1,003
Views
25
CrossRef citations to date
0
Altmetric
Articles

Immunomodulating peptides for food allergy prevention and treatment

&

References

  • Aalberse, R. C. and Crameri, R. (2011). Ig-E binding epitopes: a reappraisal. Allergy 66:1261–1274.
  • Adel-Patient, K., Wavrin, S., Bernard, H., Meziti, N., Ah-Leung, S. and Wal, J. M. (2011). Oral tolerance and treg cells are induced in BALB/c mice after gavage with bovine β-lactoglobulin. Allergy 66:1312–1321.
  • Adel-Patient, K., Nutten, S., Bernard, H., Fritsché, R., Ah-Leung, S., Meziti, N., Prioult, G., Mercenier, A. and Wal, J. M. (2012). Immunomodulatory potential of partially hydrolyzed β-lactoglobulin and large synthetic peptides. J. Agric. Food Chem. 60:10858–10866.
  • Ahn, C. B., Cho, Y. S. and Je, J. Y. (2015). Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chem. 168:151–156.
  • Akdis, M. and Akdis, C. A. (2014). Mechanisms of allergen-specific immunotherapy: multiple suppressor factors at work in immune tolerance to allergens. J. Allergy Clin. Immunol. 133:621–631.
  • Albrecht, M., Kühne, Y., Ballmer-Weber, B. K., Becker, W. M., Holzhauser, T., Lauer, I., Reuter, A., Randow, S., Falk, S., Wangorsch, A., Lidholm, J., Reese, G. and Vieths, S. (2009). Relevance of IgE binding to short peptides for the allergenic activity of food allergens. J. Allergy Clin. Immunol. 124:328–336.
  • Almqvist, N., Lönnqvist, A., Hultkrantz, S., Rask, C. and Telemo, E. (2008). Serum-derived exosomes from antigen-fed mice prevent allergic sensitization in a model of allergic asthma. Immunology. 125:21–27.
  • Archila, L. D., Jeong, D., Pascal, M., Bartra, J., Juan, M., Robinson, D., Farrington, M. L. and Kwok, W. W. (2015). Jug r 2-reactive CD4(+) T cells have a dominant immune role in walnut allergy. J. Allergy Clin. Immunol. 136:983–992.
  • Bamdad, F., Ahmed, S. and Chen, L. (2015). Specifically designed peptide structures effectively suppressed oxidative reactions in chemical and cellular systems. J. Funct. Foods 18:35–46.
  • Baravalle, G., Greer, A. M., LaFlam, T. N. and Shin, J.S. (2014). Antigen-conjugated human IgE induces antigen-specific T cell tolerance in a humanized mouse model. J. Immunol. 192:3280–3288.
  • Barnes, P. J. (2011). Pathophysiology of allergic inflammation. Immunol. Rev. 242:31–50.
  • Berin, M. C. (2014). Future therapies for IgE-mediated food allergy. Curr. Pediatr. Rep. 2:119–126.
  • Berin, M. C. (2015). Pathogenesis of IgE-mediated food allergy. Clin. Exp. Allergy 45:1150–1161.
  • Berin, M. C. and Sampson, H. A. (2013). Mucosal immunology of food allergy. Curr. Biol. 23:389–400.
  • Berin, M. C. and Shreffler, W. G. (2008). Th2 adjuvants: Implications for food allergy. J. Allergy Clin. Immunol. 121:1311–1320.
  • Bernasconi, E., Fritsché, R. and Corthésy, B. (2006). Specific effects of denaturation, hydrolysis and exposure to Lactococcus lactis on bovine beta-lactoglobulin transepithelial transport, antigenicity and allergenicity. Clin. Exp. Allergy 36:803–814.
  • Bischoff, S. C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J. D., Serino, M., Tilg, H., Watson, A. and Wells, J. M. (2014). Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterol. 14:189.
  • Biziulevicius, G. A., Kislukhina, O. V., Kazlauskaite, J. and Zukaite, V. (2006). Food-protein enzymatic hydrolysates possess both antimicrobial and immunostimulatory activities: a “cause and effect” theory of bifunctionality. FEMS Immunol. Med. Microbiol. 46:131–138.
  • Bøgh, K. L., Kroghsbo, S., Dahl, L., Rigby, N. M., Barkholt, V., Mills, E. N. and Madsen, C. B. (2009). Digested Ara h 1 has sensitizing capacity in Brown Norway rats. Clin. Exp. Allergy. 39:1611–1621.
  • Bøgh, K. L., Barkholt, V., Rigby, N. M., Mills, E. N. and Madsen, C. B. (2012). Digested Ara h 1 loses sensitizing capacity when separated into fractions. J. Agric. Food Chem. 60:2934–2942.
  • Bøgh, K. L., Barkholt, V. and Madsen, C. B. (2013). The sensitizing capacity of intact β-lactoglobulin is reduced by co-administration with digested β-Lactoglobulin. Int. Arch. Allergy Immunol. 161:21–36.
  • Bøgh, K. L., Barkholt, V. and Madsen, C. B. (2015). Characterization of the immunogenicity and allergenicity of two cow's milk hydrolysates-A study in brown Norway Rats. Scand. J. Immunol. 81:274–283.
  • Bohle, B., Radakovics, A., Jahn-Schmid, B., Hoffmann-Sommergruber, K., Fischer, G. F. and Ebner, C. (2003). Bet v 1, the major birch pollen allergen, initiates sensitization to Api g 1, the major allergen in celery: evidence at the T cell level. Eur. J. Immunol. 33:3303–3310.
  • Bohle, B., Radakovics, A., Luttkopf, D., Jahn-Schmid, B., Vieths, S. and Ebner, C. (2005). Characterization of the T cell response to the major hazelnut allergen, Cor a 1.04: evidence for a relevant T cell epitope not cross-reactive with homologous pollen allergens. Clin. Exp. Allergy 35:1392–1399.
  • Burks, A. W., Laubach, S. and Jones, S. M. (2008). Oral tolerance, food allergy, and immunotherapy: implications for future treatment. J Allergy Clin Immunol. 121:1344–1350.
  • Burton, O. T., Noval Rivas, M., Zhou, J. S., Logsdon, S. L., Darling, A. R., Koleoglou, K. J., Roers, A., Houshyar, H., Crackower, M. A., Chatila, T. A. and Oettgen, H. C. (2014). Immunoglobulin E signal inhibition during allergen ingestion leads to reversal of established food allergy and induction of regulatory T cells. Immunity 41:141–151.
  • Capozzi, A., Vincentini, O., Gizzi, P., Porzia, A., Longo, A., Felli, C., Mattei, V., Mainiero, F., Silano, M., Sorice, M. and Misasi, R. (2013). Modulatory effect of gliadin peptide 10-mer on epithelial intestinal Caco-2 cell inflammatory response. PLoS One 8:e66561.
  • Casale, T. B. and Stokes, J. R. Future forms of immunotherapy. J. Allergy Clin. Immunol. 127:8–15.
  • Chalamaiah, M., Hemalatha, R., Jyothirmayi, T., Diwan, P. V., Kumar, P. U., Nimgulkar, C. and Kumar, B. D. (2014). Immunomodulatory effects of protein hydrolysates from rohu (Labeo rohita) egg (roe) in BALB/c mice. Food Res. Int. 62:1054–1061.
  • Chalamaiah, M., Hemalatha, R., Jyothirmayi, T., Diwan, P. V., Bhaskarachary, K., Vajreswari, A. and Kumar, B. D. (2015). Chemical composition and immunomodulatory effects of enzymatic protein hydrolysates from common carp (Cyprinus carpio) egg. Nutrition 31:388–398.
  • Cheng, M. L., Wang, H. C., Hsu, K. C. and Hwang, J. S. (2015). Anti-inflammatory peptides from enzymatic hydrolysates of tuna cooking juice. Food Agric. Immunol. 26:770–781.
  • Chinthrajah, R. S., Hernandez, J. D., Boyd, S. D., Galli, S. J. and Nadeau, K. C. (2016). Molecular and cellular mechanisms of food allergy and food tolerance. J. Allergy Clin. Immunol. 137:984–997.
  • Chu, D. K., Llop-Guevara, A., Walker, T. D., Flader, K., Goncharova, S., Boudreau, J. E., Moore, C. L., Seunghyun, In T., Waserman, S., Coyle, A. J., Kolbeck, R., Humbles, A. A. and Jordana, M. (2013). IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J. Allergy Clin. Immunol. 131:187–200.
  • Cian, R. E., López-Posadas, R., Drago, S. R., Sánchez de Medina, F. and Martínez-Augustin, O. (2012). A Porphyra columbina hydrolysate upregulates IL-10 production in rat macrophages and lymphocytes through an NF-κB, and p38 and JNK dependent mechanism. Food Chem. 134:1982–1990.
  • Claustre, J., Toumi, F., Trompette, A., Jourdan, G., Guignard, H., Chayvialle, J. A. and Plaisancié, P. (2002). Effects of peptides derived from dietary proteins on mucus secretion in rat jejunum. Am. J. Physiol. Gastrointest. Liver Physiol. 283:G521–528.
  • Commission Directive 96/4/EC of 16th February 1996 amending Directive 91/321/EEC on infant formulae and follow-on formulae. Official Journal of the European Communities. No L 49:12–16.
  • Coombes, J. L., Siddiqui, K. R., Arancibia-Cárcamo, C. V., Hall, J., Sun, C. M., Belkaid, Y. and Powrie, F. (2007). A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204:1757–1764.
  • Daddaoua, A., Puerta, V., Zarzuelo, A., Suárez, M.D., Sánchez de Medina, F. and Martínez-Augustin, O. (2005). Bovine glycomacropeptide is anti-inflammatory in rats with hapten-induced colitis. J. Nutr. 135:1164–1170.
  • de Mejía, E. G. and Dia, V. P. (2009). Lunasin and lunasin-like peptides inhibit inflammation through suppression of NF-kappaB pathway in the macrophage. Peptides 30:2388–2398.
  • DeLong, J. H., Simpson, K. H., Wambre, E., James, E. A., Robinson, D. and Kwok, W. W. (2011). Ara h 1-reactive T cells in individuals with peanut allergy. J. Allergy Clin. Immunol. 127:1211–1218.
  • Dia, V. P., Bringe, N. A. and González de Mejía, E. (2014). Peptides in pepsin-pancreatin hydrolysates from commercially available soy products that inhibit lipopolysaccharide-induced inflammation in macrophages. Food Chem. 152:423–431.
  • Drago, S., El Asmar, R., Di Pierro, M., Grazia Clemente, M., Tripathi, A., Sapone, A., Thakar, M., Iacono, G., Carroccio, A., D'Agate, C., Not, T., Zampini, L., Catassi, C. and Fasano, A. (2006). Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand. J. Gastroenterol. 41:408–419.
  • Du Toit, G., Roberts, G., Sayre, P. H., Bahnson, H. T., Radulovic, S., Santos, A. F., Brough, H. A., Phippard, D., Basting, M., Feeney, M., Turcanu, V., Sever, M. L., Gomez Lorenzo, M., Plaut, M., Lack, G.; and LEAP Study Team. (2015). Randomized trial of peanut consumption in infants at risk for peanut allergy. N. Engl. J. Med. 372:803–813.
  • Duarte, J., Vinderola, G., Ritz, B., Perdigón, G. and Matar, C. (2006). Immunomodulating capacity of commercial fish protein hydrolysate for diet supplementation. Immunobiology 211:341–350.
  • Durrieu, C., Degraeve, P., Chappaz, S. and Martial-Gros, A. (2006). Immunomodulating effects of water-soluble extracts of traditional French Alps cheeses on a human T-lymphocyte cell line. Int. Dairy J. 16:1505–1514.
  • Easton, D. M., Nijnik, A., Mayer, M. L., Hancock, R.E.W. (2009). Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol. 27:582–590.
  • Espeche Turbay, M. B., de Moreno de LeBlanc, A., Perdigón, G., Savoy de Giori, G. and Hebert, E. M. (2012). β-Casein hydrolysate generated by the cell envelope-associated proteinase of Lactobacillus delbrueckii ssp. lactis CRL 581 protects against trinitrobenzene sulfonic acid-induced colitis in mice. J. Dairy. Sci. 95:1108–1118.
  • Fernández-Tomé, S., Ramos, S., Cordero-Herrera, I., Recio, I., Goya, L. and Hernández-Ledesma, B. (2014). In vitro chemo-protective effect of bioactive peptide lunasin against oxidative stress in human HepG2 cells. Food Res. Int. 62:793–800.
  • Finkelman, F. D. (2005). Molecular mechanisms of anaphylaxis: lessons from studies with murine models. J. Allergy Clin. Immunol. 115:449–457.
  • Finkelman, F. D. (2007). Anaphylaxis: lessons from mouse models. J. Allergy Clin. Immunol. 120:506–515.
  • Finkelman, F. D., Khodoun, M. V., Strait, R. (2016). Human IgE-independent systemic anaphylaxis. J. Allergy Clin. Immunol. 137:1674–1680.
  • Fitzgerald, A. J., Rai, P. S., Marchbank, T., Taylor, G. W., Ghosh, S., Ritz, B. W. and Playford, R. J. (2005). Reparative properties of a commercial fish protein hydrolysate preparation. Gut 54:775–781.
  • Fritsché, R. (2009). Utility of animal models for evaluating hypoallergenicity. Mol. Nutr. Food Res. 53:979–983.
  • Fritsché, R., Pahud, J. J., Pecquet, S. and Pfeifer, A. (1997). Induction of systemic immunologic tolerance to beta-lactoglobulin by oral administration of a whey protein hydrolysate. J. Allergy Clin. Immunol. 100:266–273.
  • Galli, S. J. and Tsai, M. (2012). IgE and mast cells in allergic disease. Nat. Med. 18:693–704.
  • Galli, S. J, Tsai, M. and Piliponsky, A. M. (2008). The development of allergic inflammation. Nature 454:445–454.
  • Garcia Alonso, M., Caballero, M. L., Umpierrez, A., Lluch-Bernal, M., Knaute, T. and Rodríguez-Pérez, R. (2015). Relationships between T cell and IgE/IgG4 epitopes of the Anisakis simplex major allergen Ani s 1. Clin. Exp. Allergy 45:994–1005.
  • García-Nebot, M. J., Recio, I. and Hernández-Ledesma, B. (2014). Antioxidant activity and protective effects of peptide lunasin against oxidative stress in intestinal Caco-2 cells. Food Chem. Toxicol. 65:155–161.
  • Gavrovic-Jankulovic, M. and Willemsen, L. E. M. (2015). Epithelial models to study food allergen induced barrier disruption and immune activation. Drug Discov.Today Dis. Model. 17–18:29–36.
  • Giavi, S., Vissers, Y. M., Muraro, A., Lauener, R., Konstantinopoulos, A. P., Mercenier, A., Wermeille, A., Lazzarotto, F., Frei, R., Bonaguro, R., Summermatter, S., Nutten, S. and Papadopoulos, N. G. (2016). Oral immunotherapy with low allergenic hydrolysed egg in egg allergic children. Allergy 71:1575–1584.
  • Giordani, L., Del Pinto, T., Vincentini, O., Felli, C., Silano, M. and Viora, M. (2014). Two wheat decapeptides prevent gliadin-dependent maturation of human dendritic cells. Exp. Cell Res. 321:248–254.
  • Gómez, E., Díaz-Perales, A., Tordesillas, L., Doña, I., Torres, M. J., Blázquez, A. B., Gómez, F., Blanca, M. and Mayorga, C. (2012). Effect of Pru p 3 on dendritic cell maturation and T-lymphocyte proliferation in peach allergic patients. Ann. Allergy Asthma Immunol. 109:52–58.
  • Gostner, J., Ciardi, C., Becker, K., Fuchs, D. and Sucher, R. (2014). Immunoregulatory impact of food antioxidants. Curr. Pharm. Des. 20:840–849.
  • Green, P. H. R., Lebwohl, B. and Greywoode, R. (2015). Celiac disease. J. Allergy Clin. Immunol. 135:1099–1106.
  • Hacini-Rachinel, F., Vissers, Y. M., Doucet-Ladevéze, R., Blanchard, C., Demont, A., Perrot, M., Panchaud, A., Prioult, G., Mercenier, A. and Nutten, S. (2014). Low-allergenic hydrolyzed egg induces oral tolerance in mice. Int. Arch. Allergy Immunol. 164:64–73.
  • Haney, E. F. and Hancock, R. E. (2013). Peptide design for antimicrobial and immunomodulatory applications. Biopolymers 100:572–583.
  • Hasnat, M. A., Pervin, M., Kim, D. H., Kim, Y. J., Lee, J. J., Pyo, H. J., Lee, C. W. and Lim, B. O. (2015). DNA protection and antioxidant and anti-inflammatory activities of water extract and fermented hydrolysate of abalone (Haliotis discus hannai Ino). J. Food Sci. Biotechnol. 24:689–697.
  • He, X. Q., Cao, W. H., Pan, G. K., Yang, L. and Zhang, C. H. (2015). Enzymatic hydrolysis optimization of Paphia undulata and lymphocyte proliferation activity of the isolated peptide fractions. J. Sci. Food Agric. 95:1544–1553.
  • Hering, N. A., Andres, S., Fromm, A., van Tol, E.A., Amasheh, M., Mankertz, J., Fromm, M. and Schulzke, J. D. (2011). Transforming growth factor-β, a whey protein component, strengthens the intestinal barrier by upregulating claudin-4 in HT-29/B6 cells. J. Nutr. 141:783–789.
  • Hernández-Ledesma, B., Hsieh, C. C. and de Lumen, B. O. (2009). Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 390:803–808.
  • Heyman, M. (2005). Gut barrier dysfunction in food allergy. Eur. J. Gastroenterol. Hepatol. 17:1279–1285.
  • Hirai, S., Horii, S., Matsuzaki, Y., Ono, S., Shimmura, Y., Sato, K. and Egashira, Y. (2014). Anti-inflammatory effect of pyroglutamyl-leucine on lipopolysaccharide-stimulated RAW 264.7 macrophages. Life Sci. 117:1–6.
  • Holen, E., Bolann, B. and Elsayed, S. (2001). Novel B and T cell epitopes of chicken ovomucoid (Gal d 1) induce T cell secretion of IL-6, IL-13, and IFN-gamma. Clin. Exp. Allergy 31:952–964.
  • Hollon, J., Puppa, E. L., Greenwald, B., Goldberg, E., Guerrerio, A. and Fasano, A. (2015). Effect of gliadin on permeability of intestinal biopsy explants from celiac disease patients and patients with non-celiac gluten sensitivity. Nutrients 7:1565–1576.
  • Hou, H., Fan, Y., Li, B., Xue, C. and Yu, G. (2012). Preparation of immunomodulatory hydrolysates from Alaska pollock frame. J. Sci. Food Agric. 92:3029–3038.
  • Hsu, S. C., Chen, C. H., Tsai, S. H., Kawasaki, H., Hung, C. H., Chu, Y. T., Chang, H. W., Zhou, Y., Fu, J., Plunkett, B., Su, S. N., Vieths, S., Lee, R. T., Lee, Y. C. and Huang, S. K. (2010). Functional interaction of common allergens and a C-type lectin receptor, dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN), on human dendritic cells. J. Biol. Chem. 285:7903–7910.
  • Huang, W., Chakrabarti, S., Majumder, K., Jiang, Y., Davidge, S. T. and Wu, J. (2010). Egg-derived peptide IRW inhibits TNF-α-induced inflammatory response and oxidative stress in endothelial cells. J. Agric. Food. Chem. 58:10840–10846.
  • Hwang, J. W., Lee, S. J., Kim, Y. S., Kim, E. K., Ahn, C. B., Jeon, Y. J., Moon, S. H., Jeon, B. T. and Park, P. J. (2012). Purification and characterization of a novel peptide with inhibitory effects on colitis induced mice by dextran sulfate sodium from enzymatic hydrolysates of Crassostrea gigas. Fish Shellfish Immunol. 33:993–999.
  • Iliev, I. D., Mileti, E., Matteoli, G., Chieppa, M. and Rescigno, M. (2009). Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol. 2:340–350.
  • Inoue, R., Matsushita, S., Kaneko, H., Shinoda, S., Sakaguchi, H., Nishimura, Y. and Kondo, N. (2001). Identification of beta-lactoglobulin-derived peptides and class II HLA molecules recognized by T cells from patients with milk allergy. Clin. Exp. Allergy 31:1126–1134.
  • Isobe, N., Suzuki, M., Oda, M. and Tanabe, S. (2008). Enzyme-modified cheese exerts inhibitory effects on allergen permeation in rats suffering from indomethacin-induced intestinal inflammation. Biosci. Biotechnol. Biochem. 72:1740–1745.
  • Jelinkova, L., Tuckova, L., Cinova, J., Flegelova, Z. and Tlaskalova-Hogenova, H. (2004). Gliadin stimulates human monocytes to production of IL-8 and TNF-alpha through a mechanism involving NF-kappa B. FEBS Lett. 571:81–85.
  • Jiehui, Z., Liuliu, M., Haihong, X., Yang, G., Yingkai, J., Lun, Z., Li, D. X., Dongsheng, Z. and Shaohui, Z. (2014). Immunomodulating effects of casein-derived peptides QEPVL and QEPV on lymphocytes in vitro and in vivo. Food Funct. 5:2061–2069.
  • Jongejan, L. and van Ree, R. (2014). Modified allergens and their potential to treat allergic disease. Curr. Allergy Asthma Rep. 14:478.
  • Jutel, M., Agache, I., Bonini, S., Burks, A. W., Calderon, M., Canonica, W., Cox, L., Demoly, P., Frew, A. J., O'Hehir, R., Kleine-Tebbe, J., Muraro, A., Lack, G., Larenas, D., Levin, M., Nelson, H., Pawankar, R., Pfaar, O., van Ree, R., Sampson, H., Santos, A. F., Du Toit, G., Werfel, T., Gerth van Wijk, R., Zhang, L. and Akdis, C. A. (2015). International consensus on allergy immunotherapy. J. Allergy Clin. Immunol. 136:556–568.
  • Kangsanant, S., Thongraun, C., Jansakul, C., Murkovic, M. and Seechamnanturakit, V. (2015). Purification and characterisation of antioxidant and nitric oxide inhibitory peptides from Tilapia (Oreochromis niloticus) protein hydrolysate. Int. J. Food Sci. Tech. 50:660–665.
  • Katayama, S., Xu, X., Fan, M. Z. and Mine, Y. (2006). Antioxidative stress activity of oligophosphopeptides derived from hen egg yolk phosvitin in Caco-2 cells. J. Agric. Food. Chem. 54:773–778.
  • Kawahara, T. and Otani, H. (2004). Stimulatory effects of casein phosphopeptide (CPP-III) on mRNA expression of cytokines in Caco-2 cells. Biosci. Biotechnol. Biochem. 68:1779–1781.
  • Kawahara, T., Katayama, D. and Otani, H. (2004). Effect of beta-casein (1–28) on proliferative responses and secretory functions of human immunocompetent cell lines. Biosci. Biotechnol. Biochem. 68:2091–2095.
  • Kean, D. E., Goodridge, H. S., McGuinness, S., Harnett, M. M., Alcocer, M. J. and Harnett, W. (2006). Differential polarization of immune responses by plant 2S seed albumins, Ber e 1, and SFA8. J. Immunol. 177:1561–1566.
  • Kiewiet, M. B., Gros, M., van Neerven, R. J., Faas, M. M. and de Vos, P. (2015). Immunomodulating properties of protein hydrolysates for application in cow's milk allergy. Pediatr. Allergy Immunol. 26:206–217.
  • Kim, E. K., Kim, Y. S., Hwang, J. W., Kang, S. H., Choi, D. K., Lee, K. H., Lee, J. S., Moon, S. H., Jeon, B. T. and Park, P. J. (2013). Purification of a novel nitric oxide inhibitory peptide derived from enzymatic hydrolysates of Mytilus coruscus. Fish Shellfish Immunol. 34:1416–1420.
  • Kitts, D. D. and Nakamura, S. (2006). Calcium-enriched casein phosphopeptide stimulates release of IL-6 cytokine in human epithelial intestinal cell line. J. Dairy Res. 73:44–48.
  • Knipping, K., van Esch, B. C., van Ieperen-van Dijk, A. G., van Hoffen, E., van Baalen, T., Knippels, L. M., van der Heide, S., Dubois, A. E., Garssen, J. and Knol, E. F. (2012). Enzymatic treatment of whey proteins in cow's milk results in differential inhibition of IgE-mediated mast cell activation compared to T-cell activation. Int. Arch. Allergy Immunol. 159:263–270.
  • Ko, S. C., Lee, D. S., Park, W. S., Yoo, J. S., Yim, M. J., Qian, Z. J., Lee, C. M., Oh, J., Jung, W. K. and Choi, I. W. (2016). Anti-allergic effects of a nonameric peptide isolated from the intestine gastrointestinal digests of abalone (Haliotis discus hannai) in activated HMC-1 human mast cells. Int. J. Mol. Med. 37:243–250.
  • Kobayashi, Y., Kovacs-Nolan, J., Matsui, T. and Mine, Y. (2015). The anti-atherosclerotic dipeptide, Trp-His, reduces intestinal inflammation through the blockade of L-type Ca2+ channels. J. Agric. Food Chem. 63:6041–6050.
  • Kondo, M., Kaneko, H., Fukao, T., Suzuki, K., Sakaguchi, H., Shinoda, S., Kato, Z., Matsui, E., Teramoto, T., Nakano, T. and Kondo, N. (2008). The response of bovine beta-lactoglobulin-specific T-cell clones to single amino acid substitution of T-cell core epitope. Pediatr. Allergy Immunol. 19:592–598.
  • Kong, J., Chalcraft, K., Mandur, T. S., Jimenez-Saiz, R., Walker, T. D., Goncharova, S., Gordon, M. E., Naji, L., Flader, K., Larché, M., Chu, D. K., Waserman, S., McCarry, B. and Jordana, M. (2015). Comprehensive metabolomics identifies the alarmin uric acid as a critical signal for the induction of peanut allergy. Allergy 70:495–505.
  • Kong, X., Guo, M., Hua, Y., Cao, D. and Zhang, C. (2008). Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Bioresour. Technol. 99:8873–8879.
  • Kotler, B. M., Kerstetter, J. E. and Insogna, K. L. (2013). Claudins, dietary milk proteins, and intestinal barrier regulation. Nutr. Rev. 71:60–65.
  • Kroghsbo, S., Andersen, N. B., Rasmussen, T. F., Jacobsen, S. and Madsen, C. B. (2014). Acid hydrolysis of wheat gluten induces formation of new epitopes but does not enhance sensitizing capacity by the oral route: a study in “gluten free” Brown Norway rats. PLoS One 9:e107137.
  • Kukkonen, K., Kuitunen, M., Haahtela, T., Korpela, R., Poussa, T. and Savilahti, E. (2010). High intestinal IgA associates with reduced risk of IgE-associated allergic diseases. Pediatr. Allergy Immunol. 21:67–73.
  • Kulis, M., Macqueen, I., Li, Y., Guo, R., Zhong, X. P. and Burks, A.W. (2012). Pepsinized cashew proteins are hypoallergenic and immunogenic and provide effective immunotherapy in mice with cashew allergy. J. Allergy Clin. Immunol. 130:716–723.
  • Ladics, G. S., Knippels, L. M., Penninks, A. H., Bannon, G. A., Goodman, R. E. and Herouet-Guicheney, C. (2010). Review of animal models designed to predict the potential allergenicity of novel proteins in genetically modified crops. Regul. Toxicol. Pharmacol. 56:212–224.
  • Lambrecht, B. N. and Hammad, H. (2014). Allergens and the airway epithelium response: Gateway to allergic sensitization. J. Allergy Clin. Immunol. 134:499–507.
  • Laparra, J. M., Alegría, A., Barberá, R. and Farré, R. (2008). Antioxidant effect of casein phosphopeptides compared with fruit beverages supplemented with skimmed milk against H2O2-induced oxidative stress in Caco-2 cells. Food Res. Int. 41:773–779.
  • Larché, M. (2014). Mechanisms of peptide immunotherapy in allergic airways disease. AnnalsATS 11:S292–S296.
  • Lawrence, T. (2009). The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 1:a001651.
  • LeBlanc, J. G., Matar, C., Valdéz, J. C., LeBlanc, J. and Perdigon, G. (2002). Immunomodulating effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus. J Dairy Sci. 85:2733–2742.
  • Lee, J. B., Chen, C. Y., Liu, B., Mugge, L., Angkasekwinai, P., Facchinetti, V., Dong, C., Liu, Y. J., Rothenberg, M. E., Hogan, S. P., Finkelman, F. D. and Wang, Y. H. (2016). IL-25 and CD4(+) Th2 cells enhance type 2 innate lymphoid cell-derived IL-13 production, which promotes IgE-mediated experimental food allergy. J. Allergy Clin. Immunol. 137:1216–1225.
  • Lee, M., Kovacs-Nolan, J., Archbold, T., Fan, M. Z., Juneja, L. R, Okubo, T. and Mine, Y. (2009). Therapeutic potential of hen egg white peptides for the treatment of intestinal inflammation. J. Funct. Foods. 1:1161–1169.
  • Lee, S. J., Kim, E. K., Kim, Y. S., Hwang, J. W., Lee, K. H., Choi, D. K., Kang, H., Moon, S. H., Jeon, B. T. and Park, P. J. (2012). Purification and characterization of a nitric oxide inhibitory peptide from Ruditapes philippinarum. Food Chem. Toxicol. 50:1660–1666.
  • Leonard, S. A., Martos, G., Wang, W., Nowak-Węgrzyn, A. and Berin, M. C. (2012). Oral immunotherapy induces local protective mechanisms in the gastrointestinal mucosa. J. Allergy Clin. Immunol. 129:1579–1587.
  • Liebler, D. C. and Zimmerman, L. J. (2013). Targeted quantitation of proteins by mass spectrometry. Biochemistry 52:3797–3806.
  • Lin, M. C., Lin, S. B., Lee, S. C., Lin, C. C., Hui, C. F. and Chen, J. Y. (2010). Antimicrobial peptide of an anti-lipopolysaccharide factor modulates of the inflammatory response in RAW264.7 cells. Peptides 31:1262–1272.
  • López-Abarrategui, C., del Monte-Martinez, A., Reyes-Acosta, O., Franco, O. L. and Otero-González, A. J. (2013). LPS in mobilization on porous and non-porous supports as an approach for the isolation of anti-LPS host-defense peptides. Front. Microbiol. 4:389.
  • López-Expósito, I., Chicón, R., Belloque, J., López-Fandiño, R. and Berin, M. C. (2012). In vivo methods for testing allergenicity show that high hydrostatic pressure hydrolysates of β-lactoglobulin are immunologically inert. J. Dairy Sci. 95:541–548.
  • López-Posadas, R., Requena, P., González, R., Suárez, M. D., Zarzuelo, A., Sánchez de Medina, F. and Martínez-Augustin, O. (2010). Bovine glycomacropeptide has intestinal antiinflammatory effects in rats with dextran sulfate-induced colitis. J. Nutr. 140:2014–2019.
  • Lozano-Ojalvo, D., Molina, E. and López-Fandiño, R. (2016a). Hydrolysates of egg white proteins modulate T- and B-cell responses in mitogen-stimulated murine cells. Food Funct. 7:1048–1056.
  • Lozano-Ojalvo, D., Molina, E. and López-Fandiño, R. (2016b). Regulation of exacerbated immune responses in human peripheral blood cells by hydrolysed egg white proteins. PloS One 11:e0151813.
  • Lozano-Ojalvo, D., Molina, E. and López-Fandiño, R. (2016c). Hypoallergenic hydrolysates of egg white proteins modulate allergen responses induced ex vivo on spleen cells from sensitized mice. Food Res. Int. 89:661–119.
  • MacDonald, T. T. and Monteleone, G. (2005). Immunity, inflammation, and allergy in the gut. Science 307:1920–1925.
  • Mackenzie, K. J., Fitch, P. M., Leech, M. D., Ilchmann, A., Wilson, C., McFarlane, A. J., Howie, S. E., Anderton, S. M. and Schwarze, J. (2013). Combination peptide immunotherapy based on T-cell epitope mapping reduces allergen-specific IgE and eosinophilia in allergic airway inflammation. Immunology 138:258–268.
  • Malherbe, L. (2009). T-cell epitope mapping. Ann. Allergy Asthma Immunol. 103:76–79.
  • Malinowski, J., Klempt, M., Clawin-Rädecker, I., Lorenzen, P. C. and Meisel, H. (2014). Identification of a NFκB inhibitory peptide from tryptic β-casein hydrolysate. Food Chem. 165:129–133.
  • Mallegol, J., Van Niel, G., Lebreton, C., Lepelletier, Y., Candalh, C., Dugave, C., Heath, J. K., Raposo, G., Cerf-Bensussan, N. and Heyman, M. (2007). T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology 132:1866–1876.
  • Mallet, J. F., Duarte, J., Vinderola, G., Anguenot, R., Beaulieu, M. and Matar, C. (2014). The immunopotentiating effects of shark-derived protein hydrolysate. Nutrition 30:706–712.
  • Mao, X. Y., Yang, H. Y., Song, J. P., Li, Y. H. and Ren, F. Z. (2007). Effect of yak milk casein hydrolysate on Th1/Th2 cytokines production by murine spleen lymphocytes in vitro. J. Agric. Food Chem. 55:638–642.
  • Martínez-Augustin, O., Rivero-Gutiérrez, B., Mascaraque, C. and Sánchez de Medina, F. (2014). Food derived bioactive peptides and intestinal barrier function. Int. J. Mol. Sci. 15:22857–22873.
  • Martínez-Maqueda, D., Miralles, B., De Pascual-Teresa, S., Reverón, I., Muñoz, R. and Recio, I. (2012). Food-derived peptides stimulate mucin secretion and gene expression in intestinal cells. J. Agric. Food Chem. 60:8600–8605.
  • Martínez-Maqueda, D., Miralles, B., Cruz-Huerta, E. and Recio, I. (2013). Casein hydrolysate and derived peptides stimulate mucin secretion and gene expression in human intestinal cells. Int. Dairy J. 32:13–19.
  • Martínez-Villaluenga, C., Dia, V. P., Berhow, M., Bringe, N. A. and González de Mejía, E. (2009). Protein hydrolysates from beta-conglycinin enriched soybean genotypes inhibit lipid accumulation and inflammation in vitro. Mol. Nutr. Food Res. 53:1007–1018.
  • Masilamani, M., Wei, J., Bhatt, S., Paul, M., Yakir, S. and Sampson, H. A. (2011). Soybean isoflavones regulate dendritic cell function and suppress allergic sensitization to peanut. J. Allergy Clin. Immunol. 128:1242–1250.
  • Masilamani, M., Wei, J. and Sampson, H. A. (2012). Regulation of the immune response by soybean isoflavones. Immunol. Res. 54:95–110.
  • McCarthy, A. L., O'Callaghan, Y. C., Connolly, A., Piggott, C. O., FitzGerald, R. J. and O'Brien, N. M. (2013). Brewers' spent grain (BSG) protein hydrolysates decrease hydrogen peroxide (H2O2)-induced oxidative stress and concanavalin-A (con-A) stimulated IFN-γ production in cell culture. Food Funct. 4:1709–1716.
  • McCarthy, A. L., O'Callaghan, Y. C., Connolly, A., Piggott, C.O., FitzGerald, R. J. and O'Brien, N. M. (2016). A study of the ability of bioactive extracts from brewers' spent grain to enhance the antioxidant and immunomodulatory potential of food formulations following in vitro digestion. Int. J. Food Sci. Nutr. 66:230–235.
  • McDole, J. R., Wheeler, L. W., McDonald, K. G., Wang, B., Konjufca, V., Knoop, K. A., Newberry, R. D. and Miller, M. J. (2012). Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature. 483:345–349.
  • Ménard, S., Cerf-Bensussan, N. and Heyman, M. (2010). Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol. 3:247–259.
  • Mercier, A., Gauthier, S. F. and Fliss, I. (2004). Immunomodulating effects of whey proteins and their enzymatic digests. Int. Dairy J. 14:175–183.
  • Mestas, J. and Hughes, C. C. W. (2004). Of mice and not men: Differences between mouse and human immunology. J. Immunol. 172:2731–2738.
  • Meulenbroek, L. A., van Esch, B. C., Hofman, G. A., den Hartog Jager, C. F., Nauta, A. J., Willemsen, L. E., Bruijnzeel-Koomen, C. A., Garssen, J., van Hoffen, E. and Knippels, L. M. (2013). Oral treatment with β-lactoglobulin peptides prevents clinical symptoms in a mouse model for cow's milk allergy. Pediatr. Allergy Immunol. 24:656–664.
  • Millán-Linares, M. D., Bermúdez, B., Yust, M. D., Millán, F. and Pedroche, J. (2014). Anti-inflammatory activity of lupine (Lupinus angustifolius L.) protein hydrolysates in THP-1-derived macrophages. J. Funct. Foods 8:224–233.
  • Mine, Y. and Zhang, H. (2015). Anti-inflammatory effects of poly-l-lysine in intestinal mucosal system mediated by calcium-sensing receptor activation. J. Agric. Food Chem. 63:10437–10447.
  • Miner-Williams, W. M., Stevens, B. R. and Moughan, P. J. (2014). Are intact peptides absorbed from the healthy gut in the adult human? Nutr. Res. Rev. 27:308–329.
  • Mochizuki, M., Shigemura, H. and Hasegawa, N. (2010). Anti-inflammatory effect of enzymatic hydrolysate of corn gluten in an experimental model of colitis. J. Pharm. Pharmacol. 62:389–392.
  • Moldaver, D. and Larché, M. (2011). Immunotherapy with peptides. Allergy. 66:784–791.
  • Monteiro, N. E. S., Roquetto, A. R., De Pace, F., Moura, C. S., Dos Santos, A., Yamada, A. T., Saad, M. J. A and Amaya-Farfan, J. (2016). Dietary whey proteins shield murine cecal microbiota from extensive disarray caused by a high-fat diet. Food Res. Int. 85:121–130.
  • Montoya-Rodríguez, A., de Mejía, E. G., Dia, V. P., Reyes-Moreno, C. and Milán-Carrillo, J. (2014). Extrusion improved the anti-inflammatory effect of amaranth (Amaranthus hypochondriacus) hydrolysates in LPS-induced human THP-1 macrophage-like and mouse RAW 264.7 macrophages by preventing activation of NF-κB signaling. Mol. Nutr. Food Res. 58:1028–1041.
  • Morgan, A. J., Riley, L. G., Sheehy, P. A. and Wynn, P. C. (2014). The influence of protein fractions from bovine colostrum digested in vivo and in vitro on human intestinal epithelial cell proliferation. J. Dairy. Res. 81:73–81.
  • Muraro, A., Hoffmann-Sommergrube, K., Holzhauser, T., Poulsen, L. K., Gowland, M. H., Akdis, C. A., Mills, E. N., Papadopoulos, N., Roberts, G., Schnadt, S., van Ree, R., Sheikh, A. and Vieths, S. (2014). EAACI Food Allergy and Anaphylaxis Guidelines. Protecting consumers with food allergies: Understanding food consumption, meeting regulations and identifying unmet needs. Allergy 69:1464–1472.
  • Ndiaye, F., Vuong, T., Duarte, J., Aluko, R. E. and Matar, C. (2012). Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds. Eur. J. Nutr. 51:29–37.
  • Nelson, R., Katayama, S., Mine, Y., Duarte, J. and Matar, C. (2007). Immunomodulating effects of egg yolk low lipid peptic digests in a murine model. Food Agric. Immunol. 18:1–15.
  • Noval Rivas, M. and Chatila, T. A. (2016). Regulatory T cells in allergic diseases. J. Allergy Clin. Immunol. 138:639–652.
  • Noval Rivas, M., Burton, O. T., Oettgen, H. C. and Chatila, T. (2016). IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function. J. Allergy Clin. Immunol. 138:801–811.
  • Nowak-Wegrzyn, A. and Albin, S. (2015). Oral immunotherapy for food allergy: mechanisms and role in management. Clin. Exp. Allergy 45:368–383.
  • Nwaru, B., Hickstein, L., Panesar, S. S., Roberts, G., Muraro, A. and Sheikh, A. (2014). Prevalence of common food allergies in Europe: a systematic review and meta-analysis. Allergy 69:992–1007.
  • O'Hehir, R. E., Prickett, S. R. and Rolland, J. M. (2016). T cell epitope peptide therapy for allergic diseases. Curr. Allergy Asthma Rep. 16:14.
  • Oseguera-Toledo, M. E., González de Mejía, E., Dia, V. P. and Amaya-Llano, S. L. (2011). Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-κB pathways. Food Chem. 127:1175–1185.
  • Otani, H., Nakano, K. and Kawahara, T. (2003). Stimulatory effect of a dietary casein phosphopeptide preparation on the mucosal IgA response of mice to orally ingested lipopolysaccharide from Salmonella typhimurium. Biosci. Biotechnol. Biochem. 67:729–735.
  • Oyoshi, M. K., Oettgen, H. C., Chatila, T. A., Geha, R. S. and Bryce, P. J. (2014). Food allergy: Insights into etiology, prevention, and treatment provided by murine models. J. Allergy Clin. Immunol. 133:309–317.
  • Ozawa, T., Miyata, M., Nishimura, M., Ando, T., Ouyang, Y., Ohba, T., Shimokawa, N., Ohnuma, Y., Katoh, R., Ogawa, H. and Nakao, A. (2009). Transforming growth factor-beta activity in commercially available pasteurized cow milk provides protection against inflammation in mice. J. Nutr. 139:69–75.
  • Palmer, D. J., Metcalfe, J., Makrides, M., Gold, M. S., Quinn, P., West, C. E., Loh, R. and Prescott, S. L. (2013). Early regular egg exposure in infants with eczema: a randomized controlled trial. J. Allergy Clin. Immunol. 132:387–392.
  • Palomares, O., Martín-Fontecha, M., Lauener, R., Traidl-Hoffmann, C., Cavkaytar, O., Akdis, M. and Akdis, C. A. (2014). Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-β. Genes Immun. 15:511–520.
  • Palova-Jelinkova, L., Rozkova, D., Pecharova, B., Bartova, J., Sediva, A., Tlaskalova-Hogenova, H., Spisek, R. and Tuckova, L. (2005). Gliadin fragments induce phenotypic and functional maturation of human dendritic cells. J. Immunol. 175:7038–7045.
  • Pascal, M., Konstantinou, G. N., Masilamani, M., Lieberman, J. and Sampson, H. A. (2013). In silico prediction of Ara h 2 T cell epitopes in peanut-allergic children. Clin. Exp. Allergy 43:116–127.
  • Pastorello, E. A., Monza, M., Pravettoni, V., Longhi, R., Bonara, P., Scibilia, J., Primavesi, L. and Scorza, R. (2010). Characterization of the T-cell epitopes of the major peach allergen Pru p 3. Int. Arch. Allergy Immunol. 153:1–12.
  • Pecquet, S., Bovetto, L., Maynard, F. and Fritsché, R. (2000). Peptides obtained by tryptic hydrolysis of bovine beta-lactoglobulin induce specific oral tolerance in mice. J. Allergy Clin. Immunol. 105:514–521.
  • Pelaseyed, T., Bergström, J. H., Gustafsson, J. K., Ermund, A., Birchenough, G. M., Schütte, A., van der Post, S., Svensson, F., Rodríguez-Piñeiro, A. M., Nyström, E. E., Wising, C., Johansson, M. E. and Hansson, G. C. (2014). The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol. Rev. 260:8–20.
  • Peng, H. J., Su, N. H., Tsai, J. J., Tsai, L. C., Kuo, H. L. and Kuo, S. W. (2004). Effect of ingestion of cow's milk hydrolysed formulas on whey protein-specific Th2 immune responses in naïve and sensitized mice. Clin. Exp. Allergy 34:663–670.
  • Perrier, C. and Corthésy, B. (2010). Gut permeability and food allergies. Clin. Exp. Allergy. 41:20–28.
  • Pesek, R. D. and Jones, S. M. (2016). Current and emerging therapies for IgE-mediated food allergy. Curr. Allergy Asthma Rep. 16:28.
  • Phelan, M., Aherne-Bruce, S. A., O'Sullivan, D. J., FitzGerald, R. and O'Brien, N. M. (2009). Potential bioactive effects of casein hydrolysates on human cultured cells. Int. Dairy J. 19:279–285.
  • Piccolomini, A. F., Iskandar, M. M., Lands, L. C. and Kubow, S. (2012). High hydrostatic pressure pre-treatment of whey proteins enhances whey protein hydrolysate inhibition of oxidative stress and IL-8 secretion in intestinal epithelial cells. Food Nutr. Res. 56:17549.
  • Plaisancié, P., Boutrou, R., Estienne, M., Henry, G., Jardin, J., Paquet, A. and Léonil, J. (2015). β-Casein (94–123)-derived peptides differently modulate production of mucins in intestinal goblet cells. J. Dairy Res. 82:36–46.
  • Platzer, B., Baker, K., Vera, M. P., Singer, K., Panduro, M., Lexmond, W. S., Turner, D., Vargas, S. O., Kinet, J. P., Maurer, D., Baron, R. M., Blumberg, R. S. and Fiebiger, E. (2015). Dendritic cell-bound IgE functions to restrain allergic inflammation at mucosal sites. Mucosal Immunol. 8:516–532.
  • Power, O., Jakeman, P. and FitzGerald, R. J. (2013). Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids 44:797–820.
  • Price, D. B., Ackland, M. L., Burks, W., Knight, M. I. and Suphioglu, C. (2014). Peanut allergens alter intestinal barrier permeability and tight junction localisation in Caco-2 cell cultures. Cell. Physiol. Biochem. 33:1758–1777.
  • Prickett, S. R., Voskamp, A. L., Dacumos-Hill, A., Symons, K., Rolland, J. M. and O'Hehir, R. E. (2011). Ara h 2 peptides containing dominant CD4+ T-cell epitopes: candidates for a peanut allergy therapeutic. J. Allergy Clin. Immunol. 127:608–615.
  • Prickett, S. R., Voskamp, A. L., Phan, T., Dacumos-Hill, A., Mannering, S. I., Rolland, J. M. and O'Hehir, R. E. (2013). Ara h 1 CD4+ T cell epitope-based peptides: candidates for a peanut allergy therapeutic. Clin. Exp. Allergy 43:684–697.
  • Prickett, S. R., Rolland, J. M. and O'Hehir, R. E. (2015). Immunoregulatory T cell epitope peptides: the new frontier in allergy therapy. Clin. Exp. Allergy 45:1015–1026.
  • Prioult, G., Pecquet, S. and Fliss, I. (2004). Stimulation of interleukin-10 production by acidic beta-lactoglobulin-derived peptides hydrolyzed with Lactobacillus paracasei NCC2461 peptidases. Clin. Diagn. Lab. Immunol. 11:266–271.
  • Prioult, G., Pecquet, S. and Fliss, I. (2005). Allergenicity of acidic peptides from bovine β-lactoglobulin is reduced by hydrolysis with Bifidobacterium lactis NCC362 enzymes. Int. Dairy J. 155:439–448.
  • Ravkov, E. V., Pavlov, I. Y., Martins, T. B., Gleich, G. J., Wagner, L. A., Hill, H. R. and Delgado, J. C. (2013). Identification and validation of shrimp-tropomyosin specific CD4 T cell epitopes. Hum. Immunol. 74:1542–1549.
  • Requena, T., Miguel, M., Garcés-Rimón, M., Martínez-Cuesta, M. C., López-Fandiño, R. and Peláez, C. (2017). Pepsin egg white hydrolysate modulates gut microbiota in Zucker obese rats. Food Funct. 8:437–443.
  • Rodríguez-Carrio, J., Fernández, A., Riera, F. A. and Suárez, A. (2014). Immunomodulatory activities of whey β-lactoglobulin tryptic-digested fractions. Int. Dairy J. 34:65–73.
  • Roth-Walter, F., Berin, M. C., Arnaboldi, P., Escalante, C. R., Dahan, S., Rauch, J., Jensen-Jarolim, E. and Mayer, L. (2008). Pasteurization of milk proteins promotes allergic sensitization by enhancing uptake through Peyer's patches. Allergy 63:882–890.
  • Ruiter, V. and Shreffler, W. G. (2012). The role of dendritic cells in food allergy. J. Allergy Clin. Immunol. 129:921–928.
  • Ruiter, B., Trégoat, V., M'rabet, L., Garssen, J., Bruijnzeel-Koomen, C. A., Knol, E. F. and Hoffen, E. (2006). Characterization of T cell epitopes in alphas1-casein in cow's milk allergic, atopic and non-atopic children. Clin. Exp. Allergy 36:303–310.
  • Rupa, P. and Mine, Y. (2012). Oral immunotherapy with immunodominant T-cell epitope peptides alleviates allergic reactions in a Balb/c mouse model of egg allergy. Allergy 67:74–82.
  • Saigusa, M., Nishizawa, M., Shimizu, Y. and Saeki, H. (2015). In vitro and in vivo anti-inflammatory activity of digested peptides derived from salmon myofibrillar protein conjugated with a small quantity of alginate oligosaccharide. Biosci. Biotechnol. Biochem. 79:1518–1527.
  • Saint-Sauveur, D., Gauthier, S. F., Boutin, Y. and Montoni, A. (2008). Immunomodulating properties of a whey protein isolate, its enzymatic digest and peptide fractions. Int. Dairy J. 18:260–270.
  • Sallmann, E., Reininger, B., Brandt, S., Duschek, N., Hoflehner, E., Garner-Spitzer, E., Platzer, B., Dehlink, E., Hammer, M., Holcmann, M., Oettgen, H.C., Wiedermann, U., Sibilia, M., Fiebiger, E., Rot, A. and Maurer, D. (2011). High-affinity IgE receptors on dendritic cells exacerbate Th2-dependent inflammation. J. Immunol. 187:164–171.
  • Samaranayaka, A. G. P. and Li-Chan, E. C. Y. (2011). Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. J. Funct. Foods 3:229–254.
  • Sarmadi, B. H. and Ismail, A. (2010). Antioxidative peptides from food proteins: a review. Peptides. 31:1949–1956.
  • Scheurer, S., Toda, M. and Vieths, S. (2015). What makes an allergen? Clin. Exp. Allergy 45:1483–1496.
  • Shan, M., Gentile, M., Yeiser, J. R., Walland, A. C., Bornstein, V. U., Chen, K., He, B., Cassis, L., Bigas, A., Cols, M., Comerma, L., Huang, B., Blander, J. M., Xiong, H., Mayer, L., Berin, C., Augenlicht, L. H., Velcich, A. and Cerutti, A. (2013). Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342:447–453.
  • Shin, J. S. and Greer, A. M. (2015). The role of FCϵRI expressed in dendritic cells and monocites. Cell. Mol. Life Sci. 72:2349–2360.
  • Shreffler, W. G., Castro, R. R., Kucuk, Z. Y., Charlop-Powers, Z., Grishina, G., Yoo, S., Burks, A. W. and Sampson, H. A. (2006). The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J. Immunol. 177:3677–3685.
  • Sicherer, S. H. (2011). Epidemiology of food allergy. J Allergy Clin Immunol. 127:594–602.
  • Singh, A., Holvoet, S. and Mercenier, A. (2011). Dietary polyphenols in the prevention and treatment of allergic diseases. Clin. Exp. Allergy 41:1346–1359.
  • Starkl, P., Krishnamurthy, D., Szalai, K., Felix, F., Lukschal, A., Oberthuer, D., Sampson, H. A., Swoboda, I., Betzel, C., Untersmayr, E. and Jensen-Jarolim, E. (2011). Heating affects structure, enterocyte adsorption and signalling, as well as immunogenicity of the peanut allergen Ara h 2. Open Allergy J. 4:24–34.
  • Strait, R. T., Morris, S. C. and Finkelman, F. D. (2006). IgG-blocking antibodies inhibit IgE-mediated anaphylaxis in vivo through both antigen interception and FcγRIIb cross-linking. J. Clin. Invest. 116:833–841.
  • Strait, R. T., Mahler, A., Hogan, S., Khodoun, M., Shibuya, A. and Finkelman, F. D. (2011). Ingested allergens must be absorbed systemically to induce systemic anaphylaxis. J. Allergy Clin. Immunol. 127:982–989.
  • Szajewska, H. and Horvath, A. (2010). Meta-analysis of the evidence for a partially hydrolyzed 100% whey formula for the prevention of allergic diseases. Curr. Med. Res. Opin. 26:423–437.
  • Tanabe, S. (2012). Short peptide modules for enhancing intestinal barrier function. Curr. Pharm. Des. 18:776–781.
  • Tanabe, S., Isobe, N., Miyauchi, E., Kobayashi, S., Suzuki, M. and Oda, M. (2006). Identification of a peptide in enzymatic hydrolyzate of cheese that inhibits ovalbumin permeation in Caco-2 cells. J. Agric. Food Chem. 54:6904–6908.
  • Thang, C. L. and Zhao, X. (2015). Effects of orally administered immunodominant T-cell epitope peptides on cow's milk protein allergy in a mouse model. Food Res. Int. 71:126–131.
  • Tordesillas, L., Cuesta-Herranz, J., González-Muñoz, M., Pacios, L. F., Compés, E., Garcia-Carrasco, B., Sanchez-Monge, R., Salcedo, G. and Diaz-Perales, A. (2009). T-cell epitopes of the major peach allergen, Pru p 3: Identification and differential T-cell response of peach-allergic and non-allergic subjects. Mol. Immunol. 46:722–728.
  • Tordesillas, L., Gómez-Casado, C., Garrido-Arandia, M., Murua-García, A., Palacín, A., Varela, J., Konieczna, P., Cuesta-Herranz, J., Akdis, C. A., O'Mahony, L. and Díaz-Perales, A. (2013). Transport of Pru p 3 across gastrointestinal epithelium—an essential step towards the induction of food allergy? Clin. Exp. Allergy 43:1374–1383.
  • Trompette, A., Claustre, J., Caillon, F., Jourdan, G., Chayvialle, J. A. and Plaisancié, P. (2003). Milk bioactive peptides and beta-casomorphins induce mucus release in rat jejunum. J. Nutr. 133:3499–3503.
  • Tu, Y., Salim, S., Bourgeois, J., Di Leo, V., Irvine, E.J., Marshall, J. K. and Perdue, M. H. (2005). CD23-Mediated IgE transport across human intestinal epithelium: inhibition by blocking sites of translation or binding. Gastroenterology 129:928–940.
  • Tuckova, L., Novotna, J., Novak, P., Flegelova, Z., Kveton, T., Jelinkova, L., Zidek, Z., Man, P. and Tlaskalova-Hogenova, H. (2002). Activation of macrophages by gliadin fragments: isolation and characterization of active peptide. J. Leukoc. Biol. 71:625–631.
  • Tulic, M. K., Vivinus-Nébot, M., Rekima, A., Rabelo Medeiros, S., Bonnart, C., Shi, H., Walker, A., Dainese, R., Boyer, J., Vergnolle, N., Piche, T. and Verhasselt, V. (2016). Presence of commensal house dust mite allergen in human gastrointestinal tract: a potential contributor to intestinal barrier dysfunction. Gut 65:757–766.
  • Udenigwe, C. C., Je, J. Y., Cho, Y. S. and Yada, R. Y. (2013). Almond protein hydrolysate fraction modulates the expression of proinflammatory cytokines and enzymes in activated macrophages. Food Funct. 4:777–783.
  • Ulluwishewa, D., Anderson, R. C., McNabb, W. C., Moughan, P. J., Wells, J. M. and Roy, N. C. (2011). Regulation of tight junction permeability by intestinal bacteria and dietary components. J. Nutr. 141:769–776.
  • Utsch, L., Folisi, C., Akkerdaas, J. H., Logiantara, A., van de Pol, M. A., van der Zee, J. S., Krop, E. J., Lutter, R., van Ree, R. and van Rijt, L. S. (2015). Allergic sensitization is associated with inadequate antioxidant responses in mice and men. Allergy 70:1246–1258.
  • Valenta, R., Campana, R., Focke-Tejkl, M. and Niederberger, V. (2016). Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future. J. Allergy Clin. Immunol. 137:351–357.
  • van de Veen, W., Stanic, B., Yaman, G., Wawrzyniak, M., Söllner, S., Akdis, D. G., Rückert, B., Akdis, C. A. and Akdis, M. (2013). IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. J. Allergy Clin. Immunol. 131:1204–1212.
  • van den Elsen, L. W., van Esch, B. C., Hofman, G. A., Kant, J., van de Heijning, B. J., Garssen, J. and Willemsen, L. E. (2013a). Dietary long chain n-3 polyunsaturated fatty acids prevent allergic sensitization to cow's milk protein in mice. Clin. Exp. Allergy 43:798–810.
  • van den Elsen, L. W., Nusse, Y., Balvers, M., Redegeld, F. A., Knol, E. F., Garssen, J. and Willemsen, L. E. (2013b). n-3 Long-chain PUFA reduce allergy-related mediator release by human mast cells in vitro via inhibition of reactive oxygen species. Br. J. Nutr. 109:1821–1831.
  • van den Elsen, L. W., van Esch, B. C., Dingjan, G. M., Hofman, G. A., Garssen, J. and Willemsen, L. E. (2015). Increased intake of vegetable oil rich in n-6 PUFA enhances allergic symptoms and prevents oral tolerance induction in whey-allergic mice. Br. J. Nutr. 114:577–585.
  • van Esch, B. C., Schouten, B., Hofman, G. A., van Baalen, T., Nijkamp, F. P., Knippels, L. M., Willemsen, L. E. and Garssen, J. (2010). Acute allergic skin response as a new tool to evaluate the allergenicity of whey hydrolysates in a mouse model of orally induced cow's milk allergy. Pediatr. Allergy Immunol. 21:780–786.
  • van Esch, B. C., Knipping, K., Jeurink, P., van der Heide, S., Dubois, A. E., Willemsen, L. E., Garssen, J. and Knippels, L. M. (2011a). In vivo and in vitro evaluation of the residual allergenicity of partially hydrolysed infant formulas. Toxicol. Lett. 201:264–269.
  • van Esch, B. C., Schouten, B., de Kivit, S., Hofman, G. A., Knippels, L. M., Willemsen, L. E. and Garssen, J. (2011b). Oral tolerance induction by partially hydrolyzed whey protein in mice is associated with enhanced numbers of Foxp3+ regulatory T-cells in the mesenteric lymph nodes. Pediatr. Allergy Immunol. 22:820–826.
  • van Esch, B. C., van Bilsen, J. H., Jeurink, P. V., Garssen, J., Penninks, A. H., Smit, J. J., Pieters, R. H. and Knippels, L. M. (2013). Interlaboratory evaluation of a cow's milk allergy mouse model to assess the allergenicity of hydrolysed cow's milk based infant formulas. Toxicol. Lett. 220:95–102.
  • Van Gramberg, J. L., de Veer, M. J., O'Hehir, R. E., Meeusen, E. N. and Bischof, R. J. (2013). Use of animal models to investigate major allergens associated with food allergy. J. Allergy. 2013:635695.
  • Van Niel, G., Raposo, G., Candalh, C., Boussac, M., Hershberg, R., Cerf-Bensussan, N. and Heyman, M. (2001). Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121:337–349.
  • Van Niel, G., Mallegol, J., Bevilacqua, C., Candalh, C., Brugière, S., Tomaskovic-Crook, E., Heath, J.K., Cerf-Bensussan, N. and Heyman, M. (2003). Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice. Gut 52:1690–1697.
  • Vandenplas, Y., Bhatia, J., Shamir, R., Agostoni, C., Turck, D., Staiano, A. and Szajewska, H. (2014). Hydrolyzed formulas for allergy prevention. J. Pediatr. Gastroenterol. Nutr. 58:549–552.
  • Vázquez-Ortiz, M. and Turner, P. J. (2016). Improving the safety of oral immunotherapy for food allergy. Pediatr. Allergy Immunol. 27:117–125.
  • Vernaza, M. G., Dia, V. P., de Mejía, E. G. and Chang, Y. K. (2012). Antioxidant and antiinflammatory properties of germinated and hydrolysed Brazilian soybean flours. Food Chem. 134:2217–2225.
  • Vinderola, C. G., Duarte, J., Thangavel, D., Perdigón, G., Farnworth, E. and Matar, C. (2005). Immunomodulating capacity of kefir. J. Dairy Res. 72:195–202.
  • Visser, J. T., Lammers, K., Hoogendijk, A., Boer, M. W., Brugman, S., Beijer-Liefers, S., Zandvoort, A., Harmsen, H., Welling, G., Stellaard, F., Bos, N. A., Fasano, A. and Rozing, J. (2010). Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat. Diabetologia 53:2621–2628.
  • Visser, J. T. J., Bos, N. A., Harthoorn, L. F., Stellaard, F., Beijer-Liefers, S., Rozing, J. and van Tol, E. A. F. (2012). Potential mechanisms explaining why hydrolyzed casein-based diets outclass single amino acid-based diets in the prevention of autoimmune diabetes in diabetes-prone BB rats. Diabetes Metab. Res. Rev. 28:505–513.
  • Vo, T.S., Ryu, B. and Kim, S. K. (2013). Purification of novel anti-inflammatory peptides from enzymatic hydrolysate of the edible microalgal Spirulina maxima. J. Funct. Foods. 5:1336–1346.
  • Wada, S., Sato, K., Ohta, R., Wada, E., Bou, Y., Fujiwara, M., Kiyono, T., Park, E. Y., Aoi, W., Takagi, T., Naito, Y. and Yoshikawa, T. (2013). Ingestion of low dose pyroglutamyl leucine improves dextran sulfate sodium-induced colitis and intestinal microbiota in mice. J. Agric. Food Chem. 61:8807–8813.
  • Wai, C. Y., Leung, N. Y., Ho, M. H., Gershwin, L. J., Shu, S. A., Leung, P. S. and Chu, K. H. (2014). Immunization with Hypoallergens of shrimp allergen tropomyosin inhibits shrimp tropomyosin specific IgE reactivity. PLoS One 9:e111649.
  • Wai, C. Y., Leung, N. Y., Leung, P. S. and Chu, K. H. (2016). T cell epitope immunotherapy ameliorates allergic responses in a murine model of shrimp allergy. Clin. Exp. Allergy 46:491–503.
  • Wang, S. P., Delgado, J. C., Ravkov, E., Eckels, D.D., Georgelas, A., Pavlov, I. Y., Cusick, M., Sebastian, K., Gleich, G. J. and Wagner, L. A. (2012). Penaeus monodon tropomyosin induces CD4 T-cell proliferation in shrimp-allergic patients. Hum. Immunol. 73:426–431.
  • Wood, R. A. (2016). Food allergen immunotherapy: Current status and prospects for the future. J. Allergy Clin. Immunol. 137:973–982.
  • Worbs, T., Bode, U., Yan, S., Hoffmann, M. W., Hintzen, G., Bernhardt, G., Förster, R. and Pabst, O. (2006). Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J. Exp. Med. 203:519–527.
  • Worthington, J. J. (2015). The intestinal immunoendocrine axis: Novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease. Biochem. Soc. Trans. 43:727–733.
  • Xu, C., Yang, C., Yin, Y., Liu, J. and Mine, Y. (2012). Phosphopeptides (PPPs) from hen egg yolk phosvitin exert anti-inflammatory activity via modulation of cytokine expression. J. Funct. Foods 4:718–726.
  • Yang, M. and Mine, Y. (2009). Novel T-cell epitopes of ovalbumin in BALB/c mouse: Potential for peptide-immunotherapy. Biochem. Biophys. Res. Commun. 378:203–208.
  • Yang, R., Zhang, Z., Pei, X., Han, X., Wang, J., Wang, L., Long, Z., Shen, X. and Li, Y. (2009a). Immunomodulatory effects of marine oligopeptide preparation from Chum Salmon (Oncorhynchus keta) in mice. Food Chem. 113:464–470.
  • Yang, M., Yang, C., Nau, F., Pasco, M., Juneja, L. R., Okubo, T. and Mine, Y. (2009b). Immunomodulatory effects of egg white enzymatic hydrolysates containing immunodominant epitopes in a BALB/c mouse model of egg allergy. J. Agric. Food Chem. 57:2241–2248.
  • Yang, M., Yang, C. and Mine, Y. (2010). Multiple T cell epitope peptides suppress allergic responses in an egg allergy mouse model by the elicitation of forkhead box transcription factor 3- and transforming growth factor-β-associated mechanisms. Clin. Exp. Allergy 40:668–678.
  • Yasumatsu, H. and Tanabe, S. (2010). The casein peptide Asn-Pro-Trp-Asp-Gln enforces the intestinal tight junction partly by increasing occludin expression in Caco-2 cells. Br. J. Nutr. 104:951–956.
  • Zhang, H., Kovacs-Nolan, J., Kodera, T., Eto, Y. and Mine, Y. (2015). γ-Glutamyl cysteine and γ-glutamyl valine inhibit TNF-α signaling in intestinal epithelial cells and reduce inflammation in a mouse model of colitis via allosteric activation of the calcium-sensing receptor. Biochim. Biophys. Acta 1852:792–804.
  • Zhou, J. S., Sandomenico, A., Severino, V., Burton, O. T., Darling, A., Oettgen, H. C. and Ruvo, M. (2013). An IgE receptor mimetic peptide (PepE) protects mice from IgE mediated anaphylaxis. Mol. Biosyst. 9:2853–2859.
  • Ziegler, S. F. and Artis, D. (2010). Sensing the outside world: TSLP regulates barrier immunity. Nat. Immunol. 11:289–293.
  • Zoghbi, S., Trompette, A., Claustre, J., El Homsi, M., Garzón, J., Jourdan, G., Scoazec, J. Y. and Plaisancié, P. (2006). Beta-Casomorphin-7 regulates the secretion and expression of gastrointestinal mucins through a mu-opioid pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 290:G1105–G1113.
  • Zolkipli, Z., Roberts, G., Cornelius, V., Clayton, B., Pearson, S., Michaelis, L., Djukanovic, R., Kurukulaaratchy, R. and Arshad, S. H. (2015). Randomized controlled trial of primary prevention of atopy using house dust mite allergen oral immunotherapy in early childhood. J. Allergy Clin. Immunol. 136:1541–1547.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.