention from shrimps in man. J. Trace Elem. Med. Biol. 14:198–204.
  • Bügel, S., Sandtröm, B. and Skibsted, L. H. (2004). Pork meat: a good source of selenium?. J. Trace Elem. Med. Biol. 17:307–311.
  • Bügel, S., Larsen, E. H., Sloth, J. J., Flytlie, K., Overvad, K., Steenberg, L. C. and Moesgaard, S. (2008). Absorption, excretion, and retention of selenium from a high selenium yeast in men with a high intake of selenium. Food Nutr. Res. 52:1–8.
  • Butler, J. A., Deagen, J. T., Van Ryssen, J. B. J., Rowe, K. E. and Whanger, P. D. (1991). Bioavailability to rats of selenium in ovine muscle, liver and hemoglobin. Nutr. Res. 11:1293–1305.
  • Cabañero, A. I., Madrid, Y. and Cámara, C. (2004). Selenium and mercury bioaccessibility in fish samples: an in vitro digestion method. Anal. Chim. Acta 526:51–61.
  • Cabañero, A. I., Madrid, Y. and Cámara, C. (2007). Mercury-selenium species ratio in representative fish samples and their bioaccessibility by an in vitro digestion method. Biol. Trace Elem. Res. 119:195–211.
  • Calatayud, M., Devesa, V., Virseda, J. R., Barberá, R., Montoro, R. and Vélez, D. (2012). Mercury and selenium in fish and shellfish: occurrence, bioaccessibility and uptake by Caco-2 cells. Food Chem. Toxicol. 50:2696–2702.
  • Cases, J., Vacchina, V., Napolitano, A., Caporiccio, B., Besançon¸, P., Lobinski, R. and Rouanet, J. M. (2001). Selenium from selenium-rich spirulina is less bioavailable than selenium from sodium selenite and selenomethionine in selenium-deficient rats. J. Nutr. 131:2343–2350.
  • Cases, J., Wysocka, I. A., Caporiccio, B., Jouy, N., Besançon¸ Szpunar, J. and Rouanet, J. M. (2002). Assessment of selenium bioavailability from high-selenium spirulina subfractions in selenium-deficient rats. J. Agr. Food Chem. 50:3867–3873.
  • Chansler, M. W., Mutanen, M., Morris, V. C. and Levander, O. A. (1986). Nutritional bioavailability to rats of selenium in Brazil nuts and mushrooms. Nutr. Res. 6:1419–1428.
  • Chen, J., Lindmark-Månsson, H., Drevelius, M., Tidehag, P., Hallmans, G., Hertervig, E., Nilsson, Å. and Åkesson, B. (2004). Bioavailability of selenium from bovine milk as assessed in subjects with ileostomy. Eur. J. Clin. Nutr. 58:350–355.
  • Christensen, M. J., Janghorbani, M., Steinkes, F. H., Istfan, N. and Young, V. R. (1983). Simultaneous determination of absorption of selenium from poultry meat and selenite in young men: application of a triple stable-isotope method. Brit. J. Nutr. 50:43–50.
  • Clausen, J., Nielsen, S. A. and Kristensen, M. (1989). Biochemical and clinical effects of an antioxidative supplementation of geriatric patients. A double blind study. Biol. Trace Elem. Res. 20:135–151.
  • Crews, H. M., Clarke, P. A., Lewis, D. J., Owen, L. M., Strutt, P. R. and Izquierdo, A. (1996). Investigation of selenium speciation in in vitro gastrointestinal extracts of cooked cod by high-performance liquid chromatography inductively coupled plasma mass spectrometry and electrospray mass spectrometry. J. Anal. Atom. Spectrom. 11:1177–1182.
  • da Silva, M-C. S., Naozuka, J., Oliveira, P. V., Vanetti, M. C. D., Bazzolli, D. M. S., Costad, N. M. B. and Kasuya, M. C. M. (2010). In vivo bioavailability of selenium in enriched Pleurotus ostreatus mushrooms. Metallomics. 2:162–166.
  • Díaz-Castro, J., Ojeda, M. L., Alférez, M. J. M., López-Aliaga, I., Nestares, T. and Campos, M. S. (2011). Se bioavailability and glutathione peroxidase activity in iron deficient rats. J. Trace Elem. Med. Biol. 25:42–46.
  • Djujić, I. S., Josanov-Stankov, O. N., Milovac, M., Jankvić, V. and Djermanović, V. (2000). Bioavailability and possible benefits of wheat intake naturally enriched with selenium and its products. Biol. Trace Elem. Res. 77:273–285.
  • Douglass, J. S., Morris, V. C., Soares, J. H. and Levander, O. A. (1981). Nutritional availability to rats of selenium in tuna, beef kidney, and wheat. J. Nutr. 111:2180–2187.
  • Dumont, E., Vanhaecke, F. and Cornelis, R. (2004). Hyphenated techniques for speciation of Se in in vitro gastrointestinal digests of Saccharomyces cerevisiae. Anal. Bioanal. Chem. 379:504–511.
  • Dumont, E., Ogra, Y., Vanhaecke, F., Suzuki, K. T. and Cornelis, R. (2006a). Liquid chromatography–mass spectrometry (LC–MS): a powerful combination for selenium speciation in garlic (Allium sativum). Anal. Bioanal. Chem. 384:1196–1206.
  • Dumont, E., De Pauw, L., Vanhaecke, F. and Cornelis, R. (2006b). Speciation of Se in Bertholletia excelsa (Brazil nut): a hard nut to crack?. Food Chem. 95:684–692.
  • Fairweather-Tait, S. J., Collings, R. and Hurst, R. (2010). Selenium bioavailability: current knowledge and future research requirements. Am. J. Clin. Nutr. 91(suppl):1484S–1491S.
  • Fang, Y., Catron, B., Zhang, Y., Zhao, L., Caruso, J. A. and Hu, Q. (2010). Distribution and in vitro availability of selenium in selenium-containing storage protein from selenium-enriched rice utilizing optimized extraction. J. Agr. Food Chem. 58:9731–9738.
  • Fernández-García, E., Carvajal-Lérida, I. and Pérez-Gálvez, A. (2009). In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutr. Res. 29:751–760.
  • Finley, J. W. (1998). The absorption and tissue distribution of selenium from high-selenium broccoli are different from selenium from sodium selenite, sodium selenate, and selenomethionine ss determined in selenium-deficient rats. J. Agr. Food Chem. 46:3702–3707.
  • Finley, J. W. (1999). The retention and distribution by healthy young men of stable isotopes of selenium consumed as selenite, selenate or hydroponically-grown broccoli are dependent on the isotopic form. J. Nutr. 129:865–871.
  • Finley, J. W., Duffield, A., Ha, P., Vanderpool, R. A. and Thompson, C. D. (1999). Selenium supplementation affects the retention of stable isotopes of selenium in human subjects consuming diets low in selenium. Brit. J. Nutr. 82:357–360.
  • Finley, J. W., Grusak, M. A., Keck, A. S. and Gregoire, B. R. (2004). Bioavailability of selenium from meat and broccoli as determined by retention and distribution of 75Se. Biol. Trace Elem. Res. 99:191–209.
  • Finley, J. W. (2006). Bioavailability of selenium from foods. Nutr. Rev. 64:146–151.
  • Fox, T. E., Van den Heuvel, E. G. H. M., Atherton, C. A., Dainty, J. R., Lewis, D. J., Langford, N. J., Crews, H. M., Luten, J. B., Lorentzen, M., Sieling, F. W., van Aken-Schneyder, P., Hoek, M., Kotterman, M. J. J., van Dael, P. and Fairweather-Tait, S. J. (2004). Bioavailability of selenium from fish, yeast and selenate: a comparative study in humans using stable isotopes. Eur. J. Clin. Nutr. 58:343–349.
  • García-Sartal, C., Barciela-Alonso, M. C., Moreda-Piñeiro, A. and Bermejo-Barrera, P. (2013). Study of cooking on the bioavailability of As, Co, Cr, Cu, Fe, Ni, Se and Zn from edible seaweed. Microchem. J. 108:92–99.
  • Gabrielsen, B. O. and Opstvedt, J. (1980). Availability of selenium in fish meal in comparison with soybean meal, corn gluten meal and selenomethionine relative to selenium in sodiumselenite for restoring glutathione peroxidase activity in selenium-depleted chicks. J. Nutr. 110:1096–1100.
  • Gomes da Silva, E., Verola-Mataveli, R. L. and Zezzi-Arruda, M. A. (2013). Speciation analysis of selenium in plankton, Brazil nut and human urine samples by HPLC–ICP-MS. Talanta. 110:53–57.
  • Govasmark, E., Brandt-Kjelsen, A., Szpunar, J., Bierla, K., Vegarud, G. and Salbu, B. (2010). Bioaccessibility of Se from Se-enriched wheat and chicken meat. Pure Appl. Chem. 82:461–471.
  • Griffiths, N. M., Stewart, R. D. H. and Robinson, M. F. (1976). The metabolism of [75Se]selenornethionine in four women. Brit. J. Nutr. 35:373–382.
  • Hagmar, L., Persson-Moschos, M., Åkesson, B. and Schütz, A. (1998). Plasma levels of selenium, selenoprotein P and glutathione peroxidase and their correlations to fish intake and serum levels of thyrotropin and thyroid hormones: a study on Latvian fish consumers. Eur. J. Clin. Nutr. 52:796–800.
  • Hall, J. A., Van Saun, R. J., Bobe, G., Stewart, W. C., Vorachek, W. R., Mosher, W. D., Nichols, T., Forsberg, N. E. and Pirelli, J. G. (2012). Organic and inorganic selenium: I. Oral bioavailability in ewes. J. Anim. Sci. 90:568–576.
  • Hansen, M., Sandstrom, B. and Lonnerdal, B. (1996). The effect of casein phosphopeptides on zinc and calcium absorption from high phytate infant diets assessed in rat pups and Caco-2 cells. Ped. Res. 40:547–552.
  • Haratake, M., Takahashi, J., Ono, M. and Nakayama, M. (2007). An assessment of Niboshi (a processed Japonese anchovy) as an effective food source of selenium. J. Health Sci. 53:457–463.
  • Hawkes, W. C., Alkan, F. Z. and Oehler, L. (2003). Absorption, distribution and excretion of selenium from beef and rice in healthy North American men. J. Nutr. 133:3434–3442.
  • Hinojosa-Reyes, L., Ruiz-Encinar, J., Marchante-Gayón, J. M., García-Alonso, J. I. and Sanz-Medel, A. (2006a). Selenium bioaccessibility assessment in selenized yeast after “in vitro” gastrointestinal digestion using two-dimensional chromatography and mass spectrometry. J. Chromatohrap. A. 1110:108–116.
  • Hinojosa-Reyes, L., Marchante-Gayón, J. M., García-Alonso, J. I. and Sanz-Medel, A. (2006b). Application of isotope dilution analysis for the evaluation of extraction conditions in the determination of total selenium and selenomethionine in yeast-based nutritional supplements. J. Agr. Food Chem. 54:1557–1563.
  • House, W. A. and Welch, R. M. (1989). Bioavailability of and interactions between zinc and selenium in rats fed wheat grain intrinsically labeled with 65Zn and 75Se. J. Nutr. 119:916–921.
  • Intawongse, M. and Dean, J. R. (2006). In-vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. Trends Anal. Chem. 25:876–886.
  • Ip, C. and Lisk, D. J. (1993). Bioavailability of selenium from selenium-enriched garlic. Nutr. Cancer. 20:129–137.
  • Jaramillo, F., Peng, L. and Gatlin, D. M. (2009). Selenium nutrition of hybrid striped bass (Morone Chysops x M. Saxatilis) bioavailability, toxicity and interaction with vitamin E. Aquacult. Nutr. 15:160–165.
  • Jaiswal, S. K., Prakash, R., Acharya, R., Nathaniel, T. N., Reddy, A. V. R. and Prakash, N. T. (2012). Bioaccessibility of selenium from Se-rich food grains of the seleniferous region of Punjab, India as analyzed by instrumental neutron activation analysis. CyTA – J. Food. 10:160–164.
  • Jang, Y. D., Choi, H. B., Durosoy, S., Schlegel, P., Choi, B. R. and Kim, Y. Y. (2010). Comparison of bioavailability of organic selenium sources in finishing pigs. Asian-Austral. J. Anim. Sci. 23:931–936.
  • Kápolna, E. and Fodor, P. (2007). Bioavailability of selenium from selenium-enriched green onions (Allium fistulosum) and chives (Allium schoenoprasum) after ‘in vitro’ gastrointestinal digestion. Int. J. Food Sci. Nutr. 58:282–296.
  • Karlsson, J. and Artursson, P. (1991). A method for the determination of cellular permeability coefficients and aqueous boundary-layer thickness in monolayers of intestinal epithelial (Caco-2) cells grown in permeable filter chambers. Int. J. Pharm. 71:55–64.
  • Kasper, L. J., Young, V. R. and Janghorbani, M. (1984). Short-term dietary selenium restriction in young adults: quantitative studies with the stable isotope 74SeO32-. Brit. J. Nutr. 52:443–455.
  • Kirby, J. K., Lyons, G. H. and Karkkainen, M. P. (2008). Selenium speciation and bioavailability in biofortified products using species-unspecific isotope dilution and reverse phase ion pairing-inductively coupled plasma-mass spectrometry. J. Agr. Food Chem. 56:1772–1779.
  • Küçükbay, F. Z., Yazlak, H., Karaca, I., Sahin, N., Tuzcu, M., Cakmak, M. N. and Sahin, K. (2009). The effects of dietary organic and inorganic selenium in rainbow trout (Oncorhynchus mykiss) under crowding conditions. Aquacult. Nutr. 15:569–576.
  • Laird, B. D. and Chan, H. M. (2013). Bioaccessibility of metals in fish, shellfish, wild game, and seaweed harvested in British Columbia, Canada. Food Chem. Toxicol. 58:381–387.
  • Larsen, E. H., Hason, M., Paulin, H., Moesgaard, S., Reid, M. and Rayman, M. (2004). Speciation and bioavailability of selenium in yeast-based intervention agents used in cancer chemoprevention studies. J. AOAC Int. 87:225–232.
  • Lavu, R. V. S., Du Laing, G., Van De Wiele, T., Pratti, V. L., Willekens, K., Vandecasteele, B. and Tack, F. (2012). Fertilizing soil with selenium fertilizers: impact on concentration, speciation, and bioaccessibility of selenium in leek (Allium ampeloprasum). J. Agr. Food Chem. 60:10930–10935.
  • Le, K. T. and Fotedar, R. (2014). Bioavailability of selenium from different dietary sources in yellowtail kingfish (Seriola lalandi). Aquaculture. 420–421:57–62.
  • Levander, O. A., Sutherland, B., Morris, V. C. and King, J. C. J. (1981). Selenium balance in young men during selenium depletion and repletion. Am. J. Clin. Nutr. 34:2662–2669.
  • Levander, O. A., AlfIhan, G., Arvilommi, H., Gref, C. G., Huttunen, J. K., Kataja, M., Koivistoinen, P. and Pikkarainen, J. (1983). Bioavailability of selenium to Finnish men as assessed by platelet glutathione peroxidase activity and other blood parametersı. Am. J. Clin. Nutr. 37:887–897.
  • Lipiec, E., Siara, G., Bierla, K., Ouerdane, L. and Szpunar, J. (2010). Determination of selenomethionine, selenocysteine, and inorganic selenium in eggs by HPLC–inductively coupled plasma mass spectrometry. Anal. BioAnal. Chem. 397:731–741.
  • Mahmoud, W. A. (2012). Bioavailabity of selenocystine complex in ten healthy volunteers using flameless atomic absorption spectrophometer. Asian J. Chem. 24:5705–5707.
  • Marks, H. S. and Mason, A. C. (1993). Selenium bioavailability of soy-based diets in rats. J. Nutr. Biochem. 4:523–527.
  • Martin, R. F., Janghorbani, M. and Young, V. R. (1989). Experimental selenium restriction in healthy adult humans: changes in selenium metabolism studied with stable-isotope methodology. Am. J. Clin. Nutr. 49:854–861.
  • Mateo, R. D., Spallholz, J. E., Elder, R., Yoon, I. and Kim, S. W. (2007). Efficacy of dietary selenium sources on growth and carcass characteristics of growing-finishing pigs fed diets containing high endogenous selenium. J. Anim. Sci. 85:1177–1183.
  • Meltzer, H. M., Bibow, K., Paulsen, I. T., Mundal, H. H., Norheim, G. and Holm, H. (1993). Different bioavailability in humans of wheat and fish selenium as measured by blood platelet response to increased dietary Se. Biol. Trace Elem. Res. 36:229–241.
  • Molly, K., Van de Woestyne, M. and Verstraete, W. (1993). Development of a 5-step multichamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotechnol. 39:254–258.
  • Moreda-Piñeiro, J., Moreda-Piñeiro, A., Romarís-Hortas, V., Moscoso-Pérez, C., López-Mahía, P., Muniategui-Lorenzo, S., Bermejo-Barrera, P. and Prada-Rodríguez, D. (2011). In-vivo and in-vitro testing to assess the bioaccessibility and the bioavailability of arsenic, selenium and mercury species in food samples. Trend. Anal. Chem. 30:324–345.
  • Moreda-Piñeiro, J., Moreda-Piñeiro, A., Romarís-Hortas, V., Domínguez-González, R., Alonso-Rodríguez, E., López-Mahía, P., Muniategui-Lorenzo, S., Prada-Rodríguez, D. and Bermejo-Barrera, P. (2013a). In vitro bioavailability of total selenium and selenium species from seafood. Food Chem. 139:872–877.
  • Moreda-Piñeiro, J., Moreda-Piñeiro, A., Romarís-Hortas, V., Domínguez-González, R., Alonso-Rodríguez, E., López-Mahía, P., Muniategui-Lorenzo, S., Prada-Rodríguez, D. and Bermejo-Barrera, P. (2013b). ICP-MS for the determination of selenium bioavailability from seafood and effect of major food constituents. Microchem. J. 108:174–179.
  • Miller, D. D., Schricker, B. R., Rasmussen, R. R. and Van Campen, D. (1981). An in vitro method for estimation of iron availability from meals. Am. J. Clin. Nutr. 34:2248–2256.
  • Muñiz-Naveiro, O., Domínguez-González, R., Bermejo-Barrera, A., Bermejo-Barrera, P., Cocho, J. A. and Fraga, J. M. (2006). Study of the bioavailability of selenium in cows' milk after a supplementation of cow feed with different forms of selenium. Anal. BioAnal. Chem. 385:189–196.
  • Mutanen, M. L. and Mykkănen, H. M. (1984). Effect of dietary fat on plasma glutathione peroxidase levels and intestinal absorption of 75Se-labeled sodium selenite in chicks. J. Nutr. 114:829–834.
  • Mutanen, M. (1986). Bioavailability of selenium in mushrooms, Boletus edulis, to young women. Int. J. Vitaminol. Nutr. Res. 56:297–301.
  • Mutanen, M. L., Koivistoinen, P., Morris, V. C. and Levander, O. A. (1986a). Nutritional availability to rats of selenium in four seafoods: crab (Callinectes sapidus), oyster (Crassostrea virginica), shrimp (Penaeus duorarum) and Baltic herring (Clupea harengus). Brit. J. Nutr. 55:219–225.
  • Mutanen, M. L., Aspila, P. and Mykkănen, H. M. (1986b). Bioavailability to rats of selenium in milk of cows fed sodium selenite or selenite barley. Ann. Nutr. Metab. 30:183–188.
  • Navarro-Alarcon, M. and Cabrera-Vique, C. (2008). Selenium in food and the human body: a review. Sci. Total Environ. 400:115–141.
  • Nève, J., Van Erum, S., Drama, I. X. M., Chamart, S. and Vertongen, F. (1988). Selenium status in humans as investigated by the effects of supplementation with Se-enriched yeast tablets. In: Selenium in Medicine and Biology, pp. 315, Nève, J., Favier, A. and Walter de Gruyter, Eds., New York.
  • Nève, J., Vertongen, F. and Capel, P. (1988). Selenium supplementation in healthy Belgian adults: response in platelet glutathione peroxidase activity and other blood indices. Am. J. Clin. Nutr. 48:139–143.
  • Ojeda, M. L., Vázquez, B., Nogales, F., Murillo, M. L. and Carreras, O. (2009). Ethanol consumption by wistar rat dams affects selenium bioavailability and antioxidant balance in their progeny. Int. J. Environ. Res. Public Health. 6:2139–2149.
  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Schoeters, G., Verstraete, W., Wiele, T. V. D., Wragg, J., Rompelberg, C. J. M., Sips, A. J. A. M. and Wijnen, J. H. V. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environ. Sci. Technol. 36:3326–3334.
  • Ørnsrud, R. and Lorentzen, M. (2002). Bioavailability of selenium from raw or cured selenomethionine-enriched fillets of Atlantic salmon (Salmo salar) assessed in selenium-deficient rats. Brit. J. Nutr. 87:13–20.
  • Paripatanamont, T. and Lowell, R. T. (1997). Comparative net absorption of chelated and inorganic trace minerals in channel catfish Ictalurus punctatus diets. J. World Aquacult. Soc. 28:62–67.
  • Pedrero, Z., Madrid, Y. and Cámara, C. (2006). Selenium species bioaccessibility in enriched radish (Raphanus sativus): a potential dietary source of selenium. J. Agr. Food Chem. 54:2412–2417.
  • Peng, D., Zhang, J. and Liu, Q. (2007). Effect of sodium selenosulfate on restoring activities of selenium-dependent enzymes and selenium retention compared with sodium selenite in vitro and in vivo. Biol. Trace Elem. Res. 117:77–88.
  • Pick, D., Degen, C., Leiterer, M., Jahreis, G. and Einax, J. W. (2013). Transport of selenium species in Caco-2 cells: Analytical approach employing the Ussing chamber technique and HPLC-ICP-MS. Microchem. J. 110:8–14.
  • Ralston, N. V. C., Ralston, C. R., Blackwell, J. L. and Raymond, L. J. (2008). Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology. 29:802–811.
  • Ramos, A., Cabrera, M. C. and Saadoun, A. (2012). Bioaccessibility of Se, Cu, Zn, Mn and Fe, and heme iron content in unaged and aged meat of Hereford and Braford steers fed pasture. Meat Sci. 91:116–124.
  • Reeves, P. G., Leary, P. D., Gregoire, B. R., Finley, J. W., Lindlauf, J. E. and Johnson, L. K. (2005). J. Nutr. 135:2627–2633.
  • Reeves, P. G., Gregoire, B. R., Garvin, D. F., Hareland, G. A., Lindlauf, J. E., Johnson, L. K. and Finley, J. W. (2007). Determination of selenium bioavailability from wheat mill fractions in rats by using the slope-ratio assay and a modified Torula yeast-based diet. J. Agr. Food Chem. 55:516–522.
  • Rider, S. A., Davies, S. J., Jha, A. N., Fisher, A. A., Knight, J. and Sweetman, J. W. (2009). Supra-nutritional dietary intake of selenite and selenium yeast in normal and stressed rainbow trout (Oncorhynchus mykiss): implications on selenium status and health responses. Aquaculture. 295:282–291.
  • Rider, S. A., Davies, S. J., Jha, A. N., Clough, R. and Sweetman, J. W. (2010). Bioavailability of co-supplemented organic and inorganic zinc and selenium sources in a white fishmeal-based rainbow trout (Oncorhynchus mykiss) diet. J. Anim. Physiol. Aninimal Nutr. 94:99–110.
  • Ros, G., Ortuño, J., Abellán, P., Periago, M. J., Graciá, M. C., López, G. and Rodrigo, J. (1998). Selenium bioavailability of fish based weaning food. Metal Ion Biol. Med. 5:253–257.
  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D. E., Casteel, S. W., Berti, W., Carpenter, M., Edwards, D., Cragin, D. and Chappell, W. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ. Sci. Technol. 33:3697–3705.
  • Schümann, K., Classen, H. G., Hages, M., Prinz-Langenohl, R., Pietrzik, K. and Biesalki, H. K. (1997). Bioavailability of oral vitamins, minerals, and trace elements in perspective. Arzneimittel-Forschung Drug Res. 47:369–380.
  • Seo, T. C., Spallholz, J. E., Yun, H. K. and Kim, S. W. (2008). Selenium-enriched garlic and cabbage as a dietary selenium source for broilers. J. Med. Food. 11:687–692.
  • Serra, A.,B., Serra, S. D., Shinchi, K. and Fujihara, T. (1997). Bioavailability of rumen bacterial selenium in mice using tissue uptake technique. Biol. Trace Elem. Res. 58:255–261.
  • Shen, L., Van Dael, P., Luten, J. and Deelstra, H. (1996). Estimation of selenium bioavailability from human, cow's, goat and sheep milk by an in vitro method. Int. J. Food Sci. Nutr. 41:75–81.
  • Shen, L. H., Hoek-Van Nieuwenhuizen, M., Luten, J. B. (1997). Speciation and in vitro bioavailability of selenium in fishery products. In: Seafood from producer to consumer, integrated approach to quality, p. 653, Luten, J. B., Barresen, T. and Oehlenschlinger, J., Eds., Elsevier Science.
  • Shi, B. and Spallholz, J. E. (1994a). Selenium from beef is highly bioavailable as assessed by liver glutathione peroxidase (EC 1.11.1.9) activity and tissue selenium. Brit. J. Nutr. 72:873–881.
  • Shi, B. and Spallholz, J. E. (1994b). Bioavailability of selenium from raw and cooked ground-beef assessed in selenium-deficient Fischer rats. J. Am. College Nutr. 13:95–101.
  • Sirichakwal, P. P., Young, V. R. and Janghorbani, M. (1985). Absorption and retention of selenium from intrinsically labeled egg and selenite as determined by stable isotope studies in humans. Am. J. Clin. Nutr. 41:264–269.
  • Smith, A. M. and Picciano, M. F. (1987). Relative bioavailability of seleno-compounds in the lactating rat. J. Nutr. 117:725–731.
  • Stahl, W., van den Berg, H., Arthur, J., Bast, A., Dainty, J., Faulks, R. M., Gärtner, C., Haenen, G., Hollman, P., Holst, B., Kelly, F. J., Polidori, M. C., Rice-Evans, C., Southon, S., van Vliet, T., Viña-Ribes, J., Williamson, G. and Asley, S. B. (2002). Bioavailability and metabolism. Mol. Aspect. Med. 23:39–100.
  • Thiry, C., Ruttens, A., De Temmerman, L., Schneider, Y-J. and Pussemier, L. (2012). Current knowledge in species-related bioavailability of selenium in food. Food Chem. 130:767–784.
  • Thiry, C., Schneider, Y-J., Pussemier, L., De Temmerman, L. and Ruttens, A. (2013a). Selenium bioaccessibility and bioavailability in Se-enriched food Supplements. Biol. Trace Elem. Res. 152:152–160.
  • Thiry, C., Ruttens, A., Pussemier, L. and Schneider, Y-J. (2013b). An in vitro investigation of species-dependent intestinal transport of selenium and the impact of this process on selenium bioavailability. Brit. J. Nutr. 109:2126–2134.
  • Thompson, C. D. and Stewart, R. D. H. (1974). The metabolism of [75Se]selenite in young women. Brit. J. Nutr. 32:47–57.
  • Thompson, C. D., Robinson, B. A., Stewart, R. D. H. and Robinson, M. F. (1975a). Metabolic studies in rats of [75Se]selenomethionine and of 75Se incorporated in vivo into rabbit kidney. Brit. J. Nutr. 33:45–54.
  • Thompson, C. D., Robinson, B. A., Stewart, R. D. H. and Robinson, M. F. (1975b). Metabolic studies of [75Selselenocystine] and [75Se]selenomethionine in the rat. Brit. J. Nutr. 34:501–509.
  • Thompson, C. D., Burton, C. E. and Robinson, M. F. (1978). On supplementing the selenium intake of New Zealanders. Short experiments with large doses of selenite or selenomethionine. Brit. J. Nutr. 39:579–587.
  • Thompson, C. D., Robinson, M. F., Campbell, D. R. and Rea, H. M. (1982). Effect of prolonged supplementation with daily supplements of selenomethionine and sodium selenite on glutathione peroxidase activity in blood of New Zealand residents. Am. J. Clin. Nutr. 36:24–31.
  • Thompson, C. D., Ong, L. K. and Robinson, M. F. (1985). Effects of supplementation with high-selenium wheat bread on selenium, glutathione peroxidase and related enzymes in blood components of New Zealand. Am. J. Clin. Nutr. 41:1015–1022.
  • Thompson, C. D. and Robinson, M. F. (1986). Urinary and fecal excretions and absorption of a large supplement of selenium: superiority of selenate over selenite. Am. J. Clin. Nutr. 44:659–663.
  • Thompson, C. D., Steven, S. M., van Rij, A. M., Wade, C. R. and Robinson, M. F. (1988). Selenium and vitamin E supplementation: activities of glutathione peroxidase in human tissues. Am. J. Clin. Nutr. 48:316–323.
  • Thompson, C. D., Robinson, M. F., Butler, J. A. and Whanger, P. D. (1993). Long-term supplementation with selenate and selenomethionine: selenium and glutathione peroxidase (EC 1.11.1.9) in blood components of New Zealand women. Brit. J. Nutr. 69:577–588.
  • Thompson, C. D., Chisholm, A., McLachlan, S. K. and Campbell, J. M. (2008). Brazil nuts: an effective way to improve selenium status. Am. J. Clin. Nutr. 87:379–384.
  • Turlo, J., Gutkowska, B., Herold, F., Klimaszewska, M. and Suchocki, P. (2010). Optimization of selenium-enriched mycelium of Lentinula edodes (Berk.) pegler as a food supplement. Food Biotechnol. 24:180–196.
  • Van Dael, P., Davidsson, L., Ziegler, E. E., Fay, L. B. and Barclay, D. (2002). Comparison of selenite and selenate apparent absorption and retention in infants using stable isotope methodology. Ped. Res. 51:71–75.
  • Van der Torre, H. W., Van Dokkum, W. T. M., Schaafsma, G., Wedel, M. and Ockhuizen, T. (1991). Effect of various levels of selenium in wheat and meat on blood Se status indices and on Se balance in Dutch men. Brit. J. Nutr. 65:69–80.
  • Van Dyck, K., Tas, S., Robberecht, H. and Deelstra, H. (1996). The influence of different food components on the in vitro availability of iron, zinc and calcium from a composed meal. Int. J. Food Sci. Nutr. 47:499–506.
  • Vitali, D., Dragojević, I. V. and Šebečić, B. (2008). Bioaccessibility of Ca, Mg, Mn and Cu from whole grain tea-biscuits: Impact of proteins, phytic acid and polyphenols. Food Chem. 110:62–68.
  • Wang, C. and Lovell, R. T. (1997). Organic selenium sources, selenomethionine and selenoyeast, have higher bioavailability than an inorganic selenium source, sodium selenite, in diets for channel catfish (Ictalurus punctatus). Aquaculture. 152:223–234.
  • Wang, Y. B., Han, J. Z., Li, W. F. and Xu, Z. R. (2007). Effect of different selenium source on growth performances, glutathione peroxidase activities, muscle composition and selenium concentration of allogynogenetic crucian carp (Carassius auratus gibelio). Anim. Feed Sci. Technol. 134:243–251.
  • Wang, Y. and Xu, B. (2008). Effect of different selenium source (sodium selenite and selenium yeast) on broiler chickens. Anim. Feed Sci. Technol. 144:306–314.
  • Wang, Y. and Fu, L. (2012). Forms of selenium affect its transport, uptake and glutathione peroxidase activity in the Caco-2 cell model. Biol. Trace Elem. Res. 149:110–116.
  • Wang, Y.-D., Wang, X. and Wong, Y-S. (2013). Generation of selenium-enriched rice with enhanced grain yield, selenium content and bioavailability through fertilisation with selenite. Food Chem. 141:2385–2393.
  • Whanger, P. D. and Butler, J. A. (1988). Effects of various dietary levels of selenium as selenite or selenomethionine on tissue selenium levels and glutathione peroxidase activity in rats. J. Nutr. 118:846–852.
  • Whanger, P. D., Ip, C., Polan, C. E., Uden, P. C. and Welbaum, G. (2000). Tumorigenesis, metabolism, speciation, bioavailability, and tissue deposition of selenium in selenium-enriched eamps (Allium tricoccum). J. Agr. Food Chem. 48:5723–5730.
  • Waschulewski, I. H. and Sunde, R. A. (1988). Effect of dietary methionine on utilization of tissue selenium from dietary selenomethionine for glutathione peroxidase in the rat. J. Nutr. 118:367–374.
  • Wen, H. Y., Davis, R. L., Shi, B., Chen, J. J., Chen, L., Boylan, M. and Spallhol, J. E. (1997). Bioavailability of selenium from veal, chicken, beef, pork, lamb, flounder, tuna, selenomethionine, and sodium selenite assessed in selenium-deficient rats. Biol. Trace Elem. Res. 58:43–53.
  • Xia, Y., Hill, K. E. and Burk, R. F. (1989). Biochemical studies of a selenium-deficient Population in China: measurement of selenium, glutathione peroxidase and other oxidant defense indices in blood. J. Nutr. 119:1318–1326.
  • Xia, Y., Zhao, Y., Zhao, X., Zhu, L. and Whanger, P. D. (1992). Metabolism of selenate and selenomethionine by a selenium-deficient population of men in China. J. Nutr. Biochem. 3:202–210.
  • Yan, L., Graef, G. L., Reeves, P. G. and Johnson, L. K. (2009). Selenium bioavailability from soy protein isolate and tofu in rats fed a torula yeast-based diet. J. Agr. Food Chem. 57:11575–11580.
  • Yan, L., Reeves, P. G. and Johnson, L. K. (2010). Assessment of selenium bioavailability from naturally produced high-selenium soy foods in selenium-deficient rats. J. Trace Elem. Med. Biol. 24:223–229.
  • Yan, L. and Johnson, L. K. (2011). Selenium bioavailability from naturally produced high-selenium peas and oats in selenium-deficient rats. J. Agr. Food Chem. 59:6305–6311.
  • Yoshida, M., Fukunaga, K, Tsuchita, H. and Yasumoto, K. (1999). An evaluation of the bioavailability of selenium in high-selenium yeast. J. Nutr. Sci. Vitaminol. 45:119–128.
  • Yu, Y.-X., Li, J.-L., Zhang, X.-Y., Yu, Z.-Q., Van de Wiele, T., Han, S.-Y., Wu, M.-H., Sheng, G.-Y. and Fu, J.-M. (2010). Assessment of the bioaccessibility of polybrominated diphenyl ethers in foods and the correlations of the bioaccessibility with nutrient contents. J. Agr. Food Chem. 58:301–308.
  • Zeng, H., Botnen, J. H. and Johnson, L. K. (2008). A selenium-deficient Caco-2 cell model for assessing differential incorporation of chemical or food selenium into glutathione peroxidase. Biol. Trace Elem. Res. 123:98–108.
  • Zhou, X., Wang, Y., Gu, Q. and Li, W. (2009). Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture. 291:78–81.
  • Ziegler, E. E., Edwards, B. B., Jensen, R. L., Mahaffey, K. R. and Fomon, S. J. (1978). Absorption and retention of lead by infants. Pediatric Res. 12:29–34.
  • Zohoori, V., Seal, C. J., Moynihan, P. J., Steen, I. N. and Maguire, A. (2009). The impact of fluoridatedmilks on the availability of trace elements in milk. J. Sci. Food Agr. 89:595–602.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.