1,737
Views
83
CrossRef citations to date
0
Altmetric
Articles

Physiological protection of probiotic microcapsules by coatings

, , &

References

  • Adhikari, K., Mustapha, A. and Grün, I. U. (2003). Survival and metabolic activity of microencapsulated bifidobacterium longum in stirred yogurt. Food Microbiol Saf. 68(1):275–280.
  • Adhikari, K., Mustapha, A., Grün, I. U. and Fernando, L. (2000). Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. J. Dairy Sci. 83(9):1946–1951.
  • Albertini, B., Vitali, B., Passerini, N., Cruciani, F., Di Sabatino, M., Rodriguez, L. and Brigidi, P. (2010). Development of microparticulate systems for intestinal delivery of Lactobacillus acidophilus and Bifidobacterium lactis. Eur. J. Pharm. Sci. 40(4):359–366.
  • Allan-Wojtas, P., Truelstrup Hansen, L. and Paulson, A. T. (2008). Microstructural studies of probiotic bacteria-loaded alginate microcapsules using standard electron microscopy techniques and anhydrous fixation. LWT – Food Sci. Technol. 41(1):101–108.
  • Annan, N. T., Borza, A. D. and Hansen, L. T. (2008). Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Res. Int. 41(2):184–193.
  • Antunes, A. E. C., Liserre, A. M., Coelho, A. L. A, Menezes, C. R., Moreno, I., Yotsuyanagi, K. and Azambuja, N. C. (2013). Acerola nectar with added microencapsulated probiotic. LWT – Food Sci. Technol. 54(1):125–131.
  • Arslan, S., Erbas, M., Tontul, I. and Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWT – Food Sc. Technol. 63(1):685–690.
  • Augustin, M. A. and Sanguansri, L. (2008). Encapsulation of bioactives. In Food Materials Science Principals and Practice (pp. 577–601). Springer, New York.
  • Aureli, P., Capurso, L., Castellazzi, A. M., Clerici, M., Giovannini, M., Morelli, L., … Zuccotti, G. V. (2011). Probiotics and health: an evidence-based review. Pharmacological Res. 63(5):366–376.
  • Avila-Reyes, S. V., Garcia-Suarez, F. J., Jiménez, M. T., San Martín-Gonzalez, M. F. and Bello-Perez, L. A. (2014). Protection of L. rhamnosus by spray-drying using two prebiotics colloids to enhance the viability. Carbohydrate Polym. 102(1):423–430.
  • Azizi, E., Namazi, A., Haririan, I., Fouladdel, S., Khoshayand, M. R., Shotorbani, P. Y., … Gazori, T. (2010). Release profile and stability evaluation of optimized chitosan/alginate nanoparticles as EGFR antisense vector. Int. J. Nanomed. 5:455–461.
  • Bertrand, P., Jonas, A., Laschewsky, A. and Legras, R. (2000). Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol. Rapid Commun. 21(7):319–348.
  • Binnendijk, K. H. and Rijkers, G. T. (2013). What is a health benefit? An evaluation of EFSA opinions on health benefits with reference to probiotics. Beneficial Microbes 4(3):223–230.
  • Borges, J. and Mano, J. F. (2014). Molecular interactions driving the layer-by-layer assembly of multilayers. Chem. Rev. 114:8883–8942.
  • Brinques, G. B. and Ayub, M. A. Z. (2011). Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. J. Food Eng. 103(2):123–128.
  • Burey, P., Bhandari, B. R., Howes, T. and Gidley, M. J. (2009). Gel particles from spray-dried disordered polysaccharides. Carbohydrate Polym. 76(2):206–213.
  • Burgain, G. C., Linder, M. and Scher, J. (2011). Encapsulation of probiotic living cells: from laboratory scale to industrial applications. J. Food Eng. 104(4):467–483.
  • Büyükgüngör, H. (1992). Stability of Lactobacillus bulgaricus immobilized in kappa-carrageenan gels. J. Chem. Technol. Biotechnol. (Oxford, Oxfordshire : 1986) 53(2):173–175.
  • California Dairy Research Fundation. (2015). Products with probiotics. Available at http://cdrf.org/home/checkoff-investments/usprobiotics/products-with-probiotics/ Accessed 5 April 2017.
  • Canadian Food Inspection Agency. (2015). Probiotic Claims.
  • Carneiro-Da-Cunha, M. G., Cerqueira, M. A., Souza, B. W. S., Teixeira, J. A. and Vicente, A. a. (2011). Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydrate Polym. 85(3):522–528.
  • Cerqueira, M. A., Costa, M. J., Rivera, M. C., Ramos, Ó. L. and Vicente, A. A. (2014). Flavouring and coating technologies for preservation and processing of foods. Conventional and Advanced Food Processing Technologies, First Edition. Edited by Suvendu Bhattacharya. Published by JohnWiley & Sons, Ltd.
  • Champagne, C. P. and Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Curr. Opin. Biotechnol. 18(2):184–190.
  • Champagne, C. P., Gaudy, C., Poncelet, D. and Neufeld, R. J. (1992). Lactococcus lactis release from calcium alginate beads. Appl. Environ. Microbiology 58(5):1429–1434.
  • Champagne, C. P., Raymond, Y., Guertin, N. and Bélanger, G. (2015). Effects of storage conditions, microencapsulation and inclusion in chocolate particles on the stability of probiotic bacteria in ice cream. Int. Dairy J. 47:109–117.
  • Chandramouli, V., Kailasapathy, K., Peiris, P. and Jones, M. (2004). An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J. Microbiological Methods 56(1):27–35.
  • Cook, M. T., Tzortzis, G., Charalampopoulos, D. and Khutoryanskiy, V. V. (2011). Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria. Biomacromolecules 12(7):2834–2840.
  • Cook, M. T., Tzortzis, G., Charalampopoulos, D. and Khutoryanskiy, V. V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. J. Control. Release : Official J. Control. Release Soc. 162(1):56–67.
  • Corona-Hernandez, R. I., Álvarez-Parrilla, E., Lizardi-Mendoza, J., Islas-Rubio, A. R., de la Rosa, L. A. and Wall-Medrano, A. (2013). Structural stability and viability of microencapsulated probiotic bacteria: a review. Comprehen. Rev. Food Sci. Food Saf. 12(6):614–628.
  • Crittenden, R., Weerakkody, R., Sanguansri, L. and Augustin, M. (2006). Synbiotic microcapsules that enhance microbial viability during nonrefrigerated storage and gastrointestinal transit. Appl. Environ. Microbiol. 72(3):2280–2282.
  • Cui, J. H., Goh, J. S., Kim, P. H., Choi, S. H. and Lee, B. J. (2000). Survival and stability of bifidobacteria loaded in alginate poly-l-lysine microparticles. Int. J. Pharmaceutics 210(1–2):51–59. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11163987
  • Darjani, P., Hosseini Nezhad, M., Kadkhodaee, R. and Milani, E. (2016). Influence of prebiotic and coating materials on morphology and survival of a probiotic strain of Lactobacillus casei exposed to simulated gastrointestinal conditions. LWT - Food Sci. Technol. 73:162–167.
  • De Prisco, A., Maresca, D., Ongeng, D. and Mauriello, G. (2015). Microencapsulation by vibrating technology of the probiotic strain Lactobacillus reuteri DSM 17938 to enhance its survival in foods and in gastrointestinal environment. LWT - Food Sci. Technol. 61(2):452–462.
  • Decher, G. (1997). Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237.
  • Decher, G., Hong, J. D. and Schmitt, J. (1992). Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211:831–835.
  • Degnan, F. H. (2008). The US food and drug administration and probiotics: regulatory categorization. Clin. Infectious Diseases : An Official Publ. Infectious Diseases Soc. Am. 46 Suppl 2:S133–S136.
  • Ding, W. K. and Shah, N. P. (2007). Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. Journal of Food Science 72(9):M446–50.
  • Ding, W. K. and Shah, N. P. (2009a). An improved method of microencapsulation of probiotic bacteria for their stability in acidic and bile conditions during storage. J. Food Sci. 74(2):53–61.
  • Ding, W. K. and Shah, N. P. (2009b). Effect of various encapsulating materials on the stability of probiotic bacteria. J. Food Sci. 74(2):M100–M107.
  • Doherty, S. B., Gee, V. L., Ross, R. P., Stanton, C., Fitzgerald, G. F. and Brodkorb, A. (2011). Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocolloids 25(6):1604–1617.
  • Doleyres, Y. and Lacroix, C. (2005). Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. Int. Dairy J. 15(10):973–988.
  • Draget, K. I., Stokke, B. T., Yuguchi, Y., Urakawa, H. and Kajiwara, K. (2000). Small-angle X-ray scattering and rheological characterization of alginate gels. 3. Alginic acid gels. Biomacromolecules. 4(6):1661–1668.
  • Engelen, L., Van Der Bilt, A., Schipper, M. and Bosman, F. (2005). Oral size perception of particles: effect of size, type, viscosity and method. J. Texture Stud. 36(4):373–386.
  • Eratte, D., McKnight, S., Gengenbach, T. R., Dowling, K., Barrow, C. J. and Adhikari, B. P. (2015). Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate–gum Arabic complex coacervates. J. Funct. Foods, 1–11.
  • Estevinho, B. N., Rocha, F., Santos, L. and Alves, A. (2013). Microencapsulation with chitosan by spray drying for industry applications—a review. Trends Food Sci. Technol. 31:138–155.
  • Etchepare, M. de A., Raddatz, G. C., Cichoski, A. J., Flores, É. M. M., Barin, J. S., Queiroz Zepka, L., … de Menezes, C. R. (2016). Effect of resistant starch (Hi-maize) on the survival of Lactobacillus acidophilus microencapsulated with sodium alginate. J. Funct. Foods. 21:321–329.
  • EU. (2012). Commission Implementing Regulation (EU) No 315/2012 of 101012 April 2012. 315. L 103/38–41. Available at http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L:2012:103:TOC.
  • EU Register on nutrition and health claims made on foods. (2014).
  • Fareez, I. M., Lim, S. M., Mishra, R. K. and Ramasamy, K. (2015). Chitosan coated alginate–xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. Int. J. Biol. Macromolecules. 72:1419–1428. Available at https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm271325.htm
  • FDA. (2003). Gras Notice - e-poly-l-lysine for addition to specified foods.
  • FDA. (2011). Generally Recognized as Safe (GRAS) substance under the US FDA regulation. Retrieved from http://www.accessdata.fda.gov/scripts/fdcc/?set=GRASNotices&id=397
  • Food and Agriculture Organization of the United Nations/World Health Organization. (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Food Agric. Organ. United Nations World, (October):1–34.
  • Fou, A. C. and Rubner, M. F. (1995). Molecular-level processing of conjugated polymers. 2. Layer-by-layer manipulation of in-situ polymerized p-type doped conducting polymers. Macromolecules. 28(21):7115–7120.
  • Freitas, S., Merkle, H. P. and Gander, B. (2005). Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Control. Release : Official J. Control. Release Soc. 102(2):313–332.
  • FSANZ. (2013). Approval Report – Application A1077 Fungal Chitosan as a Processing Aid (vol. 1).
  • García-Ceja, A., Mani-López, E., Palou, E. and López-Malo, A. (2015). Viability during refrigerated storage in selected food products and during simulated gastrointestinal conditions of individual and combined lactobacilli encapsulated in alginate or alginate-chitosan. LWT - Food Sci. Technol. 63(1):482–489.
  • Gardiner, G. E., Bouchier, P., O'Sullivan, E., Kelly, J., Kevin Collins, J., Fitzgerald, G., … Stanton, C. (2002). A spray-dried culture for probiotic Cheddar cheese manufacture. Int. Dairy J. 12(9):749–756.
  • Gbassi, G. K. and Vandamme, T. (2012). Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics. 4(4):149–163.
  • Gbassi, G. K., Vandamme, T., Ennahar, S. and Marchioni, E. (2009). Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. Int. J. Food Microbiology. 129(1):103–105.
  • Gebara, C., Chaves, K. S., Ribeiro, M. C. E., Souza, F. N., Grosso, C. R. F. and Gigante, M. L. (2013). Viability of lactobacillus acidophilus La5 in pectin–whey protein microparticles during exposure to simulated gastrointestinal conditions. Food Res. Int. 51(2):872–878. http://doi.org/10.1016/j.foodres.2013.02.008
  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A. and Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res. Int. 40(9):1107–1121.
  • Gilliland, S. E. (1989). Acidophilus milk products: a review of potential benefits to consumers. J. Dairy Sci. 72(5524):2483–2494.
  • Gombotz, W. and Wee, S. (1998). Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31(3):267–285.
  • Gouin, S. (2004). Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci. Technol. 15:330–347.
  • Graff, S., Hussain, S., Chaumeil, J. C. and Charrueau, C. (2008). Increased intestinal delivery of viable saccharomyces boulardii by encapsulation in microspheres. Pharmaceutical Res. 25(6):1290–1296.
  • Groboillot, A. F., Champagne, C. P., Darling, G. D., Poncelet, D. and Neufeld, R. J. (1993). Membrane Formation by InterfaciaI Cross-Linking of Chitosan for Microencapsulation of Lactococcus Iactis. Biotechnol. Bioeng. 42:1157–1163.
  • Guérin, D., Vuillemard, J.-C. and Subirade, M. (2003). Protection of bifidobacteria encapsulated in polysaccharide-protein gel beads against gastric juice and bile. J. Food Prot. 66(11):2076–2084.
  • Hamano, Y., Arai, T., Ashiuchi, M. and Kino, K. (2013). NRPSs and amide ligases producing homopoly(amino acid)s and homooligo(amino acid)s. Nat. Prod. Rep. 30(8):1087–1097.
  • Hansen, L. T., Allan-Wojtas, P., Jin, Y.-L. and Paulson, A. (2002). Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 19(1):35–45.
  • Heidebach, T., Först, P. and Kulozik, U. (2009). Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food Hydrocolloids. 23(7):1670–1677.
  • Heidebach, T., Först, P. and Kulozik, U. (2012). Microencapsulation of probiotic cells for food applications. Crit. Rev. Food Sci. Nutr. 52(4):291–311.
  • Hernández-Rodríguez, L., Lobato-Calleros, C., Pimentel-González, D. J. and Vernon-Carter, E. J. (2014). Lactobacillus plantarum protection by entrapment in whey protein isolate: κ-carrageenan complex coacervates. Food Hydrocolloids. 36:181–188.
  • Hoffmann, D. E., Fraser, C. M., Palumbo, F. B., Ravel, J., Rothenberg, K., Rowthorn, V. and Schwartz, J. (2013). Probiotics: finding the right regulatory balance. Policy Forum 342(October):314–315.
  • Holkem, A. T., Raddatz, G. C., Barin, J. S., Moraes Flores, É. M., Muller, E. I., Codevilla, C. F., … de Menezes, C. R. (2016). Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT - Food Sci. Technol., 1–6. http://doi.org/10.1016/j.lwt.2016.07.013
  • Hou, R. C. W., Lin, M. Y., Wang, M. M. C. and Tzen, J. T. C. (2003). Increase of viability of entrapped cells of Lactobacillus delbrueckii ssp. bulgaricus in artificial sesame oil emulsions. J. Dairy Sci. 86(2):424–428.
  • Huguet, M. L., Neufeld, R. J. and Dellacherie, E. (1996). Calcium-alginate beads coated with polycationic polymers: comparison of chitosan and DEAE-dextran. Process Biochem. 31(4):347–353.
  • Hyndman, C. L., Groboillot, A. F., Poncelet, D., Champagne, C. P. and Neufeldg, R. J. (1993). Microencapsulation of Lactococcus lactis within cross-linked gelatin membranes. J. Chem. Tech. Biotechnol. 56:259–263.
  • Imai, E., Hatae, K. and Shimada, A. (1995). Oral perception of grittiness: effect of particle size and concentration of the dispersed particles and the dispersion medium. J. Texture Stud. 26:561–576.
  • Iyer, C. and Kailasapathy, K. (2005). Effect of co-encapsulation of probiotics with prebiotics on increasing the viability of encapsulated bacteria under in vitro acidic and bile salt conditions and in yogurt. J. Food Sci. 70(1):M18–M23.
  • JFCRF. (2011). List of existing food additives. Retrieved from http://www.ffcr.or.jp/zaidan/ffcrhome.nsf/pages/list-exst.add
  • Jiménez-Pranteda, M. L., Poncelet, D., Náder-Macías, M. E., Arcos, A., Aguilera, M., Monteoliva-Sánchez, M. and Ramos-Cormenzana, A. (2012). Stability of lactobacilli encapsulated in various microbial polymers. J. Biosci. Bioeng. 113(2):179–184.
  • John, R. P., Tyagi, R. D., Brar, S. K., Surampalli, R. Y. and Prévost, D. (2011). Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit. Rev. Biotechnol. 31(3):211–226.
  • Ju, Z. Y. and Kilara, A. (1998). Gelation of pH-aggregated whey protein isolate solution induced by heat, protease, calcium salt, and acidulant. J. Agric. Food Chem. 46(5):1830–1835.
  • Kailasapathy, K. (2002). Microencapsulation of probiotic bacteria: technology and potential applications. Curr. Issues Intestinal Microbiology. 3:39–48.
  • Kailasapathy, K. (2009). Encapsulation technologies for functional foods and nutraceutical product development. CAB Rev.: Perspect. Agric., Veterinary Sci., Nutr. Nat. Resour. 4(33).
  • Kemsawasd, V., Chaikham, P. and Rattanasena, P. (2016). Survival of immobilized probiotics in chocolate during storage and with an in vitro gastrointestinal model. Food Biosci. 16(February):37–43.
  • Kent, R. M. and Doherty, S. B. (2014). Probiotic bacteria in infant formula and follow-up formula: microencapsulation using milk and pea proteins to improve microbiological quality. Food Res. Int. 64:567–576.
  • Klu, Y. A. K. and Chen, J. (2015). Effect of peanut butter matrices on the fate of probiotics during simulated gastrointestinal passage. LWT - Food Sci. Technol. 62(2):983–988.
  • Koo, S. M., Cho, Y. H., Huh, C. S., Baek, Y. J. and Park, J. (2001). Improvement of the stability of Lactobacillus casei YIT 9018 by microencapsulation using alginate and chitosan. J. Microbiology Biotechnol..
  • Korea, S. and Province, F. (2014). Genome Sequence of the З -Poly- L -lysine-producing strain streptomyces albulus NK660, Isolated from soil in gutian, fujian. Genome Announcements. 2(3):3–4.
  • Krasaekoopt, W., Bhandari, B. and Deeth, H. (2003). Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy J. 13(1):3–13.
  • Krasaekoopt, W., Bhandari, B. and Deeth, H. (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int. Dairy J. 14(8):737–743.
  • Krasaekoopt, W., Bhandari, B. and Deeth, H. C. (2006). Survival of probiotics encapsulated in chitosan-coated alginate beads in yoghurt from UHT- and conventionally treated milk during storage. LWT - Food Sci. Technol. 39(2):177–183.
  • Krasaekoopt, W. and Watcharapoka, S. (2014). Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT - Food Sci. Technol. 57(2):761–766.
  • Laelorspoen, N., Wongsasulak, S., Yoovidhya, T. and Devahastin, S. (2014). Microencapsulation of Lactobacillus acidophilus in zein–alginate core–shell microcapsules via electrospraying. J. Funct. Foods. 7:342–349.
  • Larisch, B. C., Poncelet, D., Champagne, C. P. and Neufeld, R. J. (1994). Microencpasulation of Lactococcus lactis subsp. cremoris. J. Microencapsul. 11(2):189–195.
  • Lee, J. S., Cha, D. S. and Park, H. J. (2004). Survival of freeze-dried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles. J. Agric. Food Chem. 52:7300–7305.
  • Li, X. Y., Chen, X. G., Sun, Z. W., Park, H. J. and Cha, D.-S. (2011). Preparation of alginate/chitosan/carboxymethyl chitosan complex microcapsules and application in Lactobacillus casei ATCC 393. Carbohydrate Polym. 83(4):1479–1485.
  • Lian, W., Hsiao, H. and Chou, C. (2002). Survival of bifidobacteria after spray-drying. Int. J. Food Microbiol. 74:79–86.
  • Lin, J., Yu, W., Liu, X., Xie, H., Wang, W. and Ma, X. (2008). In Vitro and in Vivo characterization of alginate-chitosan-alginate artificial microcapsules for therapeutic oral delivery of live bacterial cells. J. Biosci. Bioeng. 105(6):660–665.
  • Liu, X. D., Yu, W. Y., Zhang, Y., Xue, W. M., Yu, W. T., Xiong, Y., … Yuan, Q. (2002). Characterization of structure and diffusion behaviour of Ca-alginate beads prepared with external or internal calcium sources. J. Microencapsulation. 19(6):775–782.
  • Livney, Y. D. (2010). Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 15(1–2):73–83.
  • López-Rubio, A., Sanchez, E., Wilkanowicz, S., Sanz, Y. and Lagaron, J. M. (2012). Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocolloids. 28(1):159–167.
  • Lvov, Y., Ariga, K., Ichinose, I. and Kunitake, T. (1995). Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J. Am. Chem. Soc. 117:6117–6123.
  • Maciel, G. M., Chaves, K. S., Grosso, C. R. F. and Gigante, M. L. (2014). Microencapsulation of Lactobacillus acidophilus La-5 by spray-drying using sweet whey and skim milk as encapsulating materials. J. Dairy Sci. 97(4):1991–1998.
  • Madene, A., Jacquot, M., Scher, J. and Desobry, S. (2006). Flavour encapsulation and controlled release - a review. Int. J. Food Sci. Technol. 41(1):1–21.
  • Markets and market 2015. (n.d.). Probiotic Ingredients Market by Function (Regular, Preventative, Therapy), Application (Food & Beverage, Dietary Supplements, & Animal Feed), End Use (Human & Animal Probiotics), Ingredient (Bacteria & Yeast), and by Region - Global Trends & Forecast to 2.
  • Martoni, C., Bhathena, J., Jones, M. L., Urbanska, A. M., Chen, H. and Prakash, S. (2007). Investigation of microencapsulated BSH active lactobacillus in the simulated human GI tract. J. Biomed. Biotechnol. 2007(7):13684.
  • McMaster, L. D. and Kokott, S. A. (2005). Micro-encapsulation of Bifidobacterium lactis for incorporation into soft foods. World J. Microbiol. Biotechnol. 21(5):723–728.
  • Mekhail, M., Jahan, K. and Tabrizian, M. (2014). Genipin-crosslinked chitosan/poly-L-lysine gels promote fibroblast adhesion and proliferation. Carbohydrate Polym. 108:91–98.
  • Mi, Y., Su, R., Fan, D. Di, Zhu, X. L. and Zhang, W. N. (2013a). Preparation of N,O-carboxymethyl chitosan coated alginate microcapsules and their application to Bifidobacterium longum BIOMA 5920. Mater. Sci. Eng. C. 33:3047–3053.
  • Mi, Y., Su, R., Fan, D. Di, Zhu, X. L. and Zhang, W. N. (2013b). Preparation of N,O-carboxymethyl chitosan coated alginate microcapsules and their application to Bifidobacterium longum BIOMA 5920. Mater. Sci. Eng. C. 33:3047–3053.
  • Mokarram, R. R., Mortazavi, S. A., Najafi, M. B. H. and Shahidi, F. (2009a). The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Res. Int. 42(8):1040–1045.
  • Mokarram, R. R., Mortazavi, S. a., Najafi, M. B. H. and Shahidi, F. (2009b). The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Res. Int. 42(8):1040–1045.
  • Nazzaro, F., Orlando, P., Fratianni, F. and Coppola, R. (2012). Microencapsulation in food science and biotechnology. Curr. Opin. Biotechnol. 23(2):182–186.
  • Nihant, N., Stassen, S., Grandfils, C., Jerome, R. and Teyssie, P. (1994). Microencapsulation by coacervation of characterization of the final M icrospheres. Polym. Int. 34:289–299.
  • Oliveira, A. C., Moretti, T. S., Boschini, C., Baliero, J. C. C., Freitas, O. and Favaro-Trindade, C. S. (2007). Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying. J. Microencapsulation. 24(7):673–681.
  • Orive, G., Tam, S. K., Pedraz, J. L. and Hallé, J.-P. (2006). Biocompatibility of alginate-poly-L-lysine microcapsules for cell therapy. Biomaterials. 27(20):3691–3700.
  • Park, J. and Chang, H. (2000). Microencapsulation of microbial cells. Biotechnol. Adv. 18(4):303–319.
  • Pedroso, D. D. L., Thomazini, M., Heinemann, R. J. B. and Favaro-Trindade, C. S. (2012). Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. Int. Dairy J. 26(2):127–132.
  • Peniche, C., Argüelles-Monal, W., Peniche, H. and Acosta, N. (2003). Chitosan: an attractive biocompatible polymer for microencapsulation. Macromol. Biosci. 3(10):511–520.
  • Picot, A. and Lacroix, C. (2004). Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int. Dairy J. 14(6):505–515.
  • Pinto, S. S., Verruck, S., Vieira, C. R. W., Prudêncio, E. S., Amante, E. R. and Amboni, R. D. M. C. (2015). Influence of microencapsulation with sweet whey and prebiotics on the survival of Bifidobacterium-BB-12 under simulated gastrointestinal conditions and heat treatments. LWT - Food Sci. Technol. 64(2):1004–1009.
  • Prakash, S., Tomaro-Duchesneau, C., Saha, S. and Cantor, A. (2011). The gut microbiota and human health with an emphasis on the use of microencapsulated bacterial cells. J. Biomed. Biotechnol. 2011.
  • Rajam, R. and Anandharamakrishnan, C. (2015). Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT - Food Sci. Technol. 60(2):773–780.
  • Ramos, P. E., Abrunhosa, L., Pinheiro, A., Cerqueira, M. A., Motta, C., Castanheira, I., … Vicente, A. A. (2016). Probiotic-loaded microcapsule system for human in situ folate production: encapsulation and system validation. Food Res. Int. 90:25–32.
  • Ramos, P. E., Cerqueira, M. A., Cook, M. T., Bourbon, A. I., Khutoryanskiy, V. V, Charalampoulos, D., … Vicente, A. A. (2016). Development of an immobilization system for in situ micronutrients release. Food Res. Int. 90:121–132.
  • Ranadheera, C. S., Evans, C. A., Adams, M. C. and Baines, S. K. (2015). Microencapsulation of lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Propionibacterium jensenii 702 by spray drying in goat's milk. Small Ruminant Res. 123(1):155–159.
  • Rathore, S., Desai, P. M., Liew, C. V., Chan, L. W. and Heng, P. W. S. (2013). Microencapsulation of microbial cells. J. Food Eng. 116(2):369–381.
  • Ravi Kumar, M. N. (2000). A review of chitin and chitosan applications. Reactive Funct. Polym. 46:1–27.
  • Rinaudo, M. (2006). Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31:603–632.
  • Rinaudo, M. (2008). Main properties and current applications of some polysacharides as biomaterials. Polym. Int. 57:397–430.
  • Rokka, S. and Rantamäki, P. (2010). Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur. Food Res. Technol. 231(1):1–12.
  • Santos, E., Orive, G., Calvo, A., Catena, R., Fernández-Robredo, P., Layana, a. G., … Pedraz, J. L. (2012). Optimization of 100 μm alginate-poly-l-lysine-alginate capsules for intravitreous administration. J. Control. Release. http://doi.org/10.1016/j.jconrel.2011.09.079
  • Senuma, Y., Lowe, C., Zweifel, Y., Hilborn, J. G. and Marison, I. (2000). Alginate hydrogel microspheres and microcapsules prepared by spinning disk atomization. Biotechnol. Bioeng. 67(5):616–22. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10649236
  • Sheu, T. Y. and Marshall, R. T. (1993). Microentrapment of Lactobacilli in calcium alginate gels. J. Food Sci. 54(3):557–561.
  • Shoji, A. S., Oliveira, A. C., Balieiro, J. C. C., Freitas, O., Thomazini, M., Heinemann, R. J. B., … Favaro-Trindade, C. S. (2013). Viability of L. acidophilus microcapsules and their application to buffalo milk yoghurt. Food Bioproducts Process. 91(2):83–88.
  • Siró, I., Kápolna, E., Kápolna, B. and Lugasi, A. (2008). Functional food. Product development, marketing and consumer acceptance–a review. Appetite. 51(3):456–467.
  • Smidsrd, O. and Skjak-Brae, G. (1990). Alginate as immobilization matrix for cells. Tibtech. 8(March):71–78.
  • Sogias, I. A., Khutoryanskiy, V. V. and Williams, A. C. (2010). Exploring the factors affecting the solubility of chitosan in water. Macromol. Chem. Phys. 211:426–433.
  • Sohail, A., Turner, M. S., Coombes, A., Bostrom, T. and Bhandari, B. (2011). Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. Int. J. Food Microbiol. 145(1):162–168.
  • Solanki, H. K., Pawar, D. D., Shah, D. A., Prajapati, V. D., Jani, G. K., Mulla, A. M. and Thakar, P. M. (2013). Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. BioMed. Res. Int. 2013. http://doi.org/10.1155/2013/620719
  • Sousa, S., Gomes, A. M., Pintado, M. M., Silva, J. P., Costa, P., Amaral, M. H., … Freitas, A. C. (2013). Characterization of freezing effect upon stability of, probiotic loaded, calcium-alginate microparticles. Food Bioproducts Process. (February):5–12.
  • Stein, A. J. and Rodríguez-Cerezo, E. (2008). Functional Food in the European Union. http://doi.org/10.2791/21607
  • Sukhishvili, S. A. and Granick, S. (2002). Layered, erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly. Macromolecules. 35(1):301–310.
  • Sullivan, A. and Nord, C. E. (2005). Probiotics and gastrointestinal diseases. J. Intern. Med. 257(1):78–92.
  • Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P. and Kailasapathy, K. (2000). Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int. J. Food Microbiol. 62(1–2):47–55.
  • Sun, W. and Griffiths, M. W. (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int. J. Food Microbiol. 61(1):17–25.
  • Sunohara, H., Ohno, T., Shibata, N. and Seki, K. (1995). Process for producing capsule and capsule obtained thereby.
  • Switzerland Confederation. (2014). Allégations de santé autorisées au sens de l'art. 29g de l'ordonnance sur l'étiquetage et la publicité des denrées alimentaires (OEDAl). Swiss Law.
  • Takehara, M., Saimura, M., Inaba, H. and Hirohara, H. (2008). Poly(L-diaminobutanoic acid), a novel poly(amino acid), coproduced with poly(E-L-lysine) by two strains of Streptomyces celluloflavus. FEMS Microbiol. Lett. 286(1):110–117.
  • Tam, S. K., Dusseault, J., Polizu, S., Ménard, M., Hallé, J. P. and Yahia, L. (2005). Physicochemical model of alginate-poly-l-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS. Biomaterials. 26:6950–6961.
  • Tang, Z., Wang, Y., Podsiadlo, P. and Kotov, N. A. (2006). Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv. Mater. 18(24):3203–3224.
  • Thu, B., Bruheim, P., Espevik, T. and Skj, G. (1996). Alginate polycation microcapsules I. Interaction between alginate and polycation. Biomaterials. 17(10):1031–1040.
  • Thu, B., Bruheim, P., Espevik, T., Smidsrød, O., Soon-Shiong, P. and Skjåk-Braek, G. (1996). Alginate polycation microcapsules. II. Some functional properties. Biomaterials. 17(11):1069–1079.
  • Tripathi, M. K. and Giri, S. K. (2014). Probiotic functional foods: survival of probiotics during processing and storage. J. Funct. Foods. 9:225–241.
  • Tsen, J. H., Lin, Y. P., Huang, H. Y. and King, V. A. E. (2008). Studies on the fermentation of tomato juice by using ??—Carrageenan immobilized lactobacillus acidophilus. J. Food Process. Preservat. 32(2008):178–189.
  • U.S. National Institutes of Health. (2012). Oral probiotics: an introduction. Natl. Center Complement. Altern. Med. 1–8.
  • Ubbink, J. and Kru, J. (2006). Physical approaches for the delivery of active ingredients in foods, 17:244–254.
  • Verbeke, W. (2005). Consumer acceptance of functional foods: socio-demographic, cognitive and attitudinal determinants. Food Qual. Preference. 16(1):45–57.
  • Vidhyalakshmi, R., Bhakyaraj, R. and Subhasree, R. S. (2009). Encapsulation “The Future of Probiotics ”—a review. Adv. Biol. Res. 3:96–103.
  • Vos, P. de, Faas, M. M., Spasojevic, M. and Sikkema, J. (2010). Encapsulation for preservation of of functionality and targeted delivery of bioactive food components. Int. Dairy J. 20:292–302.
  • Würth, R., Hörmannsperger, G., Wilke, J., Foerst, P., Haller, D. and Kulozik, U. (2015). Protective effect of milk protein based microencapsulation on bacterial survival in simulated gastric juice versus the murine gastrointestinal system. J. Funct. Foods. 15:116–125.
  • Yan, Y., Björnmalm, M. and Caruso, F. (2014). Assembly of layer-by-layer particles and their interactions with biological systems. Chem. Mater. 26(1):452–460.
  • Yoshida, T. and Nagasawa, T. (2003). epsilon-Poly-L-lysine: microbial production, biodegradation and application potential. Appl. Microbiol. Biotechnol. 62(1):21–26.
  • Zhu, S. C., Ying, D. Y., Sanguansri, L., Tang, J. W. and Augustin, M. A. (2013). Both stereo-isomers of glucose enhance the survival rate of microencapsulated Lactobacillus rhamnosus GG during storage in the dry state. J. Food Eng. 116(4):809–813.
  • Zou, Q., Zhao, J., Liu, X., Tian, F., Zhang, H., Zhang, H. and Chen, W. (2011). Microencapsulation of Bifidobacterium bifidum F-35 in reinforced alginate microspheres prepared by emulsification/internal gelation. Int. J. Food Sci. Technol. 46(8):1672–1678.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.