1,181
Views
14
CrossRef citations to date
0
Altmetric
Articles

Metabolomics of cancer cell cultures to assess the effects of dietary phytochemicals

&

References

  • Ackerstaff, E., Pflug, B. R., Nelson, J. B. and Bhujwalla, Z. M. (2001). Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res. 61:3599–3603.
  • Adams, S., Braidy, N., Bessede, A., Brew, B. J., Grant, R., Teo, C. and Guillemin, G. J. (2012). The kynurenine pathway in brain tumor pathogenesis. Cancer Res. 72:5649–5657.
  • Anso, E., Mullen, A. R., Felsher, D. W., Matés, J. M., Deberardinis, R. J. and Chandel, N. S. (2013). Metabolic changes in cancer cells upon suppression of MYC. Cancer Metab. 1:7.
  • Banerjee, S., Bueso-Ramos, C. and Aggarwal, B. B. (2002). Suppression of 7,12-dimethylbenz(a) anthracene-induced mammary carcinogenesis in rats by resveratrol: Role of nuclear factor – kappaB, cyclooxygenase 2 and matrix metalloprotease 9. Cancer Res. 62:4945–4954.
  • Bathe, O. F., Shaykhutdinov, R., Kopciuk, K., Weljie, A. M., McKay, A., Sutherland, F. R., Dixon, E., Dunse, N., Sotiropoulos, D. and Vogel, H. J. (2011). Feasibility of identifying pancreatic cancer based on serum metabolomics. Cancer Epidemiol. Biomar. Prev. 20:140–147.
  • Bayet-Robert, M. and Morvan, D. (2013). Metabolomics reveals metabolic targets and biphasic responses in breast cancer cells treated by curcumin alone and in association with docetaxel. PLoS One. 8:e57971.
  • Bayet-Robert, M., Loiseau, D., Rio, P., Demidem, A., Barthomeuf, C., Stepien, G. and Morvan, D. (2010). Quantitative two-dimensional HRMAS 1H-NMR spectroscopy based metabolite profiling of human cancer cell lines and response to chemotherapy. Magn. Reson. Med. 63:1172–1183.
  • Ben Sellem, D., Elbayed, K., Neuville, A., Moussallieh, F. M., Lang-Averous, G., Piotto, M., Bellocq, J. P. and Namer, I. J. (2011). Metabolomic characterization of ovarian epithelial carcinomas by hrmas-NMR spectroscopy. J. Oncol. 2011:174019.
  • Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., Gottlieb, E. and Vousden, K. H. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 126:107–120.
  • Bishayee, A. (2009). Cancer prevention and treatment with resveratrol: From rodent studies to clinical trials. Cancer Prev. Res. (Phila). 2:409–418.
  • Bu, Q., Huang, Y., Yan, G., Cen, X. and Zhao, Y. L. (2012). Metabolomics: A revolution for novel cancer marker identification. Comb. Chem. High Throughput Screen. 15:266–275.
  • Cairns, R. A., Harris, I. S. and Mak, T. W. (2011). Regulation of cancer cell metabolism. Nat. Rev. Cancer. 1:85–95.
  • Cao, M., Zhao, L., Chen, H., Xue, W. and Lin, D. (2012). NMR-based metabolomic analysis of human bladder cancer. Anal. Sci. 28:451–456.
  • Cardaci, S. and Ciriolo, M. R. (2012). TCA cycle defects and cancer: When metabolism tunes redox state. Int. J. Cell Biol. 2012:161837.
  • Carrola, J., Rocha, C. M., Barros, A. S., Gil, A. M., Goodfellow, B. K., Carreira, I. M., Bernardo, J., Gomes, A., Sousa, S., Carvalho, L. and Duarte, I. F. (2011). Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J. Proteome Res. 10:221–230.
  • Chattopadhyay, I., Biswas, K., Bandyopadhyay, U. and Banerjee, R. K. (2004). Turmeric and curcumin biological actions and medicinal applications. Curr. Sci. 87:44–50.
  • Chimento, A., Sala, M., Gomez-Monterrey, I. M., Musella, S., Bertamino, A., Caruso, A., Sinicropi, M. S., Sirianni, R., Puoci, F., Parisi, O. I., Campana, C., Martire, E., Novellino, E., Saturnino, C., Campiglia, P. and Pezzi, V. (2013). Biological activity of 3-chloro-azetidin-2-one derivatives having interesting antiproliferative activity on human breast cancer cell lines. Bioorg. Med. Chem. Lett. 23:6401–6405.
  • Choi, J. S., Chun, K. S., Kundu, J. and Kundu, J. K. (2013). Biochemical basis of cancer chemoprevention and/or chemotherapy with ginsenosides (review). Int. J. Mol. Med. 32:1227–1238.
  • Choudhuri, T., Pal, S., Agwarwal, M. L., Das, T. and Sa, G. (2002). Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett. 512:334–340.
  • Chun, E., Chan, Y., Koon Koh, P., Mal, M., Yean Cheah, P., Weng Eu, K., Backshall, A., Cavill, R., Nicholson, J. K. and Keun, H. C. (2009). Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J. Proteome Res. 8:352–361.
  • Cragg, G. M., Grothaus, P. G. and Newman, D. J. (2014). New horizons for old drugs and drug leads. J. Nat. Prod. 77:703–723.
  • Dang, L., White, D. W., Gross, S., Bennett, B. D., Bittinger, M. A., Driggers, E. M., Fantin, V. R., Jang, H. G., Jin, S., Keenan, M. C., Marks, K. M., Prins, R. M., Ward, P. S., Yen, K. E., Liau, L. M., Rabinowitz, J. D., Cantley, L. C., Thompson, C. B., Vander Heiden, M. G. and Su, S. M. (2010). Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 465:966.
  • DeBerardinis, R. J. and Thompson, C. B. (2012). Cellular metabolism and disease: What do metabolic outliers teach us? Cell. 148:1132–1144.
  • Deng, C. X. (2009). SIRT1, is it a tumor promoter or tumor suppressor? Int. J. Biol. Sci. 5:147–152.
  • Farshidfar, F., Weljie, A. M., Kopciuk, K., Buie, W. D., Maclean, A., Dixon, E., Sutherland, F. R., Molckovsky, A., Vogel, H. J. and Bathe, O. F. (2012). Serum metabolomic profile as a means to distinguish stage of colorectal cancer. Genome Med. 4:42.
  • Gao, P.. Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T., Zeller, K. I., De Marzo, A. M., Van Eyk, J. E., Mendell, J. T. and Dang, C. V. (2009). c-MYC suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 458:762–765.
  • Gerner, E. W. and Meyskens, F. L. Jr. (2004). Polyamines and cancer: Old molecules, new understanding. Nat. Rev. Cancer. 4:781–792.
  • Glunde, K., Jie, C. and Bhujwalla, Z. M. (2004). Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res. 64:4270–4276.
  • Gruenbacher, G. and Thurnher, M. (2015). Mevalonate metabolism in cancer. Cancer Lett. 356:192–196.
  • Han, S. S., Seo, H. J. and Surh, Y. J. (2002). Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J. Biochem. Mol. Biol. 35:337–342.
  • Hanahan, D. and Weinberg, R. A. (2000). The hallmarks of cancer. Cell. 100:57–70.
  • Hanahan, D. and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell. 144:646–674.
  • Hardie, D. G. (2013). AMPK: A target for drugs and natural products with effects on both diabetes and cancer. Diabetes. 62:2164–2172.
  • Hasim, A., Ma, H., Mamtimin, B., Abudula, A., Niyaz, M., Zhang, L. W., Anwer, J. and Sheyhidin, I. (2012). Revealing the metabonomic variation of EC using 1H-NMR spectroscopy and its association with the clinicopathological characteristics. Mol. Biol. Rep. 39:8955–8964.
  • Hayes, D. P. (2007). Nutritional hormesis. Eur. J. Clin. Nutr. 61:147–159.
  • Hensley, C. T., Wasti, A. T. and DeBerardinis, R. J. (2013). Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J. Clin. Invest. 123:3678–3684.
  • Hong, J., Bose, M., Ju, J., Ryu, J. H., Chen, X., Sang, S., Lee, M. J. and Yang, C. S. (2004). Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis. 25:1671–1679.
  • Igarashi, K. and Kashiwagi, K. (2010). Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 42:39–51.
  • Jäger, W., Gruber, A., Giessrigl, B., Krupitza, G., Szekeres, T. and Sonntag, D. (2011). Metabolomic analysis of resveratrol-induced effects in the human breast cancer cell lines MCF-7 and MDA-MB-231. OMICS. 15:9–14.
  • Jansen, J. J., Hoefsloot, H. C., Van der Greef, J., Timmerman, M. E., Westerhuis, J. A. and Smilde, A. K. (2005). ASCA: Analysis of multivariate data obtained from an experimental design. J Chemom. 19:469–481.
  • Khanduja, K. L., Bhardwaj, A. and Kaushik, G. (2004). Resveratrol inhibits N-nitrosodiethylamine-induced ornithine decarboxylase and cyclooxygenase in mice. J. Nutr. Sci. Vitaminol. 50:61–65.
  • Kok, T. M., Breda, S. G. and Briedé, J. J. (2012). Genomics-based identification of molecular mechanisms behind the cancer preventive action of phytochemicals: Potential and challenges. Curr. Pharm. Biotechnol. 13:255–264.
  • Kueck, A., Opipari, A. W. Jr., Griffith, K. A., Tan, L., Choi, M., Huang, J., Wahl, H. and Liu, J. R. (2007). Resveratrol inhibits glucose metabolism in human ovarian cancer cells. Gynecol. Oncol. 107:450–457.
  • Kuo, P. L., Chiang, L. C. and Lin, C. C. (2002). Resveratrol-induced apoptosis is mediated by p53-dependent pathway in Hep G2 cells. Life Sci. 72:23–34.
  • Kushi, L. H., Doyle, C., McCullough, M., Rock, C. L., Demark-Wahnefried, W., Bandera, E. V., Gapstur, S., Patel, A. V., Andrews, K., Gansler, T. and American Cancer Society 2010Nutrition and Physical Activity Guidelines Advisory Committee. (2012, Jan–Feb). American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: Reducing the risk of cancer with healthy food choices and physical activity. CA Cancer. J. Clin. 62:30–67. doi:10.3322/caac.20140.
  • Lee, J. H., Khor, T. O., Shu, L., Su, Z. Y., Fuentes, F. and Kong, A. N. (2013). Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics and cell death mechanisms in blocking cancer initiation and progression. Pharmacol. Ther. 137:153–171.
  • Lee, P., Vousden, K. H. and Cheung, E. C. (2014). TIGAR, TIGAR, burning bright. Cancer Metab. 2:1.
  • Lee, Y. K., Park, S. Y., Kim, Y. M. and Park, O. J. (2009). Regulatory effect of the AMPK COX-2 signaling pathway in curcumin-induced apoptosis in HT-29 coloncancer cells. Ann. NY Acad. Sci. 1171:489–494.
  • Lin, H. Y., Shih, A., Davis, F. B., Tang, H. Y., Martino, L. J., Bennett, JA. and Davis, P. J. (2002). Resveratrol-induced serine phosphorylation of p53 causes apoptosis in a mutant p53 prostate cancer cell line. J. Urol. 168:748–755.
  • Lin, H. Y., Sun, M., Tang, H. Y., Simone, T. M., Wu, Y. H., Grandis, J. R., Cao, H. J., Davis, P. J. and Davis, F. B. (2008). Resveratrol causes COX-2- and p53-dependent apoptosis in head and neck squamous cell cancer cells. J. Cell. Biochem. 104:2131–2142.
  • Linsalata, M. and Russo, F. (2008). Nutritional factors and polyamine metabolism in colorectal cancer. Nutrition. 24:382–389.
  • Liu, R. H. (2004). Potentially synergy of phytochemicals in cancer prevention: mechanisms of action. J. Nutr. 134:3479S–3485S.
  • Liu, R. H. (2013a). Dietary bioactive compounds and their health implications. J. Food. Sci. 78: A18–25.
  • Liu, R. H. (2013b). Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 4:384S–392S.
  • Malhotra, A., Nair, P. and Dhawan, D. K. (2014). Study to evaluate molecular mechanics behind synergistic chemo-preventive effects of curcumin and resveratrol during lung carcinogenesis. PLoS One. 9:e93820.
  • Massimi, M., Tomassini, A., Sciubba, F., Sobolev, A. P., Devirgiliis, L. C. and Miccheli, A. (2012). Effects of resveratrol on HepG2 cells as revealed by (1)H-NMR-based metabolic profiling. Biochim. Biophys. Acta. 1820:1–8.
  • Mazurek, S. and Eigenbrodt, E. (2003). The tumor metabolome. Anticancer Res. 23:1149–1154.
  • McGhie, T. K. and Rowan, D. D. (2012). Metabolomics for measuring phytochemicals, and assessing human and animal responses to phytochemicals in food science. Mol. Nutr. Food Res. 5:47–58.
  • Miccheli, A., Tomassini, A., Puccetti, C., Valerio, M., Peluso, G., Tuccillo, F., Calvani, M., Manetti, C. and Conti, F. (2006). Metabolic profiling by 13C-NMR spectroscopy: [1,2-13C2] Glucose reveals a heterogeneous metabolism in human leukemia T cells. Biochimie. 88:437–448.
  • Miloso, M., Bertelli, A. A., Nicolini, G. and Tredici, G. (1999). Resveratrol-induced activation of the mitogen-activated protein kinases, ERK1 and ERK2, in human neuroblastoma SH-SY5Y cells. Neurosci. Lett. 264:141–144.
  • Morvan D. (2013). Functional metabolomics uncovers metabolic alterations associated to severe oxidative stress in MCF7 breast cancer cells exposed to ascididemin. Mar. Drugs. 11:3846–3860.
  • Murias, M., Handler, N., Erker, T., Pleban, K., Ecker, G., Saiko, P., Szekeres, T. and Jäger, W. (2004). Resveratrol analogues as selective cyclooxygenase-2 inhibitors: synthesis and structure–activity relationship. Bioorg. Med. Chem. 12:5571–5578.
  • Nazarewicz, R. R., Zenebe, W. J., Parihar, A., Parihar, M. S., Vaccaro, M., Rink, C., Sen, C. K. and Ghafourifar, P. (2007). 12(S)-hydroperoxyeicosatetraenoic acid (12-HETE) increases mitochondrial nitric oxide by increasing intramitochondrial calcium. Arch. Biochem. Biophys. 468:114–120.
  • Nguyen, T. H., Mustafa, F. B., Pervaiz, S., Ng, F. S. and Lim, L. H. (2008). ERK1/2 activation is required for resveratrol-induced apoptosis in MDA-MB-231 cells. Int. J. Oncol. 33:81–92.
  • Nicholson, J. K., Lindon, J. C. and Holmes, E. (1999). “Metabonomics”: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 29:1181–1189.
  • Pollard, P. J., Brière, J. J., Alam, N. A., Barwell, J., Barclay, E., Wortham, N. C., Hunt, T., Mitchell, M., Olpin, S., Moat, S. J., Hargreaves, I. P., Heales, S. J., Chung, Y. L., Griffiths, J. R., Dalgleish, A., McGrath, J. A., Gleeson, M. J., Hodgson, S. V., Poulsom, R., Rustin, P. and Tomlinson, I. P. (2005). Accumulation of Krebs cycle intermediates and over-expression of HIF1 alpha in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 14:2231–2239.
  • Renaud, S. and De Lorgeril, M. W. (1992). Alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 339:1523–1526.
  • Saddoughi, S. A., Song, P. and Ogretmen, B. (2008). Roles of bioactive sphingolipids and cancer biology and therapeutics. Subcell. Biochem. 49:413–440.
  • Sarbassov, D. D., Ali, S. M. and Sabatini, D. M. (2005). Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 17:596–603.
  • Schulze, A. and Harris, A. L. (2012). How cancer metabolism is tunes for proliferation and vulnerable to disruption. Nature. 491:364–373.
  • Seyfried, T. N. and Shelton, L. M. (2010). Cancer as a metabolic disease. Nutr. Metab. (Lond). 7:7.
  • Seyfried, T. N., Flores, R. E., Poff, A. M. and D'Agostino, D. P. (2014). Cancer as a metabolic disease: Implications for novel therapeutics. Carcinogenesis. 35:515–527.
  • Shishodia, S., Singh, T. and Chaturvedi, M. M. (2007). Modulation of transcription factors by curcumin. Adv. Exp. Med. Biol. 595:127–148.
  • Slavin, J. L. and Lloyd, B. (2012). Health benefits of fruits and vegetables. Adv. Nutr. 3:506–516.
  • Smilde, A. K., Jansen, J. J., Hoefsloot, H. C., Lamers, R. J., Van der Greef J. and Timmerman, M. E. (2005). ANOVA-simultaneous component analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinformatics. 21:3043–3048.
  • Smith, R. J. (2013). Nutrition and metabolism in hepatocellular carcinoma. Hepatobiliary Surg. Nutr. 2:89–96.
  • Son, T. G., Camandola, S. and Mattson, M. P. (2008). Hormetic dietary phytochemicals. Neuromolecular Med. 1:236–246.
  • Sui, X., Jin, L., Huang, X., Geng, S., He, C. and Hu, X. (2011). p53 Signaling and autophagy in cancer: A revolutionary strategy could be developed for cancer treatment. Autophagy. 7:565–571.
  • Surh, Y. J. (2003). Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer. 3:768–780.
  • Takao, K., Rickhag, M., Hegardt, C., Oredsson, S. and Persson, L. (2006). Induction of apoptotic cell death by putrescine. Int. J. Biochem. Cell. Biol. 38:621–628.
  • Takaoka, M. (1940). The phenolic substances of white hellebore (Veratrum Grandiflorum Loes. Fill). V. Nippon Kagaku Kaishi 61:1067–1069.
  • Tang, H. Y., Shih, A., Cao, H. J., Davis, F. B., Davis, P. J. and Lin, H. Y. (2006). Resveratrol-induced cyclooxygenase-2 facilitates p53-dependent apoptosis in human breast cancer cells. Mol. Cancer Ther. 5:2034–2042.
  • Teahan, O., Bevan, C. L., Waxman, J. and Keun, H. C. (2011). Metabolic signatures of malignant progression in prostate epithelial cells. Int. J. Biochem. Cell. Biol. 43:1002–1009.
  • Thakur, V. S., Deb, G., Babcook, M. A. and Gupta, S. (2014). Plant phytochemicals as epigenetic modulators: Role in cancer chemoprevention. AAPS J. 16:151–163.
  • Thompson, C. B. (2009). Metabolic enzymes as oncogenesor tumor suppressors. N. Engl. J. Med. 360:813–815.
  • Tiziani, S., Lopes, L. and Günther, U. L. (2009). Early stage diagnosis of oral cancer using 1H NMR-based metabolomics. Neoplasia. 11:269–276.
  • Upadhyay, M., Samal, J., Kandpal, M., Singh, O. V. and Vivekanandan, P. (2013). The Warburg effect: Insights from the past decade. Pharmacol. Ther. 137:318–330.
  • Van der Woude, H., Gliszczyńska-Swigło, A., Struijs, K., Smeets, A., Alink, G. M. and Rietjens, I. M. (2003). Biphasic modulation of cell proliferation by quercetin at concentrations physiologically relevant in humans. Cancer Lett. 200:41–47.
  • Van Staveren, W. C., Solís, D. Y., Hébrant, A., Detours, V., Dumont, J. E. and Maenhaut, C. (2009). Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells? Biochim. Biophys. Acta. 1795:92–103.
  • Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. (2009). Understanding the warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033.
  • Vargo-Gogola, T. and Rosen, J. M. (2007). Modelling breast cancer: One size does not fit all. Nat. Rev. Cancer. 7:659–672.
  • Vermeersch, K. A. and Styczynski, M. P. (2013). Applications of metabolomics in cancer research. J. Carcinog. 12:9.
  • Watson, J. L., Greenshields, A., Hill, R., Hilchie, A, Lee, P. W., Giacomantonio, C. A. and Hoskin, D. W. (2010). Curcumin-induced apoptosis in ovarian carcinoma cells is p53-independent and involves p38 mitogen-activated protein kinase activation and downregulation of Bcl-2 and survivin expression and Akt signaling. Mol. Carcinog. 49:13–24.
  • Weljie, A. M., Bondareva, A., Zang, P. and Jirik, F. R. (2011). 1H NMR metabolomics identification of markers of hypoxia-induced metabolic shifts in a breast cancer model system. J. Biomol. NMR. 49:185–193.
  • White, E. (2012). Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer. 12:401–410.
  • Widlund, A. L, Baur, J. A. and Vang, O. (2013). mTOR: More targets of resveratrol? Expert Rev. Mol. Med. 15:e10.
  • Wilken, R., Veena, M. S., Wang, M. B. and Srivatsan, E. S. (2011). Curcumin: A review of anti-cancer properties and therapeutic activity in in head and neck squamous cell carcinoma. Mol. Cancer. 10:12.
  • Woo, J. H., Kim, Y. H., Choi, Y. J., Kim, D. G., Lee, K. S., Bae, J. H., Min, D. S., Chang, J. S., Jeong, Y. J., Lee, Y. H., Park, J. W. and Kwon, T. K. (2003). Molecular mechanisms of curcumin-induced cytotoxicity: Induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis. 24:1199–1208.
  • Woodside, J. V., Young, I. S. and McKinley, M. C. (2013). Fruit and vegetable intake and risk of cardiovascular disease. Proc. Nutr. Soc. 72:399–406.
  • Yang, C., Harrison, C., Jin, E. S., Chuang, D. T., Sherry, A. D., Malloy, C. R., Merritt, M. E. and Deberardinis, R. J. (2014). Simultaneous steady-state and dynamic 13C NMR can differentiate alternative routes of pyruvate metabolism in living cancer cells. J. Biol. Chem. 289:6212–6224.
  • Yang, M., Soga, T. and Pollard, P. (2013). Oncometabolites: Linking altered metabolism with cancer. J. Clin. Invest. 123:3652–3658.
  • Yoshii, Y., Furukawa, T., Saga, T. and Fujibayashi, Y. (2015). Acetate/acetyl-CoA metabolism associated with cancer fatty acid synthesis: Overview and application. Cancer Lett. 356:211–216.
  • Zhang, Q., Tang, X., Lu, Q. Y., Zhang, Z. F., Brown, J. and Le, A.D. (2005). Resveratrol inhibits hypoxia-induced accumulation of hypoxia-inducible factor-1alpha and VEGF expression in human tongue squamous cell carcinoma and hepatoma cells. Mol. Cancer Ther. 4:1465–1474.
  • Zhang, Z., Tan, M., Xie, Z., Dai, L., Chen, Y. and Zhao, Y. (2010). Identification of lysine succinylation as a new posttranslational modification. Nat. Chem. Biol. 7:58–63.
  • Zheng, S., Yumei, F. and Chen, A. (2007). De novo synthesis of glutathione is a prerequisite for curcumin to inhibit hepatic stellate cell (HSC) activation. Free Radic. Biol. Med. 43:444–453.
  • Zhou, G. Z., Xu, S. L., Sun, G. C. and Chen, X. B. (2014). Novel curcumin analogue IHCH exhibits potent antiproliferative effects by inducing autophagy in A549 lung cancer cells. Mol. Med. Rep. 10:441–446.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.