1,705
Views
59
CrossRef citations to date
0
Altmetric
Articles

Issues deserve attention in encapsulating probiotics: Critical review of existing literature

, , &

References

  • Adhikari, K., Mustapha, A. and Grün, I. (2003). Survival and metabolic activity of microencapsulated Bifidobacterium longum in stirred yogurt. J. Food Sci. 68:275–280.
  • Agrawal, R. (2005). Probiotics: An emerging food supplement with health benefits. Food Biotechnol. 19:227–246.
  • Anal, A. K. and Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol. 18:240–251.
  • Annan, N., Borza, A. and Hansen, L. T. (2008). Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Res. Int. 41:184–193.
  • Ashford, M., Fell, J., Attwood, D., Sharma, H. and Woodhead, P. (1993). An evaluation of pectin as a carrier for drug targeting to the colon. J. Control. Release. 26:213–220.
  • Aureli, P., Capurso, L., Castellazzi, A. M., Clerici, M., Giovannini, M., Morelli, L., Poli, A., Pregliasco, F., Salvini, F. and Zuccotti, G. V. (2011). Probiotics and health: An evidence-based review. Pharmacol. Res. 63:366–376.
  • Bhandari, B. (2008). Device and method for preparing microparticles. US Patent Application 20110008293.
  • Brinques, G. B. and Ayub, M. A. Z. (2011). Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. J. Food Eng. 103:123–128.
  • Burgain, J., Gaiani, C., Linder, M. and Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J. Food Eng. 104:467–483.
  • Capela, P. (2006). Use of cryoprotectants, prebiotics and microencapsulation of bacterial cells in improving the viability of probiotic organisms in freeze-dried yoghurt. Victoria University.
  • Capela, P., Hay, T. and Shah, N. (2006). Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Res. Int. 39:203–211.
  • Cell Biotech. (2014). Dual-coated Probiotics. Internet: http://www.cellbiotech.com/rnd/rndTechnology.
  • Chávarri, M., Marañón, I., Ares, R., Ibáñez, F. C., Marzo, F. and Villarán, M. C. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol. 142:185–189.
  • Chan, E. S. and Zhang, Z. (2005). Bioencapsulation by compression coating of probiotic bacteria for their protection in an acidic medium. Process Biochem. 40:3346–3351.
  • Chandramouli, V., Kailasapathy, K., Peiris, P. and Jones, M. (2004). An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J. Microbiol. Meth. 56:27–35.
  • Chen, K. N., Chen, M. J. and Lin, C. W. (2006). Optimal combination of the encapsulating materials for probiotic microcapsules and its experimental verification (R1). J. Food Eng. 76:313–320.
  • Cook, M. T., Tzortzis, G., Charalampopoulos, D. and Khutoryanskiy, V. V. (2011). Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria. Biomacromolecules. 12:2834–2840.
  • Cook, M. T., Tzortzis, G., Charalampopoulos, D. and Khutoryanskiy, V. V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. J. Control. Release. 162:56–67.
  • Corcoran, B., Stanton, C., Fitzgerald, G. and Ross, R. (2005). Survival of probiotic Lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 71:3060–3067.
  • Corthésy, B., Gaskins, H. R. and Mercenier, A. (2007). Cross-talk between probiotic bacteria and the host immune system. J. Nutr. 137:781S–790S.
  • de Vos, P., Faas, M. M., Spasojevic, M. and Sikkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int. Dairy J. 20:292–302.
  • Del Piano, M., Carmagnola, S., Andorno, S., Pagliarulo, M., Tari, R., Mogna, L., Strozzi, G. P., Sforza, F. and Capurso, L. (2010). Evaluation of the intestinal colonization by microencapsulated probiotic bacteria in comparison with the same uncoated strains. J. Clin. Gastroenterol. 44:S42–S46.
  • Del Piano, M., Garmagnola, S., Ballarè, M., Sartori, M., Orsello, M. and Balzarini, M. (2011). Is microencapsulation the future of probiotic preparations? Gut Microbes. 2:120–123.
  • Della Porta, G., Castaldo, F., Scognamiglio, M., Paciello, L., Parascandola, P. and Reverchon, E. (2012). Bacteria microencapsulation in PLGA microdevices by supercritical emulsion extraction. J. Supercrit. Fluids. 63:1–7.
  • Dinakar, P. and Mistry, V. (1994). Growth and viability of Bifidobacterium bifidum in Cheddar cheese. J. Dairy Sci. 77:2854–2864.
  • Ding, W. and Shah, N. P. (2007). Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. J. Food Sci. 72:M446–M450.
  • Ding, W. and Shah, N. P. (2008). Survival of free and microencapsulated probiotic bacteria in orange and apple juices. Int. Food Res. J. 15:219–232.
  • Ding, W. and Shah, N. P. (2009). Effect of various encapsulating materials on the stability of probiotic bacteria. J. Food Sci. 74:M100–M107.
  • Doherty, S., Auty, M., Stanton, C., Ross, R., Fitzgerald, G. and Brodkorb, A. (2012). Survival of entrapped Lactobacillus rhamnosus GG in whey protein micro-beads during simulated ex vivo gastro-intestinal transit. Int. Dairy J. 22:31–43.
  • Doherty, S., Ross, R., Stanton, C., Fitzgerald, G. and Brodkorb, A. (2009). Evaluation of protein matrices as structural safeguards for controlled delivery of probiotic bacteria. In: Proceedings of the XVIIth International Conference on Bioencapsulation. Groningen, Netherlands.
  • Ducel, V., Richard, J., Saulnier, P., Popineau, Y. and Boury, F. (2004). Evidence and characterization of complex coacervates containing plant proteins: Application to the microencapsulation of oil droplets. Colloids Surf A. 232:239–247.
  • Durand, H. and Panes, J. (2007). Particles containing coated living micro-organisms, and method for producing same. US Patent 7157258.
  • FAO/WHO. (2002). Guidelines for the evaluation of probiotics in Food. FAO/WHO Joint Working Group Report.
  • Fuller, R. (1989). Probiotics in man and animals. J. Appl. Microbiol. 66:365–378.
  • Gardiner, G. E., Bouchier, P., O'sullivan, E., Kelly, J., Kevin Collins, J., Fitzgerald, G., Paul Ross, R. and Stanton, C. (2002). A spray-dried culture for probiotic Cheddar cheese manufacture. Int. Dairy J. 12:749–756.
  • Gbassi, G. K. and Vandamme, T. (2012). Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics. 4:149–163.
  • Gbassi, G. K., Vandamme, T., Ennahar, S. and Marchioni, E. (2009). Microencapsulation of Lactobacillus plantarum spp. in an alginate matrix coated with whey proteins. Int. J. Food Microbiol. 129:103–105.
  • Graff, S., Hussain, S., Chaumeil, J.-C. and Charrueau, C. (2008). Increased intestinal delivery of viable Saccharomyces boulardii by encapsulation in microspheres. Pharm. Res. 25:1290–1296.
  • Guerin, D., Vuillemard, J. C. and Subirade, M. (2003). Protection of bifidobacteria encapsulated in polysaccharide-protein gel beads against gastric juice and bile. J. Food Prot. 66:2076–2084.
  • Hansen, L. T., Allan-Wojtas, P., Jin, Y. L. and Paulson, A. (2002). Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 19:35–45.
  • Heidebach, T., Först, P. and Kulozik, U. (2010). Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. J. Food Eng. 98:309–316.
  • Holzapfel, W. H. and Schillinger, U. (2002). Introduction to pre-and probiotics. Food Res. Int. 35:109–116.
  • Homayouni, A., Azizi, A., Ehsani, M., Yarmand, M. and Razavi, S. (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chem. 111:50–55.
  • Iyer, C., Phillips, M. and Kailasapathy, K. (2005). Release studies of Lactobacillus casei strain Shirota from chitosan-coated alginate-starch microcapsules in ex vivo porcine gastrointestinal contents. Lett. Appl. Microbiol. 41:493–497.
  • Jacobsen, C. N., Nielsen, V. R., Hayford, A., Møller, P., Michaelsen, K., Paerregaard, A., Sandström, B., Tvede, M. and Jakobsen, M. (1999). Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microbiol. 65:4949–4956.
  • Jain, A., Gupta, Y. and Jain, S. K. (2006). Azo chemistry and its potential for colonic delivery. Crit. Rev. Ther. Drug Carrier Syst. 23:349–400.
  • Kanmani, P., Kumar, R. S., Yuvaraj, N., Paari, K., Pattukumar, V. and Arul, V. (2011a). Cryopreservation and microencapsulation of a probiotic in alginate-chitosan capsules improves survival in simulated gastrointestinal conditions. Biotechnol. Bioprocess Eng. 16:1106–1114.
  • Kanmani, P., Kumar, R. S., Yuvaraj, N., Paari, K., Pattukumar, V. and Arul, V. (2011b). Effect of cryopreservation and microencapsulation of lactic acid bacterium Enterococcus faecium MC13 for long-term storage. Biochem. Eng. J. 58:140–147.
  • Kim, S. C. and Olson, N. F. (1985). Characteristics of viable Brevibacterium linens cells, methionine and cysteine in milkfat-coated microcapsules. J. Microencapsul. 2:197–206.
  • Kleerebezem, M. and Vaughan, E. E. (2009). Probiotic and gut lactobacilli and bifidobacteria: Molecular approaches to study diversity and activity. Annu. Rev. Microbiol. 63:269–290.
  • Klingberg, T. D. and Budde, B. B. (2006). The survival and persistence in the human gastrointestinal tract of five potential probiotic Lactobacilli consumed as freeze-dried cultures or as probiotic sausage. Int. J. Food Microbiol. 109:157–159.
  • Konstantinov, S. R., Smidt, H., de Vos, W. M., Bruijns, S. C., Singh, S. K., Valence, F., Molle, D., Lortal, S., Altermann, E. and Klaenhammer, T. R. (2008). S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc. Natl. Acad. Sci. 105:19474–19479.
  • Krasaekoopt, W. (2013). Microencapsulation of probiotics in hydrocolloid gel matrices: A review. Agro. Food Ind. Hi Tech. 24:76–83.
  • Krasaekoopt, W., Bhandari, B. and Deeth, H. (2003). Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy J. 13:3–13.
  • Krasaekoopt, W., Bhandari, B. and Deeth, H. (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int. Dairy J. 14:737–743.
  • López-Rubio, A., Sanchez, E., Wilkanowicz, S., Sanz, Y. and Lagaron, J. M. (2012). Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocolloids. 28:159–167.
  • Ladero, V., Fernandez, M. and Alvarez, M. A. (2009). Isolation and identification of tyramine-producing enterococci from human fecal samples. Can. J. Microbiol. 55:215–218.
  • Lahtinen, S., Ouwehand, A., Salminen, S., Forssell, P. and Myllärinen, P. (2007). Effect of starch- and lipid- based encapsulation on the culturability of two Bifidobacterium longum strains. Lett. Appl. Microbiol. 44:500–505.
  • Lin, J., Yu, W., Liu, X., Xie, H., Wang, W. and Ma, X. (2008). In vitro and in vivo characterization of alginate-chitosan-alginate artificial microcapsules for therapeutic oral delivery of live bacterial cells. J. Biosci. Bioeng. 105:660–665.
  • Mainville, I., Arcand, Y. and Farnworth, E. (2005). A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics. Int. J. Food Microbiol. 99:287–296.
  • McClements, D. J., Decker, E. A., Park, Y. and Weiss, J. (2009). Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit. Rev. Food Sci. Nutr. 49:577–606.
  • McMaster, L. and Kokott, S. (2005). Micro-encapsulation of Bifidobacterium lactis for incorporation into soft foods. World J. Microbiol. Biotechnol. 21:723–728.
  • Meng, X., Stanton, C., Fitzgerald, G., Daly, C. and Ross, R. (2008). Anhydrobiotics: The challenges of drying probiotic cultures. Food Chem. 106:1406–1416.
  • Micanel, N., Haynes, I. and Playne, M. (1997). Viability of probiotic cultures in commercial Australian yogurts. Aus. J. Dairy Technol. 52:24–27.
  • Mokarram, R., Mortazavi, S., Najafi, M. and Shahidi, F. (2009). The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Res. Int. 42:1040–1045.
  • Nag, A. and Das, S. (2013). Effect of trehalose and lactose as cryoprotectant during freeze-drying, in vitro gastro-intestinal transit and survival of microencapsulated freeze-dried Lactobacillus casei 431 cells. Int. J. Dairy Technol. 66:162–169.
  • Okuro, P. K., Thomazini, M., Balieiro, J. C., Liberal, R. D. and Favaro-Trindade, C. S. (2013). Co-encapsulating of Lactobacillus acidophilus with inulin or polydextrose in solid lipid microparticles provides protection and improves stability. Food Res. Int. 53:96–103.
  • Oliveira, A., Moretti, T., Boschini, C., Baliero, J., Freitas, O. and Favaro-Trindade, C. (2007). Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying. J. Microencapsul. 24:685–693.
  • Ortakci, F., Broadbent, J., McManus, W. and McMahon, D. (2012). Survival of microencapsulated probiotic Lactobacillus paracasei LBC-1e during manufacture of Mozzarella cheese and simulated gastric digestion. J. Dairy Sci. 95:6274–6281.
  • Özer, B., Kirmaci, H. A., Şenel, E., Atamer, M. and Hayaloğlu, A. (2009). Improving the viability of Bifidobacterium bifidum BB-12 and Lactobacillus acidophilus LA-5 in white-brined cheese by microencapsulation. Int. Dairy J. 19:22–29.
  • Özer, B., Uzun, Y. S. and Kirmaci, H. A. (2008). Effect of microencapsulation on viability of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-12 during Kasar cheese ripening. Int. J. Dairy Technol. 61:237–244.
  • Picot, A. and Lacroix, C. (2004). Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int. Dairy J. 14:505–515.
  • Pliszczak, D., Bourgeois, S., Bordes, C., Valour, J. P., Mazoyer, M. A., Orecchioni, A. M., Nakache, E. and Lantéri, P. (2011). Improvement of an encapsulation process for the preparation of pro- and prebiotics-loaded bioadhesive microparticles by using experimental design. Eur. J. Pharm. Sci. 44:83–92.
  • Rafael, Z.-V., Luis, M.-S. J., Eduardo, M.-F. H., Rebeca, F.-M., Víctor, M.-R. C., José, V.-G. and Ariza, O. T. D. J. (2012). Effect of incorporating prebiotics in coating materials for the microencapsulation of Sacharomyces boulardii. Int. J. Food Sci. Nutr. 63:930–935.
  • Reid, G., Bruce, A. W., Fraser, N., Heinemann, C., Owen, J. and Henning, B. (2001). Oral probiotics can resolve urogenital infections. FEMS Immunol. Med. Microbiol. 30:49–52.
  • Roberfroid, M. (2007). Prebiotics: The concept revisited. J. Nutr. 137:830S–837S.
  • Rodrigues, D., Sousa, S., Rocha-Santos, T., Silva, J., Sousa Lobo, J., Costa, P., Amaral, M., Pintado, M., Gomes, A. and Malcata, F. (2011). Influence of L-cysteine, oxygen and relative humidity upon survival throughout storage of probiotic bacteria in whey protein-based microcapsules. Int. Dairy J. 21:869–876.
  • Rokka, S. and Rantamäki, P. (2010). Protecting probiotic bacteria by microencapsulation: Challenges for industrial applications. Eur. Food Res. Technol. 231:1–12.
  • Roldo, M., Barbu, E., Brown, J. F., Laight, D. W., Smart, J. D. and Tsibouklis, J. (2007). Azo compounds in colon-specific drug delivery. Expert Opin. Drug Deliv. 4:547–560.
  • Roy, D., Daoudi, L. and Azaola, A. (2002). Optimization of galacto-oligosaccharide production by Bifidobacterium infantis RW-8120 using response surface methodology. J. Ind. Microbiol. Biotechnol. 29:281–285.
  • Saffran, M., Kumar, G. S., Savariar, C., Burnham, J. C., Williams, F. and Neckers, D. C. (1986). A new approach to the oral administration of insulin and other peptide drugs. Science. 233:1081–1084.
  • Sanders, M. E. and Marco, M. L. (2010). Food formats for effective delivery of probiotics. Food Sci. Technol. 1:65–85.
  • Sandoval-Castilla, O., Lobato-Calleros, C., García-Galindo, H., Alvarez-Ramírez, J. and Vernon-Carter, E. (2010). Textural properties of alginate–pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Res. Int. 43:111–117.
  • Sathyabama, S., Ranjith kumar, M., Bruntha devi, P., Vijayabharathi, R. and Brindha priyadharisini, V. (2014). Co-encapsulation of probiotics with prebiotics on alginate matrix and its effect on viability in simulated gastric environment. LWT - Food Sci. Technol. 57:419–425.
  • Shah, N. P., Lankaputhra, W. E., Britz, M. L. and Kyle, W. S. (1995). Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in commercial yoghurt during refrigerated storage. Int. Dairy J. 5:515–521.
  • Sohail, A., Turner, M. S., Prabawati, E. K., Coombes, A. G. and Bhandari, B. (2012). Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products. Int. J. Food Microbiol. 157:162–166.
  • Sousa, S., Gomes, A. M., Pintado, M. M., Malcata, F. X., Silva, J. P., Sousa, J. M., Costa, P., Amaral, M. H., Rodrigues, D. and Rocha-Santos, T. A. (2012). Encapsulation of probiotic strains in plain or cysteine-supplemented alginate improves viability at storage below freezing temperatures. Eng. Life Sci. 12:457–465.
  • Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P. and Kailasapathy, K. (2000). Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology. 62:47–55.
  • Sun, W. and Griffiths, M. W. (2000). Survival of Bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. Int. J. Food Microbiol. 61:17–25.
  • Thantsha, M. S. (2007). Cell immobilization techniques for the preservation of probiotics. Faculty of Natural and Agricultural Sciences, Department of Microbiology and Plant Pathology, University of Pretoria.
  • Thantsha, M. S., Cloete, T. E., Moolman, F. S. and Labuschagne, P. W. (2009). Supercritical carbon dioxide interpolymer complexes improve survival of B. longum Bb-46 in simulated gastrointestinal fluids. Int. J. Food Microbiol. 129:88–92.
  • Tzortzis, G., Goulas, A. K. and Gibson, G. R. (2005). Synthesis of prebiotic galactooligosaccharides using whole cells of a novel strain, Bifidobacterium bifidum NCIMB 41171. Appl. Microbiol. Biotechnol. 68:412–416.
  • Vaahtovuo, J., Korkeamäki, M., Munukka, E., Hämeenoja, P. and Vuorenmaa, J. (2007). Microbial balance index—A view on the intestinal microbiota. Livestock Sci. 109:174–178.
  • Vidhyalakshmi, R., Bhakyaraj, R. and Subhasree, R. (2009). Encapsulation “The future of probiotics”—A review. Adv. Biol. Res. 3:96–103.
  • Weinbreck, F., Bodnár, I. and Marco, M. (2010). Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products? Int. J. Food Microbiol. 136:364–367.
  • Ying, D., Sanguansri, L., Weerakkody, R., Singh, T. K., Leischtfeld, S. F., Gantenbein-Demarchi, C. and Augustin, M. A. (2011). Tocopherol and ascorbate have contrasting effects on the viability of microencapsulated Lactobacillus rhamnosus GG. J. Agric. Food Chem. 59:10556–10563.
  • Yu, H., Zhou, T., Gong, J., Young, C., Su, X., Li, X. Z., Zhu, H., Tsao, R. and Yang, R. (2010). Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCR-DGGE guided microbial selection. BMC Microbiol. 10:182. DOI:10.1186/1471-2180-10-182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.