38,685
Views
214
CrossRef citations to date
0
Altmetric
Original Articles

The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect

References

  • Ajani, U. A., Ford, E. S. and Mokdad, A. H. (2004). Dietary fiber and C reactive protein: Findings from national health and nutrition examination survey data. J. Nutr. 134:1181–1185.
  • AOAC. (2012). AOAC Official Methods of Analysis, 18th ed. AOAC International, Gaithersburg, USA.
  • Aprikian, O., Duclos, V., Guyot, S. and Besson, C. (2003). Apple pectin and a polyphenol- rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rats. J. Nutr. 133:1860–1865.
  • Aribas-Agusti, A., Van Buggenhout, S., Palmero, P., Hendrickx, M. and Van Loey, A. (2015). Investigating the role of pectin in carrot cell wall changes during thermal processing: A microscopic approach. Innov. Food Sci. Emerg. 24:113–120.
  • Arjmandi, B. H. and Reevesm, R. D. (1992). Dietary soluble fiber and cholesterol affect serum cholesterol concentration, hepatic portal venous short-chain fatty acid concentrations and fecal sterol excretion in rats. J. Nutr. 122:246–253.
  • Arora, T., Sharma, R. and Frost, G. (2011). Anti-obesity and satiety enhancing factor? Appetite 56:511–515.
  • Asakura, S. and Oosawa, F. (1954). On the interactions between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22:1255–1256.
  • Baye, K., Guyot, J.-P. and Mouquet-Rivier, C. (2017). The unresolved role of dietary fibers on mineral absorption. Crit. Rev. Food Sci. Nutr. 57:949–957.
  • Bazzano, L. A., He, J., Ogden, L. G., Loria, C. M. and Whelton, P. K. (2003). Dietary fiber intake and reduced risk of coronary heart disease in US men and women: The national health and nutrition examination survey|epidemiologic follow-up study. Arch. Intern. Med. 163:1897–1904.
  • Bazzocco, S., Mattila, I., Guyot, S., Renard, C. M. G. C. and Aura, A.-M. (2008). Factors affecting the conversion of apple polyphenols to phenolic acids and fruit matrix to short-chain fatty acids by human faecal microbiota in vitro. Eur. J. Nutr. 47:442–452.
  • Belitz, H. D., Grosch, W. and Schieberle, P. (2009). Food Chemistry, 4th ed. Springer, Berlin, Germany.
  • Bengtsson, A., Brackmann, C., Enejder, A., Alminger, M. L. and Svanberg, U. (2010). Effects of thermal processing on the in vitro bioaccessibility and microstructure of b-carotene in orange-fleshed sweet potato. J. Agric. Food Chem. 58(20):11090–11096.
  • Berg, T., Singh, J., Hardacre, A. and Boland, M. J. (2012). The role of cotyledon cell structure during in vitro digestion of starch in navy beans. Carbohyd. Polym. 87:1678–1688.
  • Beysseriat, M., Decker, E. A. and McClements, D. J. (2006). Preliminary study of the influence of dietary fiber on the properties of oil-in-water emulsions passing through an in vitro human digestion model. Food Hydrocoll. 20:800–809.
  • Boerjan, W., Ralph, J. and Baucher, M. (2003). Lignin biosythesis. Annu. Rev. Plant Biol. 54:519–546.
  • Bordenave, N., Hamaker, B. R. and Ferruzzi, M. G. (2014). Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food Funct. 5:18–34.
  • Bosscher, D., Van Caillie-Bertrand, M., Van Cauwenbergh, R. and Deelstra, H. (2003). Availabilities of calcium, iron, and zinc from dairy infant formulas is affected by soluble dietary fibers and modified starch fractions. Nutrition 19(7):641–645.
  • Bourriot, S., Garnier, C. and Doublier, J.-L. (1999). Phase separation, rheology and microstructure of micellar casein-guar gum mixtures. Food Hydrocoll. 13:43–49.
  • Bowles, R. K., Morgan, K. R., Furneaux, R. H. and Coles, G. D. (1996). 13C CP/MAS NMR study of the interaction of bile acids with barley β-d-glucan. Carbohydr. Polym. 29:7–10.
  • Brennan, C. S., Blake, D. E., Ellis, P. R. and Schofield, J. D. (1996). Effects of guar galactomannan on wheat bread microstructure and on the in vitro and in vivo digestibility of starch in bread. J. Cereal Sci. 24:151–160.
  • Brown, L., Rosner, B., Willett, W. W. and Sacks, F. M. (1999). Cholesterol lowering effects of dietary fiber: A meta-analysis. Am. J. Clin. Nutr. 69:30–42.
  • Brownlee, I. (2014). The impact of dietary fibre intake on the physiology and health of the stomach and upper gastrointestinal tract. Bioact. Carbohydr. Diet. Fibre 4:155–169.
  • Brummer, Y., Kaviani, M. and Tosh, S. M. (2014). Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Res. Int. 67:117–125.
  • Burkitt, D. P., Walker, A. R. and Painter, N. S. (1972). Effect of dietary fibre on stools and the transit-times, and its role in the causation of disease. Lancet 2:1408–1412.
  • Burton, R. A. and Fincher, G. B. (2014). Evolution and development of cell walls in cereal grains. Front. Plant Sci. 5:1–15.
  • Butt, M. S., Shahazadi, N., Sharif, M. K. and Nasir, M. (2007). Guar gum: A miracle therapy for hypercholesterolemia, hyperglycemia and obesity. Crit. Rev. Food Sci. Nutr. 47(4):389–396.
  • Canani, R. B., Costanzo, M. D., Leone, L., Pedata, M., Meli, R. and Calignano, A. (2011). Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol. 17:1519–1528.
  • Carpita, N. C. and Gibeaut, D. M. (1993). Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3:1—30.
  • Carrera-Bastos, P., Fontes-Villalba, M., O'Keefe, J., Lindeberg, S. and Cordain, L. (2011). The western diet and lifestyle and diseases of civilization. Res. Reports Clin. Cardiol. 2:15–35.
  • Carriere, F., Moreau, H., Raphel, V., Laugier, R., Benicourt, C., Junien, J. L. and Verger, R. (1991). Purification and biochemical characterization of dog gastric lipase. Eur. J. Biochem. 202:75–83.
  • Chater, P. I., Wilcox, M. D., Brownlee, I. A. and Pearson, J. P. (2015). Alginate as a protease inhibitor in vitro and in a model gut system; selective inhibition of pepsin but not trypsin. Carbohydr. Polym. 131:142–151.
  • Chuang, S.-C., Norat, T., Murphy, N., Olsen, A., Tjønneland, A., Overvad, K., Boutron-Ruault, M. C., Perquier, F., Dartois, L., Kaaks, R., Teucher, B., Bergmann, M. M., Boeing, H., Trichopoulou, A., Lagiou, P., Trichopoulos, D., Grioni, S., Sacerdote, C., Panico, S., Palli, D., Tumino, R., Peeters, P. H., Bueno-de-Mesquita, B., Ros, M. M., Brustad, M., Åsli, L. A., Skeie, G., Quirós, J. R., González, C. A., Sánchez, M. J., Navarro, C., Ardanaz Aicua, E., Dorronsoro, M., Drake, I., Sonestedt, E., Johansson, I., Hallmansm, G., Key, T., Crowe, F., Khaw, K. T., Wareham, N., Ferrari, P., Slimani, N., Romieu, I., Gallo, V., Riboli, E. and Vineis, P. (2012). Fiber intake and total and cause-specific mortality in the European prospective investigation into cancer and nutrition cohort. Am. J. Clin. Nutr. 96:164–174.
  • CODEX Alimentarius (CODEX). (2010). Guidelines on Nutrition Labeling CAC/GL 2–1985 as Last Amended 2010. FAO, Rome.
  • Cosgrove, D. J. (2001). Wall structure and wall loosening. A look backwards and forwards. Plant Physiol. 125:131–134.
  • Dahm, C. C., Keogh, R. H., Spencer, E. A., Greenwood, D. C., Key, T. J., Fentiman, I. S., Shipley, M. J., Brunner, E. J., Cade, J. E., Burley, V. J., Mishra, G., Stephen, A. M., Kuh, D., White, I. R., Luben, R., Lentjes, M. A., Khaw, K. T. and Rodwell Bingham, S. A. (2010). Dietary fiber and colorectal cancer risk: A nested case–control study using food diaries. J. Natl. Cancer Inst. 102:614–626.
  • Day, L., Gomez, J., Oiseth, S. K., Gidley, M. J. and Williams, B. A. (2012). Faster fermentation of cooked carrot cell clusters compared to cell wall fragments in vitro by porcine feces. J. Agric. Food Chem. 60(12):3282–3290.
  • Debon, S. J. J. and Tester, R. F. (2001). In vitro binding of calcium, iron and zinc by non-starch polysaccharides. Food Chem. 73(4):401–410.
  • De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., Collini, S., Pieraccini, G. and Lionetti, P. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 107:14691–14696.
  • de Munter, J. S., Hu, F. B., Spiegelman, D., Franz, M. and Van Dam, R. M. (2007). Whole grain, bran, and germ intake and risk of type 2 diabetes: A prospective cohort study and systematic review. PLoS Med. 4:1385–1395.
  • de Vries, J. (2004). Hydrocolloid gelling agents and their applications. In: Gums and Stabilizers for the Food Industry, Vol. 12, Philips, G. O. and Williams, P. A., Eds., The Royal Society of Chemistry, UK. pp. 22–30.
  • Dhital, S., Dolan, G., Stokes, J. R. and Gidley, M. J. (2014). Enzymatic hydrolysis of starch in the presence of cereal soluble fibre polysaccharides. Food Funct. 5:579–586.
  • Dhital, S., Gidley, M. J. and Warren, F. J. (2015a). Inhibition of α-amylase activity by cellulose: Kinetic analysis and nutritional implications. Carbohydr. Polym. 123:305–312.
  • Dhital, S., Warren, F. J., Butterworth, P. J., Ellis, P. R. and Gidley, M. J. (2017). Mechanisms of starch digestion by α-amylase–structural basis for kinetic properties. Crit. Rev. Food Sci. Nutr. 57:875–892.
  • Dick-Perez, M., Zhang, Y., Hayes, J., Salazar, A., Zabotina, O. A. and Hong, M. (2011). Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50:989–1000.
  • Dikeman, C. L. and Fahey, G. C. Jr. (2006). Viscosity as related to dietary fiber: A review. Crit. Rev. Food Sci. Nutr. 46(8):649–663.
  • Dongowski, G., Lorenz, A. and Proll, A. (2002). The degree of methylation influences the degradation of pectin in the intestinal tract of rats and in vitro. J. Nutr. 132:1935–1944.
  • Du, H., van der A, D. L., Boshuizen, H. C., Forouhi, N. G., Wareham, N. J., Halkjaer, J., Tjonneland, A., Overvad, K., Jakobsen, M. U., Boeing, H., Buijsse, B., Masala, G., Palli, D., Sorensen, T. J., Saris, W. H. and Feskens, E. J. (2010). Dietary fiber and subsequent changes in body weight and waist circumference in European men and women. Am. J. Clin. Nutr. 91:329–336.
  • Duncan, S. H., Louis, P., Thomson, J. M. and Flint, H. J. (2009). The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol. 11:2112–2122.
  • Dziedzic, K., Gorecka, D., Szwengiel, A., Smoczyńska, P., Czaczyk, K. and Komolka, P. (2015). Binding of bile acids by pastry products containing bioactive substances during in vitro digestion. Food Funct. 6:1011–1020.
  • Eastwood, M. A. and Hamilton, D. (1968). Studies on the adsorption of bile salts to non-absorbed components of diet. Biochim. Biophys. Acta 152:165–173.
  • Eastwood, M. A. and Morris, E. R. (1992). Physical properties of dietary fiber that influence physiological function: A model for polymers along the gastrointestinal tract. Am. J. Clin. Nutr. 55:436–442.
  • Edwards, C. A., Blackburn, N. A., Craigen, L., Davison, P., Tomlin, J., Sugden, K., Johnson, I. T. and Read, N. W. (1987). Viscosity of food gums determined in vitro related to their hypoglycemic actions. Am. J. Clin. Nutr. 46:72–77.
  • Edwards, C. H., Grundy, M. M. L., Grassby, T., Vasilopoulou, D., Frost, G. S., Butterworth, P. J., Berry, S. E. E., Sanderson, J. and Ellis, P. R. (2015a). Manipulation of starch bioaccessibility in wheat endosperm to regulate starch digestion, postprandial glycemia, insulinemia, and gut hormone responses: A randomized controlled trial in healthy ileostomy participants. Am. J. Clin. Nutr. 102:791–800.
  • Edwards, C. H., Warren, F. J., Campbell, G. M., Gaisford, S., Royall, P. G., Butterworth, P. J. and Ellis, P. R. (2015b). A study of starch gelatinisation behaviour in hydrothermally-processed plant food tissues and implications for in vitro digestibility. Food Funct. 6:3634–3641.
  • Ellegard, L. and Andersson, H. (2007). Oat bran rapidly increases bile acid excretion and bile acid synthesis: an ileostomy study. Eur. J. Clin. Nutr. 61:938–945.
  • Ellis, P. R., Kendall, C. W. C., Ren, Y., Parker, C., Pacy, J. F., Waldron, K. W. and Jenkins, D. J. A. (2004). Role of cell walls in the bioaccessibility of lipids in almond seeds. Am. J. Clin. Nutr. 80:604–613.
  • Espinal-Ruiz, M., Parada-Alfonso, F., Restrepo-Sanchez, L.-P., Narvaez-Cuenca, C.-E. and McClements, D. J. (2014a). Impact of dietary fibers methyl cellulose, chitosan, and pectin on digestion of lipids under simulated gastrointestinal conditions. Food Funct. 5:3083–3095.
  • Espinal-Ruiz, M., Parada-Alfonso, F., Restrepo-Sanchez, L.-P., Narvaez-Cuenca, C.-E. and McClements, D. J. (2014b). Interaction of a dietary fiber (pectin) with gastrointestinal components (bile salts, calcium, and lipase): A calorimetry, electrophoresis, and turbidity study. J. Agric. Food Chem. 62:12620–12630.
  • Espinal-Ruiz, M., Restrepo-Sanchez, L.-P., Narvaez-Cuenca, C. E. and McClements, D. J. (2016). Impact of pectin properties on lipid digestion under simulated gastrointestinal conditions: Comparison of citrus and banana passion fruit (Passiflora tripartita var. mollissima) pectins. Food Hydrocoll. 52:329–342.
  • Fabek, H., Messerschmidt, S., Brulport, V. and Goff, H. D. (2014). The effect of in vitro digestive processes on the viscosity of dietary fibres and their influence on glucose diffusion. Food Hydrocoll. 35:718–726.
  • Fernandez, R. and Phillips, S. (1982). Components of fiber bind iron in vitro. Am. J. Clin. Nutr. 35(1):100–106.
  • Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. and Forano, E. (2012). Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 3(4):289–306.
  • Foschia, M., Peressini, D., Sensidoni, A., Brennan, M. A. and Brennan, C. S. (2015). Synergistic effect of different dietary fibres in pasta on in vitro starch digestion?. Food Chem. 172:245–250.
  • Furness, J. B. (2000). Types of neurons in the enteric nervous system. J. Auton. Nerv. Syst. 81(1–3):87–96.
  • Ganry, O. (2002). Phytoestrogen and breast cancer prevention. Eur. J. Cancer Prev. 11:519–522.
  • Gao, R., Liu, H., Peng, Z., Wu, Z., Wang, Y. and Zhao, W. G. (2012). Adsorption of (−)-epigallocatechin-3-gallate (EGCG) onto oat b-glucan. Food Chem. 132:1936–1943.
  • Gemen, R., de Vries, J. F. and Slavin, J. L. (2011). Relationship between molecular structure of cereal dietary fiber and health effects: Focus on glucose/insulin response and gut health. Nutr. Rev. 69(1):22–33.
  • Gidley, M. J. (2013). Hydrocolloids in the digestive tract and related health implications. Curr. Opin. Coll. Interf. Sci. 18:371–378.
  • Golay, A., Coulston, A. M., Hollenbeck, C. B., Kaiser, L. L., Würsch, P. and Reaven, G. M. (1986). Comparison of metabolic effects of white beans processed into two different physical forms. Diabetes Care 9(3):260–266.
  • Gonçalves, R., Mateus, N. and de Freitas, V. (2011). Influence of carbohydrates on the interaction of procyanidin B3 with trypsin. J. Agric. Food Chem. 59:11794–11802.
  • Grassby, T., Picout, D. V., Mandalari, G., Faulks, R. M., Kendall, C. W. C., Rich, G. T., Wickham, M. S. J., Lapsley, K. and Ellis, P. R. (2014). Modelling of nutrient bioaccessibility in almond seeds based on the fracture properties of their cell walls. Food Funct. 5:3096–3106.
  • Grundy, M. M.-L., Grassby, T., Mandalari, G., Waldron, K. W., Butterworth, P. J., Berry, S. E. and Ellis, P. R. (2015a). Effect of mastication on lipid bioaccessibility of almonds in a randomized human study and its implications for digestion kinetics, metabolizable energy, and postprandial lipemia. Am. J. Clin. Nutr. 101(1):25–33.
  • Grundy, M. M.-L., Wilde, P. J., Butterworth, P. J., Gray, R. and Ellis, P. R. (2015b). Impact of cell wall encapsulation of almonds on in vitro duodenal lipolysis. Food Chem. 185:405–412.
  • Guillon, F. and Champ, M. (2000). Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Res. Int. 33:233–245.
  • Gunness, P., Flanagan, B. M. and Gidley, M. (2010a). Molecular interactions between cereal soluble dietary fibre polymers and a model bile salt deduced from 13C NMR titration. J. Cereal Sci. 52:444–449.
  • Gunness, P. and Gidley, M. (2010b). Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct. 1:149–155.
  • Hague, A., Elder, D. J., Hicks, D. J. and Paraskeva, C. (1995). Apoptosis in colorectal tumour cells: Induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. Int. J. Cancer. 60:400–406.
  • Hamaker, B. R. and Tuncil, Y. (2014). A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J. Mol. Biol. 426(23):3838–3850.
  • Han, L. K., Kimura, Y. and Okuda, H. (1999). Reduction in fat storage during chitin–chitosan treatment in mice fed a high-fat diet. Int. J. Obesity. 23(2):174–179.
  • Hardacre, A. K., Yap, S.-Y., Lentle, R. G., Janssen, P. W. M. and Monro, J. A. (2014). The partitioning of water in aggregates of undigested and digested dietary particles. Food Chem. 142:446–454.
  • Hardacre, A. K., Yap, S.-Y., Lentle, R. G. and Monro, J. A. (2015). The effect of fibre and gelatinised starch type on amylolysis and apparent viscosity during in vitro digestion at a physiological shear rate. Carbohydr. Polym. 123:80–88.
  • He, Q., Lv, Y. and Yao, K. (2007). Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase. Food Chem. 101:1178–1182.
  • Heaton, K. W. and O'Donnell, L. J. (1994). An office guide to whole-gut transit time. Patients' recollection of their stool form. J. Clin. Gastroenterol. 19:28–30.
  • Hertog, M. G., Feskens, E. J., Hollman, P. C., Katan, M. B. and Kromhout, D. (1993). Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen elderly study. Lancet 342:1007–1011.
  • Hipsley, E. H. (1953). Dietary “fibre” and pregnancy toxaemia. Brit. Med. J. 2:420–422.
  • Hoad, C. L., Rayment, P., Spiller, R. C., Marciani, L., Alonso, B. D., Traynor, C., Mela, D. J., Peters, H. P. F. and Gowland, P. A. (2004). In vivo imaging of intragastric gelation and its effect on satiety in humans. J. Nutr. 134(9):2293–2300.
  • Hoebler, C., Karinthi, A., Devaux, M. F., Guillon, F., Gallant, D. J., Bouchet, B., Melegari, C. and Barry, J. L. (1998). Physical and chemical transformations of cereal food during oral digestion in human subjects. Br. J. Nutr. 80:429–436.
  • Houghton, D., Wilcox, M. D., Chater, P. I., Brownlee, I. A., Seal, C. J. and Pearson, J. P. (2015). Biological activity of alginate and its effect on pancreatic lipase inhibition as a potential treatment for obesity. Food Hydrocoll. 49:18–24.
  • Huang, C.-M. and Dural, N. (1995). Adsorption of bile acids on cereal type food fibers. J. Food Process. Eng. 18:243–266.
  • Humphrey, S. P. and Williamson, R. T. (2001). A review of saliva: Normal composition, flow, and function. Prosthet. Dent. 85:162–169.
  • Institute of Medicine. (2001). Dietary Reference Intakes: Proposed Definition of Dietary Fiber. National Academies Press, Washington, DC.
  • Isaksson, G., Lundquist, I. and Ihse, I. (1982). In vitro inhibition of pancreatic enzyme activities by dietary fiber. Digestion. 24(1):54–59.
  • Ismail-Beigi, F., Faraji, B. and Reinhold, J. (1977). Binding of zinc and iron to wheat bread, wheat bran, and their components. Am. J. Clin. Nutr. 30(10):1721–1725.
  • Izydorczyk, M. S., Storsley, J., Labossiere, D., MacGregor, A. W. and Rossnagel, B. G. (2000). Variation in total and soluble β-glucan content in hulless barley: effects of thermal, physical, and enzymic treatments. J. Agric. Food Chem. 48:982–989.
  • Jacobek, L. (2015). Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 175:556–567.
  • Jarchum, I. and Pamer, E. G. (2011). Regulation of innate and adaptive immunity by the commensal microbiota. Curr. Opin. Immunol. 23:353–360.
  • Jarjis, H. A., Blackburn, N. A., Redfern, J. S. and Read, N. W. (1984). The effect of ispaghula husk (Fybogel and Metamucil) and guar gum on glucose tolerance in man. Br. J. Nutr. 51:371–378.
  • Jaskari, J., Henriksson, K., Nieminen, A., Suortti, T., Salovaara, H. and Poutanen, K. (1995). Effect of hydrothermal and enzymic treatments on the viscous behavior of dry- and wet-milled oat brans. Cereal Chem. 72:625–631.
  • Jenkins, D. J. A., Jenkins, A. L., Wolever, T. M. S., Collier, G. R., Rao, A. V. and Thompson, L. U. (1987). Starchy foods and fibre—reduced rate of digestion and improved carbohydrate metabolism. Scand. J. Gastroenterol. 22:132–141.
  • Jenkins, D. J., Newton, C., Leeds, A. R. and Cummings, J. H. (1975). Effect of pectin, guar gum, and wheat fibre on serum-cholesterol. Lancet 1:1116–1117.
  • Jensen, M. K., Koh-Banerjee, P., Hu, F. B., Franz, M., Sampson, L., Gronbaek, M. and Rimm, E. B. (2004). Intakes of whole grains, bran, and germ and the risk of coronary heart disease in men. Am. J. Clin. Nutr. 80:1492–1499.
  • Johansson, L., Virkki, L., Anttila, H., Esselstrom, H., Tuomainen, P. and Sontag-Strohm, T. (2006). Hydrolysis of β-glucan. Food Chem. 97:71–79.
  • Jones, J. M. (2014). CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap'. Nutr. J. 13:34–43.
  • Kim, K.-T., Rioux, L.-E. and Turgeon, S. (2014). Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry 98:27–33.
  • Kosikova, B., Slamenova, D., Mikulasova, M., Horvathova, E. and Labaj, J. (2002). Reduction of carcinogenesis by bio-based lignin derivatives. Biomass Bioenerg. 23:153–159.
  • Kulkarni, B. V. and Mattes, R. D. (2014). Lingual lipase activity in the orosensal detection of fat in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306:R879–R885.
  • Kumar, A. and Chauhan, G.S. (2010). Extraction and characterization of pectin from apple pomace and its evaluation as lipase (steapsin) inhibitor. Carbohydr. Polym. 82(2):454–459.
  • Kurokawa, K., Itoh, T., Kuwahara, T., Oshima, K., Toh, H., Toyoda, A., Takami, H., Morita, H., Sharma, V. K., Srivastava, T. P., Taylor, T. D., Noguchi, H., Mori, H., Ogura, Y., Ehrlich, D. S., Itoh, K., Takagi, T., Sakaki, Y., Hayashi, T. and Hattori, M. (2007). Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res. 14:169–181.
  • Lau, C., Faerch, K., Glumer, C., Tetens, I., Pedersen, O., Carstensen, B., Jorgensen, T. and Borch-Jonsen, K. (2005). Dietary glycemic index, glycemic load, fiber, simple sugars, and insulin resistance. Diabetes Care 28:1397–1403.
  • Lazaridou, A., Marinopoulou, A., Matsoukas, N. P. and Biliaderis, C. G. (2014). Impact of flour particle size and autoclaving on β-glucan physicochemical properties and starch digestibility of barley rusks as assessed by in vitro assays. Bioact. Carbohydr. Diet Fibre 1:58–73.
  • Le Bourvellec, C., Bouchet, B. and Renard, C. M. G. C. (2005b). Non-covalent interaction between procyanidins and apple cell wall material. Part III; study on model polysaccharides. Biochim. Biophys. Acta Gen. Subj. 1725:10–18.
  • Le Bourvellec, C. and Renard, C. M. G. C. (2005a). Non-covalent interaction between procyanidins and cell wall material. Part II: Quantification and impact of the cell wall drying. Biochim. Biophys. Acta Gen. Subj. 1725:1–9.
  • Leclere, C. J., Champ, M., Boillot, J., Guille, G., Lecannu, G., Molis, C., Bornet, F., Krempf, M., Delort-Laval, J. and Galmich, J.-P. (1994). Role of viscous guar gums in lowering the glycemic response after a solid meal. Am. J. Clin. Nutr. 59:914–921.
  • Lemmens, L., Van Buggenhout, S., Van Loey, A. and Hendrickx, M. (2010). Particle size reduction leading to cell wall rupture is more important for b-carotene bio-accessibility of raw compared to thermally processed carrots. J. Agric. Food Chem. 58:12769–12776.
  • Lentle, R. G. and Janssen, P. W. M. (2008). Physical characteristics of digesta and their influence on flow and mixing in the mammalian intestine: A review. J. Comp. Physiol. B 178:673–690.
  • Lewis, S. J. and Heaton, K. W. (1999). Roughage revisited: the effect on intestinal function of inert plastic particles of different sizes and shape. Dig. Dis. Sci. 44:744–758.
  • Li, M., Kim, J.-W. and Peeples, T. L. (2002). Amylase partitioning and extractive bioconversion of starch using thermoseparating aqueous two-phase systems. J. Biotechnol. 93:15–26.
  • Lia, A., Hallmans, G., Sandberg, A. S., Sundberg, B., Aman, P. and Andersson, H. (1995). Oat beta-glucan increases bile acid excretion and a fiberrich barley fraction increases cholesterol excretion in ileostomy subjects. Am. J. Clin. Nutr. 62:1245–1251.
  • Liese, A. D., Roach, A. K., Sparks, K. C., Marquart, L., D'Agostino, R. B. Jr, and Mayer-Davis, E. J. (2003). Whole-grain intake and insulin sensitivity: the insulin resistance atherosclerosis study. Am. J. Clin. Nutr. 78:965–971.
  • Lindahl, A., Ungell, A. L., Knutson, L. and Lennernas, H. (1997). Characterization of fluids from the stomach and proximal jejunum in men and women. Pharmaceut. Res. 14(4):497–502.
  • Liu, R. H. (2004). Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 134:3479S–3485S.
  • Liu, S., Willett, W. C., Manson, J. E., Hu, F. B., Rosner, B. and Colditz, G. (2003). Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am. J. Clin. Nutr. 78:920–927.
  • Livesey, G., Wilkinson, J. A., Roe, M., Faulks, R., Clark, S., Brown, J. C., Kennedy, H. and Elia, M. (1995). Influence of the physical form of barley grain on the digestion of its starch in the human small intestine and implications for health. Am. J. Clin. Nutr. 61:75–81.
  • Lovegrove, A., Edwards, C. H., De Noni, I., Patel, H., El, S. N., Grassby, T., Zielke, C., Ulmius, M., Nilsson, L., Butterworth, P. J., Ellis, P. R. and Shewry, P. R. (2017). Role of polysaccharides in food, digestion and health. Crit. Rev. Food Sci. Nutr. 57:237–253.
  • Low, D. Y., D'Arcy, B. and Gidley, M. (2015). Mastication effects on carotenoid bioaccessibility from mango fruit tissue. Food Res. Int. 67:238–246.
  • Lupton, J. R., Betteridge, V. A. and Pijls, L. T. J. (2009). Codex final definition of dietary fibre: Issues of implementation. Qual. Assur. Saf. Crops. Food. 1:206–212.
  • Lupton, J. R. and Kurtz, P. P. (1993). Relationship of colonic luminal short-chain fatty acids and pH to in vivo cell proliferation in rats. J. Nutr. 123:1522–1530.
  • Madar, Z. and Stark, A. (1995). Possible mechanism by which dietary fibres affect lipid metabolism. Agro Food Ind. Hi-Tech. 6:40–42.
  • Maki, K. C., Beiseigel, J. M., Jonnalagadda, S. S., Gugger, C. K., Reeves, M. S., Farmer, M. V., Kaden, V. N. and Rains, T. N. (2010). Whole-grain ready-to-eat oat cereal, as part of a dietary program for weight loss, reduces low-density lipoprotein cholesterol in adults with overweight and obesity more than a dietary program including low-fiber control foods. J. Am. Diet Assoc. 110:205–214.
  • Maljaars, P. W. J., Peters, H. P. F., Mela, D. J. and Masclee, A. A. M. (2009). Ileal brake: A sensible food target for appetite control. A review. Physiol. Behav. 95:271–281.
  • Malkki, Y., Autio, K., Hanninen, O., Myllymaki, O., Pelkonen, K., Suortti, T. and Torronen, R. (1992). Oat bran concentrates: Physical properties of β;-glucan and hypercholesterolemic effects in rats. Cereal Chem. 69:647–653.
  • Mandalari, G., Grundy, M. M.-L., Grassby, T., Parker, M. L., Cross, K. L., Chessa, S., Bisignano, C., Barreca, D., Bellocco, E., Lagana', G., Butterworth, P. J., Faulks, R. M., Wilde, P. J., Ellis, P. R. and Waldron, K. W. (2014). The effects of processing and mastication on almond lipid bioaccessibility using novel methods of in vitro digestion modelling and micro-structural analysis. Br. J. Nutr. 112(9):1521–1529.
  • Mandalari, R., Faulks, G. T., Rich, V., Lo Turco, D., Picout, R. B., Lo Curto, C., Bisignano, G., Dugo, K. W., Waldron, P., Ellis, P. S. and Wickham, M. S. (2008). Release of protein, lipid, and vitamin E from almond seeds during digestion J. Agric. Food Chem. 56:3409–3416.
  • McDougall, G. J., Kulkarni, N. N. and Stewart, D. (2008). Current developments on the inhibitory effects of berry polyphenols on digestive enzymes. BioFactors 34:73–80.
  • McNeil, N. I. (1984). The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr. 39:338–342.
  • McRorie, J., Pepple, S. and Rudolph, C. (1998). Effects of fiber laxatives and calcium docusate on regional water content and viscosity of digesta in the large intestine of the pig. Dig. Dis. Sci. 43:738–745.
  • Melito, C. and Tovar, J. (1995). Cell walls limit in vitro protein digestibility in processed legume seeds. Food Chem. 53:305–307.
  • Meyer, K. A., Kushi, L. H., Jacobs, D. R. Jr, Slavin, J., Sellers, T. A. and Folsom, A. R. (2000). Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am. J. Clin. Nutr. 71:921–930.
  • Mikhaleva, N. Y., Borisenkov, M. F., Gyunter, E. A., Popeiko, O. V. and Ovodov, Y. S. (2011). Effect of successive acid and enzymatic hydrolysis on the structure and antioxidant activity of pectins. Russ. J. Bioorg. Chem. 37:822–828.
  • Mikkelsen, D., Gidley, M. J. and Williams, B. A. (2011). In vitro fermentation of bacterial cellulose composites as model dietary fibers. J. Agric. Food Chem. 59:4025–4032.
  • Mikkelsen, M. S., Cornali, S. B., Jensen, M. G., Nilsson, M., Beeren, S. R. and Meier, S. (2014). Probing Interactions between β-Glucan and bile salts at atomic detail by 1H−13C NMR assays. J. Agric. Food Chem. 62:11472–11478.
  • Mikkelsen, M. S., Jespersen, B. M., Mehlsen, A., Engelsen, S. B. and Frokiaer, A. (2014a). Cereal β-glucan immune modulating activity depends on the polymer fine structure. Food Res. Int. 6:829–836.
  • Millar, P. and Chesson, A. (1984). Modifications to swede (Brassica napus L.) anterior to the terminal ileum of pigs: some implications for the analysis of dietary fibre. Br. J. Nutr. 52:583–594.
  • Miller, J. C., Buchanan, C. J., Eastwood, E. A. and Fry, S. C. (1995). The solubilisation and hydrolysis of spinach cell wall polysaccharides in gastric and pancreatic fluids. J. Sci. Food Agric. 68:389–394.
  • Minekus, M., Jelier, M., Xiao, J.-Z., Kondo, S., Iwatsuki, K., Kokubo, S., Bos, M., Dunnewind, B. and Havenaar, R. (2004). Effect of partially hydrolyzed guar gum (PHGG) on the bioaccessibility of fat and cholesterol. Biosci. Biotechnol. Biochem. 69:932–938.
  • Miyada, T., Nakajima, A. and Ebihara, K. (2011). Iron bound to pectin is utilised by rats. Br. J. Nutr. 106(1):73–78.
  • Moelants, K. R. N., Lemmens, L., Vandebroeck, M., Van Buggenhout, S., Van Loey, A. M. and Hendrickx, M. E. (2012). Relation between particle size and carotenoid bioaccessibility in carrot- and tomato-derived suspensions. J. Agric. Food Chem. 60:11995–12003.
  • Moffett, D. F., Moffett, S. B. and Schauf, C. L. (1993). Human Physiology–Foundations & Frontiers, 2nd ed. Mosby Elsevier, US.
  • Monro, J. A. and Mishra, S. (2010). Digestion-resistant remnants of vegetable vascular and parenchyma tissues differ in their effects in the large bowel of rats. Food Dig. 1:47–56.
  • Montonen, J., Knekt, P., Jarvinen, R., Aromaa, A. and Reunanen, A. (2003). Whole-grain and fiber intake and the incidence of type 2 diabetes. Am. J. Clin. Nutr. 77:622–629.
  • Murphy, N., Norat, T., Ferrari, P., Jenab, M., Bueno-de-Mesquita, B., Skeie, G., Dahm, C. C., Overvad, K., Olsen, A., Tjønneland, A., Clavel-Chapelon, F., Boutron-Ruault, M. C., Racine, A., Kaaks, R., Teucher, B., Boeing, H., Bergmann, M. M., Trichopoulou, A., Trichopoulos, D., Lagiou, P., Palli, D., Pala, V., Panico, S., Tumino, R., Vineis, P., Siersema, P., van Duijnhoven, F., Peeters, P. H., Hjartaker, A., Engeset, D., González, C. A., Sánchez, M. J., Dorronsoro, M., Navarro, C., Ardanaz, E., Quirós, J. R., Sonestedt, E., Ericson, U., Nilsson, L., Palmqvist, R., Khaw, K. T., Wareham, N., Key, T. J., Crowe, F. L., Fedirko, V., Wark, P. A., Chuang, S. C. and Riboli, E. (2012). Dietary fibre intake and risks of cancers of the colon and rectum in the European prospective investigation into cancer and nutrition (EPIC). Plos One 7:1–10.
  • Nair, B. M., Asp, N.-G., Nyman, M. and Persson, H. (1987). Binding of mineral elements by some dietary fibre components-in vitro (I). Food Chem. 23:295–303.
  • Netzel, M., Netzel, G., Zabaras, D., Lundin, L., Day, L., Addepalli, R., Osborne, S. and Seymour, R. (2011). Release and absorption of carotenes from processed carrots (Daucus carota) using in vitro digestion coupled with a Caco-2 cell trans-well culture model. Food Res. Int. 44:868–874.
  • N'Goma, J.-C. B., Amara, S., Dridi, K., Jannin, V. and Carriere, F. (2012). Understanding the lipid digestion processes in the GI tract before designing lipid-based drug-delivery systems. Ther. Deliv. 3:105–124.
  • Noah, L., Guillon, F., Bouchet, B., Buleon, A., Molis, C., Gratas, M. and Champ, M. (1998). Digestion of carbohydrate from white beans (Phaseolus vulgaris L.) in healthy humans. J. Nutr. 128:977–985.
  • Nomura, A. M., Hankin, J. H., Henderson, B. E., Wilkens, L. R., Murphy, S. P., Pike, M. C., LeMarchand, L., Stram, D. O., Monroe, K. R. and Kolonel, L. N. (2007). Dietary fiber and colorectal cancer risk: The multiethnic cohort study. Cancer Causes Control 18:753–764.
  • Norton, A. B., Cox, P. W. and Spyropoulos, F. (2011). Acid gelation of low acyl gellan gum relevant to self-structuring in the human stomach. Food Hydrocoll. 25:1105–1111.
  • Norton, I., Moore, S. and Fryer, P. (2007). Understanding food structuring and breakdown: Engineering approaches to obesity. Obes. Rev. 8:83–88.
  • Oakenfull, D. (1987). Gelling agents. Crit. Rev. Food Sci. Nutr. 26:1–31.
  • Padayachee, A., Day, L., Howell, K. and Gidley, M. J. (2017). Complexity and health functionality of plant cell wall fibres from fruits and vegetables. Crit. Rev. Food Sci. Nutr. 57:59–81.
  • Padayachee, A., Netzel, G., Netzel, M., Day, L., Zabaras, D., Mikkelsen, D. and Gidley, M. J. (2012a). Binding of polyphenols to plant cell wall analogues – part 1: Anthocyanins. Food Chem. 134:155–161.
  • Padayachee, A., Netzel, G., Netzel, M., Day, L., Zabaras, D., Mikkelsen, D. and Gidley, M. J. (2012b). Binding of polyphenols to plant cell wall analogues – Part 2: Phenolic acids. Food Chem. 135:2287–2292.
  • Padayachee, G., Netzel, M., Netzel, L., Day, D., Zabaras, D., Mikkelsen, D. and Gidley, M. J. (2013). Lack of release of bound anthocyanins and phenolic acids from carrot plant cell walls and model composites during simulated gastric and small intestinal digestion. Food Funct. 4:906–916.
  • Pal, R. (1996). Rheological properties of mixed polysaccharides and polysaccharide-thickened emulsions. AIChE J. 42(7):1824–1832.
  • Palmero, P., Lemmens, L., Ribas-Agusti', A., Sosa, C., Met, K., Umutoni, J. d. D., Hendrickx, M. and Van Loey, A. (2013). Novel targeted approach to better understand how natural structural barriers govern carotenoid in vitro bioaccessibility in vegetable based systems. Food Chem. 141:2036–2043.
  • Park, J. S., Woo, M. S., Kim, D. H., Hyun, J. W., Kim, W. K., Lee, J. C. and Kim, H. S. (2007). Anti-inflammatory mechanisms of isoflavone metabolites in lipopolysaccharide-stimulated microglial cells. J. Pharmacol. Exp. Ther. 320:1237–1245.
  • Pasquier, B., Armand, M., Guillon, F., Castelain, C., Borel, P., Barry, J. L., Pieroni, G. and Lairon, D. (1996). Viscous soluble dietary fibers alter emulsification and lipolysis of triacylglycerols in duodenal medium in vitro. J. Nutr. Biochem. 7:293–302.
  • Pereira, M. A., O'Reilly, E., Augustsson, K., Fraser, G. E., Goldbourt, U., Hitmann, B. L., Hallmans, G., Knekt, P., Liu, S., Pietinen, P., Spiegelman, D., Stevens, J., Virtamo, J., Willet, W. C. and Ascherio, A. (2004). Dietary fiber and risk of coronary heart disease: A pooled analysis of cohort studies. Arch. Intern. Med. 164:370–376.
  • Petitot, M., Abecassis, J. and Micard, V. (2009). Structuring of pasta components during processing: Impact on starch and protein digestibility and allergenicity. Trends Food Sci. Tech. 20:521–532.
  • Pettolino, F. A., Walsh, C., Fincher, G. B. and Bacic, A. (2012). Determining the polysaccharide composition of plant cell walls. Nat. Protoc. 7:1590–1607.
  • Phan, A. D. T., Netzel, G., Wang, D., Flanagan, B. M., D'Arcy, B. and Gidley, M. J. (2015). Binding of dietary polyphenols to cellulose: Structural and nutritional aspects. Food Chem. 171:388–396.
  • Ragaee, S. M., Campbell, G. L., Scoles, G. J., McLeod, J. G. and Tyler, R. T. (2001). Studies on rye (Secale cereale L.) lines exhibiting a range of extract viscosities. 1. Composition, molecular weight distribution of water extracts, and biochemical characteristics of purified water-extractable arabinoxylan. J. Agric. Food Chem. 49:2437–2445.
  • Ralph, J. (2010). Hydroxycinnamates in lignification. Phytochem. Rev. 9(1):65–83.
  • Ramasamy, U. S., Venema, K., Schols, H. and Gruppen, H. (2014). Effect of soluble and insoluble fibers within the in vitro fermentation of chicory root pulp by human gut bacteria. J. Agric. Food Chem. 62:6794–6802.
  • Rave, K., Roggen, K., Dellweg, S., Heise, T. and tom Dick, H. (2007). Improvement of insulin resistance after diet with a whole-grain based dietary product: Results of a randomized, controlled crossover study in obese subjects with elevated fasting blood glucose. Br. J. Nutr. 98:929–936.
  • Reiser, S. (1987). Metabolics effects of dietary pectins related to human health. Food Technol. 41:91–99.
  • Ribnicky, D. M., Roopchand, D. E., Poulev, A., Kuhn, P., Oren, A., Cefalu, W. T. and Raskin, I. (2014). Artemisia dracunculus L. polyphenols complexed to soy protein show enhanced bioavailability and hypoglycemic activity in C57BL/6 mice. Nutrition. 30:S4–S10.
  • Roberfroid, M. B., Van Loo, J. A. E. and Gibson, G. R. (1998). The bifidogenic nature of chicory inulin and its hydrolysis products. J. Nutr. 128:11–19.
  • Robertson, J. A., Majsak-Newman, G., Ring, S. G. and Selvendran, R. R. (1997). Solubilization of mixed linkage (1-3),(1-4)-b-D-glucans from barley: Effects of cooking and digestion. J. Cereal Sci. 25:275–283.
  • Rodriguez, M. S. and Albertengo, L. E. (2005). Interaction between chitosan and oil under stomach and duodenal digestive chemical conditions. Biosci. Biotechnol. Biochem. 69:2057–2062.
  • Rodriguez-Gutierrez, G., Rubio-Senent, F., Lama-Munoz, A., Garcia, A. and Fernandez-Bolanos, J. (2014). Properties of lignin, cellulose, and hemicelluloses isolated from olive cake and olive stones: binding of water, oil, bile acids, and glucose. J. Agric. Food Chem. 62:8973–8981.
  • Roopchand, D. E., Grace, M. H., Kuhn, P., Cheng, D. M., Plundrich, N., Poulev, A., Howell, A., Friedlender, B., Lila, M. A. and Raskin, I. (2012). Efficient sorption of polyphenols to soybean flour enables natural fortification of foods. Food Chem. 131:1193–1200.
  • Rose, D. J., Keshavarzian, A., Patterson, J. A., Venkatachalam, M., Gillevet, P. and Hamaker, B. R. (2009). Starch-entrapped microspheres extend in vitro fecal fermentation, increase butyrate production, and influence microbiota pattern. Mol. Nutr. Food Res. 53:S121–S130.
  • Rose, D. J., Venema, K., Keshavarzian, A. and Hamaker, B. R. (2010). Starch entrapped microspheres show a beneficial fermentation profile and decrease in potentially harmful bacteria during in vitro fermentation in faecal microbiota obtained from patients with inflammatory bowel disease. Br. J. Nutr. 103:1514–1524.
  • Rubio-Senent, F., Rodriguez-Gutierrez, G., Lama-Munoz, A. and Fernandez-Bolanos, J. (2015). Pectin extracted from thermally treated olive oil by-products: Characterization, physico-chemical properties, in vitro bile acid and glucose binding. Food Hydrocoll. 43:311–321.
  • Ruiz, M. S. A., Espinosa, M. D. B., Contreras Fernandez, C. J., Luque Rubia, A. J., Sanchez Ayllon, F., Aldeguer Garcia, M., Santamaria, C. G. and Lopez Roman, F. J. (2016). Digestion-resistant maltodextrin effects on colonic transit time and stool weight: A randomized controlled clinical study. Eur. J. Nutr. 55:2389–2397.
  • Ruiz, P. A., Braune, A., Hölzwimmer, G., Quintanilla-Fend, L. and Haller, D. (2007). Quercetin inhibits TNF-induced NF-kappaB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells. J. Nutr. 137:1208–1215.
  • Ruiz, P. A. and Haller, D. (2006). Functional diversity of flavonoids in the inhibition of the proinflammatory NF-kappaB, IRF, and Akt signaling pathways in murine intestinal epithelial cells. J. Nutr. 136:664–671.
  • Runpagaporn, P., Reuhs, B. L., Kaur, A., Patterson, J. A., Keshavarzian, A. and Hamaker, B. R. (2015). Structural features of soluble cereal arabinoxylan fibers associatedwith a slow rate of in vitro fermentation by human fecal microbiota. Carbohydr. Polym. 130:191–197.
  • Russell, W. R., Gratz, S. W., Duncan, S. H., Holtrop, G., Ince, J., Scobbie, L., Duncan, G., Johnstone, A. M., Lobley, G. E., Wallace, R. J., Duthie, G. G. and Flint, H. J. (2011). High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 93:1062–1072.
  • Russo, M., Martinelli, M., Sciorio, E., Botta, C., Miele, E., Vallone, G. and Staiano, A. (2013). Stool consistency, but not frequency, correlates with total gastrointestinal transit time in children. J. Pediatr. 162:1188–1192.
  • Sakata, T. and Saito, M. (2007). Insoluble Dietary Fiber of Wheat Bran Increased Viscosity of Pig Whole Cecal Contents in Vitro. J. Nutr. Sci Vitaminol. 53, 380–381.
  • Salonen, A. and De Vos, W. (2014). Impact of diet on human intestinal microbiota and health. Annu. Rev. Food Sci. Technol. 5:239–262.
  • Sanchez, J. I., Marzorati, M., Grootaert, C., Baran, M., Van Craeyveld, V., Courtin, C. M., Broekaert, W. E., Delcour, J. A., Verstaete, W. and Van de Wiele, T. (2009). Arabinoxylan-oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the Simulator of Human Intestinal Microbial Ecosystem. J. Microb. Biotechnol. 2:101–113.
  • Saura-Callixto, F. (2011). Dietary fiber as a carrier of dietary antioxidants: An essential physiological function. J. Agric. Food Chem. 59:43–49.
  • Saura-Callixto, F. and Goni, I. (2006). Antioxidant capacity of the Spanish mediterranean diet. Food Chem. 94:442–447.
  • Saura-Callixto, F., Jimenez, J. P., Tourino, S., Serrano, J., Fuguet, E., Torres, J. L. and Goni, I. (2010). Proanthocyanidin metabolites associated with dietary fibre from in vitro colonic fermentation and proanthocyanidin metabolites in human plasma. Mol. Nutr. Food Res. 54:939–946.
  • Sayar, S., Jannink, J. L. and White, P. J. (1996). In vitro bile acid binding activity within flour fractions from oat lines with typical and high α-Glucan amounts. J. Agric. Food Chem. 54:5142–5148.
  • Scazzina, F., Siebenhandl-Ehn, S. and Pellegrini, N. (2013). The effect of dietary fibre on reducing the glycaemic index of bread. Br. J. Nutr. 109:1163–1174.
  • Schatzkin, A., Mouw, T., Park, Y., Subar, A. F., Kipnis, V., Hollenbeck, A., Leitzmann, M. F. and Thompson, F. E. (2007). Dietary fiber and whole-grain consumption in relation to colorectal cancer in the NIH-AARP Diet and health study. Am. J. Clin. Nutr. 85:1353–1360.
  • Schatzkin, A., Park, Y., Leitzmann, M. F., Hollenbeck, A. R. and Cross, A. J. (2008). Prospective study of dietary fiber, whole grain foods, and small intestinal cancer. Gastroenterology. 135:1163–1167.
  • Schlemmer, U. (1989). Studies of the binding of copper, zinc and calcium to pectin, alginate, carrageenan and gum guar in HCO3−-CO2 buffer. Food Chem. 32:223–234.
  • Schmidt, K. A. and Smith, D. E. (1992). Milk reactivity of gums and milk proteins solutions. J. Dairy Sci. 75:3290–3295.
  • Scholz-Ahrens, K. E., Ade, P., Marten, B., Weber, P., Timm, W., Aςil, Y., Glüer, C.-C. and Schrezenmeir, J. (2007). Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J. Nutr. 137(3):838S–846S.
  • Slaughter, S. L., Ellis, P. R., Jackson, E. C. and Butterworth, P. J. (2002). The effect of guar galactomannan and water availability during hydrothermal processing on the hydrolysis of starch catalysed by pancreatic α-amylase. Biochim. Biophys. Acta 1571:55–63.
  • Slavin, J. L., Brauer, P. M. and Marlett, J. A. (1981). Neutral detergent fiber, hemicellulose and cellulose digestibility in human subjects. J. Nutr. 111:287–297.
  • Smidsrod, O., Haug, A. and Larsen, B. (1966). The influence of pH on the rate of hydrolysis of acidic polysaccharides. Acta Chem. Scand. 20:1026–1034.
  • Soares, S., Mateus, N. and de Freitas, V. (2012). Carbohydrates inhibit salivary proteins precipitation by condensed tannins. J. Agric. Food Chem. 60:3966–3972.
  • Sonnenburg, E. D. and Sonnenburg, J. L. (2013). Starving our microbial self: The deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20:779–786.
  • Spyropoulos, F., Norton, A. B. and Norton, I. T. (2011). Self-structuring foods based on acid-sensitive mixed biopolymer to impact on satiety. Procedia Food Sci. 1:1487–1493.
  • Sternini, C., Anselmi, L. and Rozengurt, E. (2008). Enteroendocrine cells: A site of ‘taste’ in gastrointestinal chemosensing. Curr. Opin. Endocrinol. Diabetes Obes. 15(1):73–78.
  • Stewart, M. L. and Slavin, J. L. (2009). Particle size and fraction of wheat bran influence short-chain fatty acid production in vitro. Br. J. Nutr. 102:1404–1407.
  • Story, J. A. and Kritchevsky, D. (1976). Comparison of the binding of various bile acids and bile salts in vitro by several types of fiber. J. Nutr. 106:1292–1294.
  • Strugala, V., Kennington, E. J., Campbell, R. J., Skjak-Braek, G. and Dettmar, P. W. (2005). Inhibition of pepsin activity by alginates in vitro and the effect of epimerization. Int. J. Pharm. 304:40–50.
  • Stuknyte', M., Cattaneo, S., Pagani, M. A., Marti, A., Micard, V., Hogenboom, J. and De Noni, I. (2014). Spaghetti from durum wheat: Effect of drying conditions on heat damage, ultrastructure and in vitro digestibility. Food Chem. 149:40–46.
  • Sundberg, B., Wood, P. J., Lia, A., Andersson, H., Sandberg, A.-S., Hallmans, G. and Aman, P. (1996). Mixed-linked b-glucan from breads of different cereals is partly degraded in the human ileostomy model. Am. J. Clin. Nutr. 64:878–885.
  • Takahashi, T., Karita, S., Ogawa, N. and Goto, M. (2005). Crystalline cellulose reduces plasma glucose concentrations and stimulates water absorption by increasing the digesta viscosity in rats. J. Nutr. 135:2405–2410.
  • Theuwissen, E. and Mensink, R. P. (2008). Water-soluble dietary fibers and cardiovascular disease. Physiol. Behav. 94:285–292.
  • Thongngam, M. and McClements, D. J. (2005). Isothermal titration calorimetry study of the interactions between chitosan and a bile salt (sodium taurocholate). Food Hydrocoll. 19:813–819.
  • Tolstoguzov, V. B. (2000). Phase behaviour of macromolecular components in biological and food systems. Rev. Nahrung 44:299–308.
  • Tomlin, J. and Read, N. W. (1988). Laxative properties of indigestible plastic particles. Br. Med. J. 297:1175–1176.
  • Torcello-Gomez, A., Fernandez Fraguas, C., Ridout, M. J., Woodward, N. C., Wilde, P. J. and Foster, T. F. (2015). Effect of substituent pattern and molecular weight of cellulose ethers on interactions with different bile salts. Food Funct. 6:730–739.
  • Tornquist, H., Rissanen, A. and Andersson, H. (1986). Balance studies in patients with intestinal resection, how long is enough?. Br. J. Nutr. 56:11–16.
  • Trowell, H. (1972). Ischemic heart disease and dietary fiber. Am. J. Clin. Nutr. 25:926–932.
  • Tsujita, T., Takaichi, H., Takaku, T., Sawai, T., Yoshida, N. and Hiraki, J. (2007). Inhibition of lipase activities by basic polysaccharide. J. Lipid Res. 48(2):358–365.
  • Tuhoy, K. M., Conterno, L., Gasperotti, M. and Viola, R. (2012). Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J. Agric. Food Chem. 60:8776–8782.
  • Tydeman, E. A., Parker, M. L., Wickham, M., Rich, G. T., Faulks, R., Gidley, M. J., Fillery-Travis, A. and Waldron, K. (2010). Effect of carrot (Daucus carota) microstructure on carotene bioaccessibility in the upper gastrointestinal tract. 1. In vitro simulations of carrot digestion. J. Agric. Food Chem. 58:9847–9854.
  • Ulmius, M., Adapa, S., Onning, G. and Nilsson, L. (2012). Gastrointestinal conditions influence the solution behaviour of cereal β-glucans in vitro. Food Chem. 1:536–540.
  • Vahouny, G. V., Tombes, R., Cassidy, M. M., Kritchevsky, D. and Gallo, D. D. (1980). Dietary fibers: V. Binding of bile salts, phospholipids and cholesterol from mixed micelles by bile acid sequestrants and dietary fibers. Lipids 15:1012–1018.
  • Vanholme, R., Demedts, B., Morreel, K., Ralph, J. and Boerjan, W. (2010). Lignin biosynthesis and structure. Plant Physiol. 153:895–905.
  • Van Wey, A. S., Cookson, A. L., Roy, N. C., McNabb, W. C., Soboleva, T. K. and Shorten, P. R. (2011). Bacterial biofilms associated with food particles in the human large bowel. Mol. Nutr. Food Res. 55:969–978.
  • Vitaglione, P., Napolitano, A. and Fogliano, V. (2008). Cereal dietary fibre: A natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci. Technol. 19:451–463.
  • Vuksan, V., Jenkins, A. L., Rogovik, A. L., Fairgrieve, C. D., Jovanovski, E. and Leiter, L. A. (2011). Viscosity rather than quantity of dietary fibre predicts cholesterol-lowering effect in healthy individuals. Br. J. Nutr. 106:1349–1352.
  • Waldron, K. W., Parker, M. L. and Smith, A. C. (2003). Plant cell walls and food quality. Compr. Rev. Food Sci. F. 2:101–119.
  • Walker, A. W., Duncan, S. H., McWilliam Leitch, E. C., Child, M. W. and Flint, H. J. (2005). pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl. Environ. Microbiol. 71:3692–3700.
  • Weickert, M. O. and Pfeiffer, A. F. (2008). Metabolic effects of dietary fiber consumption and prevention of diabetes. J. Nutr. 138:439–442.
  • Whayne, T. F. and Felts, J. M. (1971). Activation of lipoprotein lipase. Evaluation of calcium, magnesium, and ammonium as cofactors. Circ. Res. 28:649–654.
  • Wilcox, M. D., Brownlee, I. A., Richardson, J. C., Dettmar, P. W. and Pearson, J. P. (2014). The modulation of pancreatic lipase activity by alginates. Food Chem. 146:479–484.
  • Williamson, G. (2013). Possible effects of dietary polyphenols on sugar absorption and digestion. Mol. Nutr. Food Res. 57:48–57.
  • Wolever, T. M., Tosh, S. M., Gibbs, A. L., Brand-Miller, J., Duncan, A. M., Hart, V., Lamarche, B., Thomson, B. A., Duss, R. and Wood, P. J. (2010). Physicochemical properties of oat b-glucan influence its ability to reduce serum LDL cholesterol in humans: A randomized clinical trial. Am. J. Clin. Nutr. 92:723–732.
  • World Health Organization. (2013). Diet, Nutrition and the Prevention of Chronic Disease. Report of a Joint WHO/FAO Expert Consultation. World Health Organization, Geneva, Switzerland. WHO Technical Report Series 916.
  • Wu, Z., Li, H., Ming, J. and Zhao, G. (2011b). Optimization of adsorption of tea polyphenols into oat β-Glucan using response surface methodology. J. Agric. Food Chem. 59:378–385.
  • Wu, Z., Ming, J., Gao, R., Wang, Y., Liang, Q., Yu, H. and Zhao, G. (2011a). Characterization and antioxidant activity of the complex of tea polyphenols and oat β-Glucan. J. Agric. Food Chem. 59:10737–10746.
  • Wursch, P. and Pi-Sunyer, X. (1997). The role of viscous soluble fiber in the metabolic control of diabetes. Diabet. Care 20:1774–1780.
  • Yoo, S.-H., Fishman, M. L., Hotchkiss, Jr, A. T. and Lee, H. G. (2006). Viscometric behavior of high-methoxy and low-methoxy pectin solutions. Food Hydrocoll. 20:62–67.
  • Yuan, J., Wang, J. and Liu, X. (2007). Metabolism of dietary soy isoflavones to equol by human intestinal microflora; implications for health. Mol. Nutr. Food Res. 51:765–781.
  • Zangenberg, N. H., Mullertz, A., Kristensen, H. G. and Hovgaard, L. (2001). A dynamic in vitro lipolysis model I. Controlling the rate of lipolysis by continuous addition of calcium. Eur. J. Pharm. Sci. 14(2):115–122.
  • Zhang, P., Zhang, Q. and Whistler, R. L. (2003). L-Arabinose release from arabinoxylan and arabinogalactan under potential gastric acidities. Cereal Chem. 80(3):252–254.
  • Zhang, R., Zhang, Z., Zhang, H., Decker, E. A. and McClements, D. J. (2015). Influence of emulsifier type on gastrointestinal fate of oil-in-water emulsions containing anionic dietary fiber (pectin). Food Hydrocoll. 45:175–185.
  • Zhang, S. and Vardhanabhuti, B. (2014a). Intragastric gelation of whey protein–pectin alters the digestibility of whey protein during in vitro pepsin digestion. Food Funct. 5:102–110.
  • Zhang, S., Zhang, Z. and Vardhanabhuti, B. (2014b). Effect of charge density of polysaccharides on selfassembled intragastric gelation of whey protein/ polysaccharide under simulated gastric conditions. Food Funct. 5:1829–1838.
  • Zielinski, G., DeVries, J. W., Craig, S. A. and Bridges, A. R. (2013). Dietary fiber in codex alimentarius: Current status and ongoing discussion. Cereal Food Worlds 58(3):148–152.