1,324
Views
22
CrossRef citations to date
0
Altmetric
Reviews

An outlook on the role of decaffeinated coffee in neurodegenerative diseases

ORCID Icon & ORCID Icon

References

  • Acquas, E., G. Tanda, and G. Di Chiara. 2002. Differential effects of caffeine on dopamine and acetylcholine transmission in brain areas of drug-naive and caffeine-pretreated rats. Neuropsychopharmacology 27 (2):182–193.
  • Ademosun, A. O., G. Oboh, F. Bello, and P. O. Ayeni. 2016. Antioxidative properties and effect of quercetin and its glycosylated form (Rutin) on acetylcholinesterase and butyrylcholinesterase activities. Journal of Evidence-Based Complementary & Alternative Medicine 21 (4):NP11–NP17.
  • Alcázar, A., P. L. Fernáandez-Cáceres, M. J. Martín, F. Pablos, and A. G. González. 2003. Ion chromatographic determination of some organic acids, chloride and phosphate in coffee and tea. Talanta 61 (2):95–101. .
  • Almeida, A. F., G. I. A. Borge, M. Piskula, A. Tudose, L. Tudoreanu, K. Valentová, G. Williamson, and C. N. Santos. 2018. Bioavailability of quercetin in humans with a focus on interindividual variation. Comprehensive Reviews in Food Science and Food Safety 17 (3):714–731.
  • Alonso-Salces, R. M., F. Serra, F. Reniero, and K. Héberger. 2009. Botanical and geographical characterization of green coffee (Coffea arabica and Coffea canephora): Chemometric evaluation of phenolic and methylxanthine contents. Journal of Agricultural and Food Chemistry 57 (10):4224–4235.
  • Arai, T., A. Ohno, K. Mori, H. Kuwata, M. Mizuno, K. Imai, S. Hara, M. Shibanuma, M. Kurihara, N. Miyata, et al. 2016. Inhibition of amyloid fibril formation and cytotoxicity by caffeic acid-conjugated amyloid-β C-terminal peptides. Bioorganic & Medicinal Chemistry Letters 26 (22):5468–5471.
  • Araújo, L. F., S. S. Mirza, D. Bos, W. J. Niessen, S. M. Barreto, A. van der Lugt, M. W. Vernooij, A. Hofman, H. Tiemeier, and M. A. Ikram. 2016. Association of coffee consumption with MRI markers and cognitive function: A Population-Based study. Journal of Alzheimer's Disease 53 (2):451–461.
  • Arendash, G. W., and C. Cao. 2010. Caffeine and coffee as therapeutics against Alzheimer's disease. Journal of Alzheimer's Disease 20 Suppl 1:S117–S126. doi:10.3233/JAD-2010-091249.
  • Arendash, G. W., W. Schleif, K. Rezai-Zadeh, E. K. Jackson, L. C. Zacharia, J. R. Cracchiolo, D. Shippy, and J. Tan. 2006. Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain β-amyloid production. Neuroscience 142 (4):941–952. doi:10.1016/j.neuroscience.2006.07.021.
  • Ascherio, A., H. Chen, M. A. Schwarzschild, S. M. Zhang, G. A. Colditz, and F. E. Speizer. 2003. Caffeine, postmenopausal estrogen, and risk of Parkinson's disease. Neurology 60 (5):790–795. doi:10.1212/01.WNL.0000046523.05125.87.
  • Azevedo, A. B. A. D., P. Mazzafera, R. S. Mohamed, S. A. B. V. D. Melo, and T. G. Kieckbusch. 2008. Extraction of caffeine, chlorogenic acids and lipids from green coffee beans using supercritical carbon dioxide and co-solvents. Brazilian Journal of Chemical Engineering 25 (3):543–552. doi:10.1590/S0104-66322008000300012.
  • Basu Mallik, S., J. Mudgal, M. Nampoothiri, S. Hall, S. A. Dukie, G. Grant, C. M. Rao, and D. Arora. 2016. Caffeic acid attenuates lipopolysaccharide-induced sickness behaviour and neuroinflammation in mice. Neuroscience Letters 632:218–223. doi:10.1016/j.neulet.2016.08.044.
  • Basurto-Islas, G., J. Blanchard, Y. C. Tung, J. R. Fernandez, M. Voronkov, M. Stock, S. Zhang, J. B. Stock, and K. Iqbal. 2014. Therapeutic benefits of a component of coffee in a rat model of Alzheimer's disease. Neurobiology of Aging 35 (12):2701–2712. doi:10.1016/j.neurobiolaging.2014.06.012.
  • Beghi, E., E. Pupillo, P. Messina, G. Giussani, A. Chiò, S. Zoccolella, C. Moglia, M. Corbo, G. Logroscino, and EURALS Group. 2011. Coffee and amyotrophic lateral sclerosis: A possible preventive role. American Journal of Epidemiology 174 (9):1002–1008. doi:10.1093/aje/kwr229.
  • Bertrand, B., B. Guyot, F. Anthony, and P. Lasherme. 2003. Impact of the coffea canephora gene introgression on beverage quality of C. arabica. Theoretical and Applied Genetics 107 (3):387–394. doi:10.1007/s00122-003-1203-6.
  • Bicho, N. C., A. E. Leitão, J. C. Ramalho, and F. C. Lidon. 2011. Identification of chemical clusters discriminators of the roast degree in arabica and robusta coffee beans. European Food Research and Technology 233 (2):303–311. doi:10.1007/s00217-011-1518-5.
  • Block, M. L., and J. S. Hong. 2005. Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Progress in Neurobiology 76 (2):77–98. 0.1016/j.pneurobio.2005.06.004.
  • Borrelli, R. C., A. Visconti, C. Mennella, M. Anese, and V. Fogliano. 2002. Chemical characterization and antioxidant properties of coffee melanoidins. Journal of Agricultural and Food Chemistry 50 (22):6527–6533. doi:10.1021/jf025686o.
  • Bramanti, E., L. Fulgentini, R. Bizzarri, F. Lenci, and A. Sgarbossa. 2013. β-Amyloid amorphous aggregates induced by the small natural molecule ferulic acid. The Journal of Physical Chemistry B 117 (44):13816–13821. doi:10.1021/jp4079986.
  • Canas, P. M., L. O. Porciúncula, G. M. Cunha, C. G. Silva, N. J. Machado, J. M. Oliveira, C. R. Oliveira, and R. A. Cunha. 2009. Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 29 (47):14741–14751. doi:10.1523/JNEUROSCI.3728-09.2009.
  • Cano-Marquina, A., J. J. Tarín, and A. Cano. 2013. The impact of coffee on health. Maturitas 75 (1):7–21. doi:10.1016/j.maturitas.2013.02.002.
  • Cao, C., J. R. Cirrito, X. Lin, L. Wang, D. K. Verges, A. Dickson, M. Mamcarz, C. Zhang, T. Mori, G. W. Arendash, et al. 2009. Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer's disease transgenic mice. Journal of Alzheimer's Disease 17 (3):681–697. doi:10.3233/JAD-2009-1071.
  • Cao, C., D. A. Loewenstein, X. Lin, C. Zhang, L. Wang, R. Duara, Y. Wu, A. Giannini, G. Bai, J. Cai, et al. 2012. High blood caffeine levels in MCI linked to lack of progression to dementia. Journal of Alzheimer's Disease 30 (3):559–572. doi:10.3233/JAD-2012-111781.
  • Cao, C., L. Wang, X. Lin, M. Mamcarz, C. Zhang, G. Bai, J. Nong, S. Sussman, and G. Arendash. 2011. Caffeine synergizes with another coffee component to increase plasma GCSF: Linkage to cognitive benefits in Alzheimer's mice. Journal of Alzheimer's Disease 25 (2):323–335. doi:10.3233/JAD-2011-110110.
  • Caprioli, G., M. Cortese, G. Sagratini, and S. Vittori. 2015. The influence of different types of preparation (espresso and brew) on coffee aroma and main bioactive constituents. International Journal of Food Sciences and Nutrition 66 (5):505–513. doi:10.3109/09637486.2015.1064871.
  • Carelli-Alinovi, C., S. Ficarra, A. M. Russo, E. Giunta, D. Barreca, A. Galtieri, F. Misiti, and E. Tellone. 2016. Involvement of acetylcholinesterase and protein kinase C in the protective effect of caffeine against β-amyloid-induced alterations in red blood cells. Biochimie 121:52–59. doi:10.1016/j.biochi.2015.11.022.
  • Chao, X. J., Z. W. Chen, A. M. Liu, X. X. He, S. G. Wang, Y. T. Wang, P. Q. Liu, C. Ramassamy, S. H. Mak, W. Cui, et al. 2014. Effect of tacrine-3-caffeic acid, a novel multifunctional anti-Alzheimer's dimer, against oxidative-stress-induced cell death in HT22 hippocampal neurons: Involvement of Nrf2/HO-1 pathway. CNS Neuroscience & Therapeutics 20 (9):840–850. doi:10.1111/cns.12286.
  • Chauhan, P. S., N. K. Satti, P. Sharma, V. K. Sharma, K. A. Suri, and S. Bani. 2012. Differential effects of chlorogenic acid on various immunological parameters relevant to rheumatoid arthritis. Phytotherapy Research 26 (8):1156–1165. doi:10.1002/ptr.3684.
  • Chen, X., J. W. Gawryluk, J. F. Wagener, O. Ghribi, and J. D. Geiger. 2008. Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer's disease. Journal of Neuroinflammation 5 (1):12. 10.1186/1742-2094-5-12.
  • Chen, X., O. Ghribi, and J. D. Geiger. 2010. Caffeine protects against disruptions of the blood-brain barrier in animal models of Alzheimer's and Parkinson's diseases. Journal of Alzheimer's Disease 20 Suppl 1:S127–S141. doi:10.3233/JAD-2010-1376.
  • Cheng, B., X. Liu, H. Gong, L. Huang, H. Chen, X. Zhang, C. Li, M. Yang, B. Ma, L. Jiao, et al. 2011. Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: Possible link between coffee consumption and diabetes mellitus. Journal of Agricultural and Food Chemistry 59 (24):13147–13155. doi:10.1021/jf201702h.
  • Cheng, C. Y., S. Y. Su, N. Y. Tang, T. Y. Ho, S. Y. Chiang, and C. L. Hsieh. 2008. Ferulic acid provides neuroprotection against oxidative stress-related apoptosis after cerebral ischemia/reperfusion injury by inhibiting ICAM-1 mRNA expression in rats. Brain Research 1209:136–150. doi:10.1016/j.brainres.2008.02.090.
  • Cho, E. S., Y. J. Jang, M. K. Hwang, N. J. Kang, K. W. Lee, and H. J. Lee. 2009. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals. Mutation Research 661 (1–2):18–24. doi:10.1016/j.mrfmmm.2008.10.021.
  • Chu, Y. F., W. H. Chang, R. M. Black, J. R. Liu, P. Sompol, Y. Chen, H. Wei, Q. Zhao, and I. H. Cheng. 2012. Crude caffeine reduces memory impairment and amyloid β (1-42) levels in an Alzheimer's mouse model. Food Chemistry 135 (3):2095–2102. doi:10.1016/j.foodchem.2012.04.148.
  • Clifford, M. N. 1985. Coffee: Botany, biochemistry and production of beans and beverage, ed. M. N. Clifford and K. C. Willson, 305–374. London, UK: Croom Helm.
  • Clifford, M. N., B. Indu, I. B. Jaganath, I. A. Ludwig, and A. Crozier. 2017. Chlorogenic acids and the acyl-quinic acids: Discovery, biosynthesis, bioavailability and bioactivity. Natural Product Reports 34 (12):1391–1421. doi:10.1039/c7np00030h.
  • Costa, M. S., P. H. Botton, S. Mioranzza, A. P. Ardais, J. D. Moreira, D. O. Souza, and L. O. Porciúncula. 2008. Caffeine improves adult mice performance in the object recognition task and increases BDNF and TrkB independent on phospho-CREB immunocontent in the hippocampus. Neurochemistry International 53 (3–4):89–94. doi:10.1016/j.neuint.2008.06.006.
  • Crozier, T. W. M., A. Stalmach, M. E. J. Lean, and A. Crozier. 2012. Espresso coffees, caffeine, and chlorogenic intake: Potential health implication. Food & Function 3 (1):30–33. doi:10.1039/c1fo10240k.
  • Cui, L., Y. Zhang, H. Cao, Y. Wang, T. Teng, G. Ma, Y. Li, K. Li, and Y. Zhang. 2013. Ferulic acid inhibits the transition of amyloid-β42 monomers to oligomers but accelerates the transition from oligomers to fibrils. Journal of Alzheimer's Disease 37 (1):19–28. doi:10.3233/JAD-130164.
  • Dall'Igna, O. P., P. Fett, M. W. Gomes, D. O. Souza, R. A. Cunha, and D. R. Lara. 2007. Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice. Experimental Neurology 203 (1):241–245. doi:10.1016/j.expneurol.2006.08.008.
  • Del Rio, D., A. Rodriguez-Mateos, J. P. Spencer, M. Tognolini, G. Borges, and A. Crozier. 2013. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling 18 (14):1818–1892. doi:10.1089/ars.2012.4581.
  • Del Rio, D., A. Stalmach, L. Calani, and A. Crozier. 2010. Bioavailability of coffee chlorogenic acids and green tea flavan-3-ols. Nutrients 2 (8):820–833. doi:10.3390/nu2080820.
  • Delgado-Andrade, C., F. J. Tessier, C. Niquet-Leridon, I. Seiquer, and M. Pilar Navarro. 2012. Study of the urinary and faecal excretion of N (epsilon)-carboxymethyllysine in young human volunteers. Amino Acids 43 (2):595–602. doi:10.1007/s00726-011-1107-8.
  • Deng, J., X. L. Qi, Z. Z. Guan, X. M. Yan, Y. Huang, and Y. L. Wang. 2013. Pretreatment of SH-SY5Y cells with dicaffeoylquinic acids attenuates the reduced expression of nicotinic receptors, elevated level of oxidative stress and enhanced apoptosis caused by β-amyloid peptide. Journal of Pharmacy and Pharmacology 65 (12):1736–1744. doi:10.1111/jphp.12096.
  • Deshmukh, R., M. Kaundal, V. Bansal, and Samardeep. 2016. Caffeic acid attenuates oxidative stress, learning and memory deficit in intra-cerebroventricular streptozotocin induced experimental dementia in rats. Biomedicine & Pharmacotherapy 81:56–62. doi:10.1016/j.biopha.2016.03.017.
  • Deshpande, S., R. Jaiswal, M. F. Febi Matei, and N. Kuhnert. 2014. Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions. Journal of Agricultural and Food Chemistry 62 (37):9160–9170. doi:10.1021/jf5017384.
  • D'hooghe, M. B., P. Haentjens, G. Nagels, and J. De Keyser. 2012. Alcohol, coffee, fish, smoking and disease progression in multiple sclerosis. European Journal of Neurology 19 (4):616–624. doi:10.1111/j.1468-1331.2011.03596.x.
  • Di Giovanni, S., S. Eleuteri, K. E. Paleologou, G. Yin, M. Zweckstetter, P. A. Carrupt, and H. A. Lashuel. 2010. Entacapone and tolcapone, two catechol O-methyltransferase inhibitors, block fibril formation of alpha-synuclein and beta-amyloid and protect against amyloid-induced toxicity. Journal of Biological Chemistry 285 (20):14941–14954. doi:10.1074/jbc.M109.080390.
  • Dias, G. P., N. Cavegn, A. Nix, M. C. do Nascimento Bevilaqua, D. Stangl, M. S. Zainuddin, A. E. Nardi, P. F. Gardino, and S. Thuret. 2012. The role of dietary polyphenols on adult hippocampal neurogenesis: Molecular mechanisms and behavioural effects on depression and anxiety. Oxidative Medicine and Cellular Longevity 2012:1–18. doi:10.1155/2012/541971.
  • dos Santos, M. D., M. C. Almeida, N. P. Lopes, and G. E. de Souza. 2006. Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biological & Pharmaceutical Bulletin 29 (11):2236–2240.
  • Dostal, V., C. M. Roberts, and C. D. Link. 2010. Genetic mechanisms of coffee extract protection in a Caenorhabditis elegans model of β-amyloid peptide toxicity. Genetics 186 (3):857–866. doi:10.1534/genetics.110.120436.
  • Dragicevic, N., V. Delic, C. Cao, N. Copes, X. Lin, M. Mamcarz, L. Wang, G. W. Arendash, and P. C. Bradshaw. 2012. Caffeine increases mitochondrial function and blocks melatonin signaling to mitochondria in Alzheimer's mice and cells. Neuropharmacology 63 (8):1368–1379. doi:10.1016/j.neuropharm.2012.08.018.
  • Endesfelder, S., U. Weichelt, E. Strauß, A. Schlör, M. Sifringer, T. Scheuer, C. Bührer, and T. Schmitz. 2017. Neuroprotection by caffeine in hyperoxia-induced neonatal brain injury. International Journal of Molecular Sciences 18 (1):187. 10.3390/ijms18010187.
  • Endesfelder, S., I. 2. Zaak, U. Weichelt, C. Bührer, and T. Schmitz. 2014. Caffeine protects neuronal cells against injury caused by hyperoxia in the immature brain. Free Radical Biology and Medicine 67:221–234. doi:10.1016/j.freeradbiomed.2013.09.026.
  • Farah, A., T. de Paulis, D. P. Moreira, L. C. Trugo, and P. R. Martin. 2006a. Chlorogenic acids and lactones in regular and water-decaffeinated arabica coffees. Journal of Agricultural and Food Chemistry 54 (2):374–381. doi:10.1021/jf0518305.
  • Farah, A., T. de Paulis, L. C. Trugo, and P. R. Martin. 2005. Effect of roasting on the formation of chlorogenic acid lactones in coffee. Journal of Agricultural and Food Chemistry 53 (5):1505–1513. doi:10.1021/jf048701t.
  • Farah, A., M. C. Monteiro, V. Calado, A. S. Franca, and L. C. Trugo. 2006b. Correlation between cup quality and chemical attributes of Brazilian coffee. Food Chemistry 98 (2):373–380. doi:10.1016/j.foodchem.2005.07.032.
  • Fazeli, W., S. Zappettini, S. L. Marguet, J. Grendel, M. Esclapez, C. Bernard, and D. Isbrandt. 2017. Early-life exposure to caffeine affects the construction and activity of cortical networks in mice. Experimental Neurology 295:88–103. doi:10.1016/j.expneurol.2017.05.013.
  • Fazili, N. A., and A. Naeem. 2015. Anti-fibrillation potency of caffeic acid against an antidepressant induced fibrillogenesis of human α-synuclein: Implications for Parkinson's disease. Biochimie 108:178–185. doi:10.1016/j.biochi.2014.11.011.
  • Fernández-Dueñas, V., M. Gómez-Soler, M. López-Cano, J. J. Taura, C. Ledent, M. Watanabe, K. A. Jacobson, J. P. Vilardaga, and F. Ciruela. 2014. Uncovering caffeine's adenosine A2A receptor inverse agonism in experimental parkinsonism. ACS Chemical Biology 9 (11):2496–2501. doi:10.1021/cb5005383.
  • Fernandez-Gomez, B., M. Ullate, G. Picariello, P. Ferranti, M. D. Mesa, and M. D. del Castillo. 2015. New knowledge on the antiglycoxidative mechanism of chlorogenic acid. Food & Function 6 (6):2081–2090. doi:10.1039/c5fo00194c.
  • Flaten, V., C. Laurent, J. E. Coelho, U. Sandau, V. L. Batalha, S. Burnouf, M. Hamdane, S. Humez, D. Boison, L. V. Lopes, et al. 2014. From epidemiology to pathophysiology: What about caffeine in Alzheimer's disease? Biochemical Society Transactions 42 (2):587–592. doi:10.1042/BST20130229.
  • Fogliano, V., and F. J. Morales. 2011. Estimation of dietary intake of melanoidins from coffee and bread. Food & Function 2 (2):117–123. doi:10.1039/c0fo00156b.
  • Fondell, E., É. J. O’Reilly, K. C. Fitzgerald, G. J. Falcone, L. N. Kolonel, Y. Park, S. M. Gapstur, and A. Ascherio. 2015. Intakes of caffeine, coffee and tea and risk of amyotrophic lateral sclerosis: Results from five cohort studies. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 16 (5-6):366–371. doi:10.3109/21678421.2015.1020813.
  • Fontaine, S. N., J. J. Sabbagh, J. Baker, C. R. Martinez-Licha, A. Darling, and C. A. Dickey. 2015. Cellular factors modulating the mechanism of tau protein aggregation. Cellular and Molecular Life Sciences 72 (10):1863–1879. doi:10.1007/s00018-015-1839-9.
  • Food and Agriculture Organization of the United Nations (FAO). 2018. Coffee. Accessed May 23, 2018. http://www.fao.org/docrep/006/y5143e/y5143e0v.htm.
  • Frazier, H. N., S. Maimaiti, K. L. Anderson, L. D. Brewer, J. C. Gant, N. M. Porter, and O. Thibault. 2017. Calcium's role as nuanced modulator of cellular physiology in the brain. Biochemical and Biophysical Research Communications 483 (4):981–987. doi:10.1016/j.bbrc.2016.08.105.
  • Frazzini, V., S. Guarnieri, M. Bomba, R. Navarra, C. Morabito, M. A. Mariggiò, and S. L. Sensi. 2016. Altered Kv2.1 functioning promotes increased excitability in hippocampal neurons of an Alzheimer's disease mouse model. Cell Death & Disease 7 (2):e2100. 10.1038/cddis.2016.18.
  • Fu, Y., Y. Mu, H. Lei, P. Wang, X. Li, Q. Leng, L. Han, X. Qu, Z. Wang, and X. Huang. 2016. Design, synthesis and evaluation of novel Tacrine-Ferulic acid hybrids as multifunctional drug candidates against Alzheimer's disease. Molecules 21 (10):1338. 10.3390/molecules21101338.
  • Ghoneim, F. M., H. A. Khalaf, A. Z. Elsamanoudy, S. M. Abo El-Khair, A. M. Helaly, el-HM. Mahmoud, and S. H. Elshafey. 2015. Protective effect of chronic caffeine intake on gene expression of brain derived neurotrophic factor signaling and the immunoreactivity of glial fibrillary acidic protein and Ki-67 in Alzheimer's disease. International Journal of Clinical and Experimental Pathology 8 (7):7710–7728.
  • Gökcen, B. B., and N. Şanlier. 2017. Coffee consumption and disease correlations. Critical Reviews in Food Science and Nutrition 30:1–13. doi:10.1080/10408398.2017.1369391.
  • Gómez-Ruiz, J. A., D. S. Leake, and J. M. Ames. 2007. In vitro antioxidant activity of coffee compounds and their metabolites. Journal of Agricultural and Food Chemistry 55 (17):6962–6969. doi:10.1021/jf0710985.
  • Gonçalves, N., A. T. Simões, R. A. Cunha, and L. P. de Almeida. 2013. Caffeine and adenosine A(2A) receptor inactivation decrease striatal neuropathology in a lentiviral-based model of Machado-Joseph disease. Annals of Neurology 73 (5):655–666. doi:10.1002/ana.23866.
  • Grosso, G., A. Micek, S. Castellano, A. Pajak, and F. Galvano. 2016. Coffee, tea, caffeine and risk of depression: A systematic review and dose-response meta-analysis of observational studies. Molecular Nutrition & Food Research 60 (1):223–234. doi:10.1002/mnfr.201500620.
  • Gul, Z., C. Demircan, D. Bagdas, and R. L. Buyukuysal. 2016. Protective effects of chlorogenic acid and its metabolites on hydrogen Peroxide-Induced alterations in rat brain slices: A comparative study with resveratrol. Neurochemical Research 41 (8):2075–2085. doi:10.1007/s11064-016-1919-8.
  • Hall, S., B. Desbrow, S. Anoopkumar-Dukie, A. K. Davey, D. Arora, C. McDermott, M. M. Schubert, A. V. Perkins, M. J. Kiefel, and G. D. Grant. 2015. A review of the bioactivity of coffee, caffeine and key coffee constituents on inflammatory responses linked to depression. Food Research International 76 (Pt 3):626–636. doi:10.1016/j.foodres.2015.07.027.
  • Hamaguchi, T., K. Ono, A. Murase, and M. Yamada. 2009. Phenolic compounds prevent Alzheimer's pathology through different effects on the amyloid-beta aggregation pathway. The American Journal of Pathology 175 (6):2557–2565. doi:10.2353/ajpath.2009.090417.
  • Hamza, T. H., H. Chen, E. M. Hill-Burns, S. L. Rhodes, J. Montimurro, D. M. Kay, A. Tenesa, V. I. Kusel, P. Sheehan, M. Eaaswarkhanth, et al. 2011. Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson's disease modifier gene via interaction with coffee. PLoS Genetics 7 (8):e1002237. 10.1371/journal.pgen.1002237.
  • Hečimović, I., A. Belščak-Cvitanović, D. Horžić, and D. Komes. 2011. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chemistry 129 (3):991–1000. doi:10.1016/j.foodchem.2011.05.059.
  • Hedström, A. K., E. M. Mowry, M. A. Gianfrancesco, X. Shao, C. A. Schaefer, L. Shen, T. Olsson, L. F. Barcellos, and L. Alfredsson. 2016. High consumption of coffee is associated with decreased multiple sclerosis risk; results from two independent studies. Journal of Neurology, Neurosurgery & Psychiatry 87 (5):454–460. doi:10.1136/jnnp-2015-312176.
  • Hellwig, M., R. Matthes, A. Peto, J. Löbner, and T. Henle. 2014. N-ε-fructosyllysine and N-ε-carboxymethyllysine, but bot lysinoalanine, are available for the absorption after simulated gastrointestinal digestion. Amino Acids 46 (2):289–299. doi:10.1007/s00726-013-1501-5.
  • Huang, S. M., H. C. Chuang, C. H. Wu, and G. C. Yen. 2008. Cytoprotective effects of phenolic acids on methylglyoxal-induced apoptosis in neuro-2A cells. Molecular Nutrition & Food Research 52 (8):940–949. doi:10.1002/mnfr.200700360.
  • Huang, Y., M. Jin, R. Pi, J. Zhang, M. Chen, Y. Ouyang, A. Liu, X. Chao, P. Liu, J. Liu, et al. 2013. Protective effects of caffeic acid and caffeic acid phenethyl ester against acrolein-induced neurotoxicity in HT22 mouse hippocampal cells. Neuroscience Letters 535:146–151. doi:10.1016/j.neulet.2012.12.051.
  • Iozzi, D., R. Schubert, V. U. Kalenchuk, A. Neri, G. Sgaragli, F. Fusi, and S. Saponara. 2013. Quercetin relaxes rat tail main artery partly via a PKG-mediated stimulation of KCa 1.1 channels. Acta Physiologica 208 (4):329–339. doi:10.1111/apha.12083.
  • Ito, H., X. L. Sun, M. Watanabe, M. Okamoto, and T. Hatano. 2008. Chlorogenic acid and its metabolite m-coumaric acid evoke neurite outgrowth in hippocampal neuronal cells. Bioscience, Biotechnology, and Biochemistry 72 (3):885–888. doi:10.1271/bbb.70670.
  • Jagota, S., and J. Rajadas. 2012. Effect of phenolic compounds against Aβ aggregation and Aβ-induced toxicity in transgenic C. elegans. Neurochemical Research 37 (1):40–48. doi:10.1007/s11064-011-0580-5.
  • Jaiswal, R., M. F. Matei, A. Golon, M. Witt, and N. Kuhnert. 2012. Understanding the fate of chlorogenic acids in coffee roasting using mass spectrometry based targeted and non-targeted analytical strategies. Food & Function 3 (9):976–984. doi:10.1039/c2fo10260a.
  • Jang, S. A., D. W. Park, J. E. Kwon, H. S. Song, B. Park, H. Jeon, E. H. Sohn, H. J. Koo, and S. C. Kang. 2017. Quinic acid inhibits vascular inflammation in TNF-α-stimulated vascular smooth muscle cells. Biomed Pharmacother 96:563–571. doi:10.1016/j.biopha.2017.10.021.
  • Jasiewicz, B., A. Sierakowska, N. Wandyszewska, B. Warżajtis, U. Rychlewska, R. Wawrzyniak, and L. Mrówczyńska. 2016. Antioxidant properties of thio-caffeine derivatives: Identification of the newly synthesized 8-[(pyrrolidin-1-ylcarbonothioyl)sulfanyl]caffeine as antioxidant and highly potent cytoprotective agent. Bioorganic & Medicinal Chemistry Letters 26 (16):3994–3998. doi:10.1016/j.bmcl.2016.06.091.
  • Jeszka-Skowron, M., E. Stanisz, and M. Paz De Peña. 2016. Relationship between antioxidant capacity, chlorogenic acids and elemental composition of green coffee. LWT - Food Science and Technology 73:243–250. doi:10.1016/j.lwt.2016.06.018.
  • Jiang, W., T. Luo, S. Li, Y. Zhou, X. Y. Shen, F. He, J. Xu, and H. Q. Wang. 2016. Quercetin protects against okadaic acid-induced injury via MAPK and PI3K/Akt/GSK3β signaling pathways in HT22 hippocampal neurons. PLoS One 11 (4):e0152371. 10.1371/journal.pone.0152371.eCollection2016.
  • Jiménez-Aliaga, K., P. Bermejo-Bescós, J. Benedí, and S. Martín-Aragón. 2011. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sciences 89 (25–26):939–945. doi:10.1016/j.lfs.2011.09.023.
  • Jin, R., G. Yang, and G. Li. 2010. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: Critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiology of Disease 38 (3):376–385. doi:10.1016/j.nbd.2010.03.008.
  • Kachroo, A., and M. A. Schwarzschild. 2012. Adenosine A2A receptor gene disruption protects in an α-synuclein model of Parkinson's disease. Annals of Neurology 71 (2):278–282. doi:10.1002/ana.22630.
  • Kalda, A., L. Yu, E. Oztas, and J. F. Chen. 2006. Novel neuroprotection by caffeine and adenosine A(2A) receptor antagonists in animal models of Parkinson's disease. Journal of the Neurological Sciences 248 (1–2):9–15. doi:10.1016/j.jns.2006.05.003.
  • Kamiyama, M., J. K. Moon, H. W. Jang, and T. Shibamoto. 2015. Role of degradation products of chlorogenic acid in the antioxidant activity of roasted coffee. Journal of Agricultural and Food Chemistry 63 (7):1996–2005. doi:10.1021/jf5060563.
  • Kang, C. H., R. G. Jayasooriy, M. G. Dilshara, Y. H. Choi, Y. K. Jeong, N. D. Kim, and G. Y. Kim. 2012. Caffeine suppresses lipopolysaccharide-stimulated BV2 microglial cells by suppressing akt-mediated NF-κB activation and ERK phosphorylation. Food and Chemical Toxicology 50 (12):4270–4276. doi:10.1016/j.fct.2012.08.041.
  • Kardani, J., and I. Roy. 2015. Understanding caffeine's role in attenuating the toxicity of α-Synuclein aggregates: Implications for risk of Parkinson's disease. ACS Chemical Neuroscience 6 (9):1613–1625. doi:10.1021/acschemneuro.5b00158.
  • Khan, K. A., N. Kumar, P. G. Nayak, M. Nampoothiri, R. R. Shenoy, N. Krishnadas, C. M. Rao, and J. Mudgal. 2013a. Impact of caffeic acid on aluminium chloride-induced dementia in rats. Journal of Pharmacy and Pharmacology 65 (12):1745–1752. doi:10.1111/jphp.12126.
  • Khan, M. S., A. M. Al-Senaidy, M. Priyadarshini, A. Shah, and B. Bano. 2013b. Different conformation of thiol protease inhibitor during amyloid formation: Inhibition by curcumin and quercetin. Journal of Fluorescence 23 (3):451–457. doi:10.1007/s10895-013-1158-1.
  • Kim, H. S., J. Y. Cho, D. H. Kim, J. J. Yan, H. K. Lee, H. W. Suh, and D. K. Song. 2004. Inhibitory effects of long-term administration of ferulic acid on microglial activation induced by intracerebroventricular injection of beta-amyloid peptide (1-42) in mice. Biological & Pharmaceutical Bulletin 27 (1):120–121. doi:10.1248/bpb.27.120.
  • Kim, I. Y., É. J. O’Reilly, K. C. Hughes, X. Gao, M. A. Schwarzschild, and A. Ascherio. 2017. Differences in Parkinson's disease risk with caffeine intake and postmenopausal hormone use. Journal of Parkinson's Disease 7 (4):677–684. doi:10.3233/JPD-171175.
  • Kim, J., S. Lee, J. Shim, H. W. Kim, J. Kim, Y. J. Jang, H. Yang, J. Park, S. H. Choi, J. H. Yoon, et al. 2012. Caffeinated coffee, decaffeinated coffee, and the phenolic phytochemical chlorogenic acid up-regulate NQO1 expression and prevent H2O2-induced apoptosis in primary cortical neurons. Neurochemistry International 60 (5):466–474. doi:10.1016/j.neuint.2012.02.004.
  • Kim, J. H., Q. Wang, J. M. Choi, S. Lee, and E. J. Cho. 2015. Protective role of caffeic acid in an Aβ25-35-induced Alzheimer's disease model. Nutrition Research and Practice 9 (5):480–488. doi:10.4162/nrp.2015.9.5.480.
  • Kiyohara, C., M. Washio, T. Horiuchi, T. Asami, S. Ide, T. Atsumi, G. Kobashi, H. Takahashi, Y. Tada, and Kyushu Sapporo SLE (KYSS) Study Group. 2014. Modifying effect of N-acetyltransferase 2 genotype on the association between systemic lupus erythematosus and consumption of alcohol and caffeine-rich beverages. Arthritis Care & Research 66 (7):1048–1056. doi:10.1002/acr.22282.
  • Kolahdouzan, M., and M. J. Hamadeh. 2017. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neuroscience & Therapeutics 23 (4):272–290. doi:10.1111/cns.12684.
  • Kučera, L., R. Papoušek, O. Kurka, P. Barták, and P. Bednář. 2016. Study of composition of espresso coffee prepared from various roast degrees of Coffea arabica L. coffee beans. Food Chemistry 199:727–735. doi:10.1016/j.foodchem.2015.12.080.
  • Kulbe, J. R., and E. D. Hall. 2017. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology. Progress in Neurobiology 158:15–44. doi:10.1016/j.pneurobio.2017.08.003.
  • Kwak, S. C., C. Lee, J. Y. Kim, H. M. Oh, H. S. So, M. S. Lee, M. C. Rho, and J. Oh. 2013. Chlorogenic acid inhibits osteoclast differentiation and bone resorption by down-regulation of receptor activator of nuclear factor kappa-B ligand-induced nuclear factor of activated T cells c1 expression. Biological and Pharmaceutical Bulletin 36 (11):1779–1786. doi:10.1248/bpb.b13-00430.
  • Kwon, S. H., H. K. Lee, J. A. Kim, S. I. Hong, H. C. Kim, T. H. Jo, Y. I. Park, C. K. Lee, Y. B. Kim, S. Y. Lee, and C. G. Jang. 2010. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. European Journal of Pharmacology 649 (1–3):210–217. doi:10.1016/j.ejphar.2010.09.001.
  • Ky, C. L., J. Louarn, S. Dussert, B. Guyot, S. Hamon, and M. Noirot. 2001. Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions. Food Chemistry 75 (2):223–230. doi:10.1016/S0308-8146(01)00204-7.
  • Lansbury, P. T., and H. A. Lashuel. 2006. A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443 (7113):774–779. doi:10.1038/nature05290.
  • Lardeau, A., and L. Poquet. 2013. Phenolic acid metabolites derived from coffee consumption are unlikely to cross the blood-brain barrier. Journal of Pharmaceutical and Biomedical Analysis 76:134. 10.1016/j.jpba.2012.12.016.
  • Laurent, C., S. Eddarkaoui, M. Derisbourg, A. Leboucher, D. Demeyer, S. Carrier, M. Schneider, M. Hamdane, C. E. Müller, L. Buée, and D. Blum. 2014. Beneficial effects of caffeine in a transgenic model of Alzheimer's disease-like tau pathology. Neurobiology of Aging 35 (9):2079–2090. doi:10.1016/j.neurobiolaging.2014.03.027.
  • Lee, K., B. J. Lee, and Y. Bu. 2015. Protective effects of dihydrocaffeic acid, a coffee component metabolite, on a focal cerebral ischemia rat model. Molecules 20 (7):11930–11940. doi:10.3390/molecules200711930.
  • Lee, K. W., J. Y. Im, J. M. Woo, H. Grosso, Y. S. Kim, A. C. Cristovao, P. K. Sonsalla, D. S. Schuster, M. M. Jalbut, J. R. Fernandez, et al. 2013. Neuroprotective and anti-inflammatory properties of a coffee component in the MPTP model of Parkinson's disease. Neurotherapeutics 10 (1):143–153. doi:10.1007/s13311-012-0165-2.
  • Lee, M., E. G. McGeer, and P. L. McGeer. 2016. Quercetin, not caffeine, is a major neuroprotective component in coffee. Neurobiology of Aging 46:113–123. doi:10.1016/j.neurobiolaging.2016.06.015.
  • Lee, Y. C., N. J. Nassikas, and D. J. Clauw. 2011. The role of the central nervous system in the generation and maintenance of chronic pain in rheumatoid arthritis, osteoarthritis and fibromyalgia. Arthritis Research & Therapy 13 (2):211. 10.1186/ar3306.
  • Lee, Y. H., S.-C. Bae, and G. G. Song. 2014. Coffee or tea consumption and the risk of rheumatoid arthritis: A meta-analysis. Clinical Rheumatology 33 (11):1575–1583. doi:10.1007/s10067-014-2631-1.
  • Lenzi, J., A. F. Rodrigues, A. d. S. Rós, B. B. de Castro, D. D. de Lima, D. D. D. Magro, and A. L. B. Zeni. 2015. Ferulic acid chronic treatment exerts antidepressant-like effect: Role of antioxidant defense system. Metabolic Brain Disease 30 (6):1453–1463. doi:10.1007/s11011-015-9725-6.
  • Li, S., N. H. Geiger, M. L. Soliman, L. Hui, J. D. Geiger, and X. Chen. 2015a. Caffeine, through adenosine A3 receptor-mediated actions, suppresses amyloid-β protein precursor internalization and amyloid-β generation. Journal of Alzheimer's Disease 47 (1):73–83. doi:10.3233/JAD-142223.
  • Li, Y., S. Zhou, J. Li, Y. Sun, H. Hasimu, R. Liu, and T. Zhang. 2015b. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid 1-40-induced toxicity. Acta Pharmaceutica Sinica B 5 (1):47–54. doi:10.1016/j.apsb.2014.12.003.
  • Li, Y. L., H. Guo, Y. Q. Zhao, A. F. Li, Y. Q. Ren, and J. W. Zhang. 2017. Quercetin protects neuronal cells from oxidative stress and cognitive degradation induced by amyloid β-peptide treatment. Molecular Medicine Reports 16 (2):1573–1577. doi:10.3892/mmr.2017.6704.
  • Liang, N., W. Xue, P. Kennepohl, and D. D. Kitts. 2016. Interactions between major chlorogenic acid isomers and chemical changes in coffee brew that affect antioxidant activities. Food Chemistry 213:251–259. doi:10.1016/j.foodchem.2016.06.041.
  • Liu, F., X. W. Lu, Y. J. Zhang, L. Kou, N. Song, M. K. Wu, M. Wang, H. Wang, and J. F. Shen. 2016a. Effects of chlorogenic acid on voltage-gated potassium channels of trigeminal ganglion neurons in an inflammatory environment. Brain Research Bulletin 127:119–125. doi:10.1016/j.brainresbull.2016.09.005.
  • Liu, Q. P., Y. F. Wu, H. Y. Cheng, T. Xia, H. Ding, H. Wang, Z. M. Wang, and Y. Xu. 2016b. Habitual coffee consumption and risk of cognitive decline/dementia: A systematic review and Meta-analysis of prospective cohort studies. Nutrition 32 (6):628–636. doi:10.1016/j.nut.2015.11.015.
  • López-Froilán, R., E. Ramírez-Moreno, N. S. Podio, M. L. Pérez-Rodríguez, M. Cámara, M. V. Baroni, D. A. Wunderlin, and M. C. Sánchez-Mata. 2016. In vitro assessment of potential intestinalabsorption of some phenolic families and carboxylic acids from commercial instant coffee samples. Food & Function 7 (6):2706–2711. doi:10.1039/c6fo00315j.
  • Lu, C. W., T. Lin, and S. J. Wang. 2013. Quercetin inhibits depolarization-evoked glutamate release in nerve terminals from rat cerebral cortex. Neurotoxicology 39:1–9. doi:10.1016/j.neuro.2013.07.009.
  • Ludwig, I. A., P. Mena, L. Calani, C. Cid, D. Del Rio, M. E. J. Lean, and A. Crozier. 2014. Variations in caffeine and chlorogenic acid contents of coffees: What are we drinking? Food & Function 5 (8):1718–1726. doi:10.1039/c4fo00290c.
  • Maciel, R. M., F. B. Carvalho, A. A. Olabiyi, R. Schmatz, J. M. Gutierres, N. Stefanello, D. Zanini, M. M. Rosa, C. M. Andrade, M. A. Rubin, et al. 2016. Neuroprotective effects of quercetin on memory and anxiogenic-like behavior in diabetic rats: Role of ectonucleotidases and acetylcholinesterase activities. Biomedicine & Pharmacotherapy 84:559–568. doi:10.1016/j.biopha.2016.09.069.
  • Madeira, M. H., R. Boia, A. F. Ambrósio, and A. R. Santiago. 2017. Having a coffee break: The impact of caffeine consumption on microglia-mediated inflammation in neurodegenerative diseases. Mediators of Inflammation 2017:1. 10.1155/2017/4761081.
  • Mancha Agresti, P. D. C., A. S. Franca, L. S. Oliveira, and R. Augusti. 2008. Discrimination between defective and non-defective Brazilian coffee beans by their volatile profile. Food Chemistry 106 (2):787–796. doi:10.1016/j.foodchem.2007.06.019.
  • Martins, D. F., M. R. Prado, E. Daruge-Neto, A. P. Batisti, A. A. Emer, L. Mazzardo-Martins, A. R. Santos, and A. P. Piovezan. 2015. Caffeine prevents antihyperalgesic effect of gabapentin in an animal model of CRPS-I: Evidence for the involvement of spinal adenosine A1 receptor. Journal of the Peripheral Nervous System 20 (4):403–409. doi:10.1111/jns.12149.
  • Massa, J., E. J. O’Reilly, K. L. Munger, and A. Ascherio. 2013. Caffeine and alcohol intakes have no association with risk of multiple sclerosis. Multiple Sclerosis Journal 19 (1):53–58. doi:10.1177/1352458512448108.
  • Masuda, M., N. Suzuki, S. Taniguchi, T. Oikawa, T. Nonaka, T. Iwatsubo, S. Hisanaga, M. Goedert, and M. Hasegawa. 2006. Small molecule inhibitors of alpha-synuclein filament assembly. Biochemistry 45 (19):6085–6094. doi:10.1021/bi0600749.
  • Mikami, Y., and T. Yamazawa. 2015. Chlorogenic acid, a polyphenol in coffee, protects neurons against glutamate neurotoxicity. Life Sciences 139:69–74. doi:10.1016/j.lfs.2015.08.005.
  • Mills, C. E., M. J. Oruna-Concha, D. S. Mottram, G. R. Gibson, and J. P. Spencer. 2013. The effect of processing on chlorogenic acid content of commercially available coffee. Food Chemistry 141 (4):3335–3340. doi:10.1016/j.foodchem.2013.06.014.
  • Mirza, S. S., H. Tiemeier, R. F. de Bruijn, A. Hofman, O. H. Franco, J. Kiefte-de Jong, P. J. Koudstaal, and M. A. Ikram. 2014. Coffee consumption and incident dementia. European Journal of Epidemiology 29 (10):735–741. doi:10.1007/s10654-014-9943-y.
  • Miyamae, Y., J. Han, K. Sasaki, M. Terakawa, H. Isoda, and H. Shigemori. 2011. 3,4,5-tri-O-caffeoylquinic acid inhibits amyloid β-mediated cellular toxicity on SH-SY5Y cells through the upregulation of PGAM1 and G3PDH. Cytotechnology 63 (2):191–200. doi:10.1007/s10616-011-9341-1.
  • Miyamae, Y., M. Kurisu, K. Murakami, J. Han, H. Isoda, K. Irie, and H. Shigemori. 2012. Protective effects of caffeoylquinic acids on the aggregation and neurotoxicity of the 42-residue amyloid β-protein. Bioorganic & Medicinal Chemistry 20 (19):5844–5849. doi:10.1016/j.bmc.2012.08.001.
  • Mohamed, T., W. Osman, G. Tin, and P. P. Rao. 2013. Selective inhibition of human acetylcholinesterase by xanthine derivatives: In vitro inhibition and molecular modeling investigations. Bioorganic & Medicinal Chemistry Letters 23 (15):4336–4341. doi:10.1016/j.bmcl.2013.05.092.
  • Moon, J. H., J. H. Lee, J. Y. Park, S. W. Kim, Y. J. Lee, S. J. Kang, J. W. Seol, D. C. Ahn, and S. Y. Park. 2014. Caffeine prevents human prion protein-mediated neurotoxicity through the induction of autophagy. International Journal of Molecular Medicine 34 (2):553–558. doi:10.3892/ijmm.2014.1814.
  • Moosavi, F., R. Hosseini, H. Rajaian, T. Silva, E. Magalhães, D. Silva, L. Saso, N. Edraki, R. Miri, F. Borges, and O. Firuzi. 2017. Derivatives of caffeic acid, a natural antioxidant, as the basis for the discovery of novel nonpeptidic neurotrophic agents. Bioorganic & Medicinal Chemistry 25 (12):3235–3246. doi:10.1016/j.bmc.2017.04.026.
  • Morris, M., S. Maeda, K. Vossel, and L. Mucke. 2011. The many faces of tau. Neuron 70 (3):410–426. doi:10.1016/j.neuron.2011.04.009.
  • Mullen, W., B. Nemzer, A. Stalmach, S. Ali, and E. Combet. 2013. Polyphenolic and hydroxycinnamate contents of whole coffee fruits from China, India, and Mexico. Journal of Agricultural and Food Chemistry 61 (22):5298–5309. doi:10.1021/jf4003126.
  • Nakajima, Y., M. Shimazawa, S. Mishima, and H. Hara. 2007. Water extract of propolis and its main constituents, caffeoylquinic acid derivatives, exert neuroprotective effects via antioxidant actions. Life Sciences 80 (4):370–377. doi:10.1016/j.lfs.2006.09.017.
  • Nakaso, K., S. Ito, and K. Nakashima. 2008. Caffeine activates the PI3K/Akt pathway and prevents apoptotic cell death in a Parkinson's disease model of SH-SY5Y cells. Neuroscience Letters 432 (2):146–150. doi:10.1016/j.neulet.2007.12.034.
  • Oboh, G., O. M. Agunloye, A. J. Akinyemi, A. O. Ademiluyi, and S. A. Adefegha. 2013. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer's disease and some pro-oxidant induced oxidative stress in rats' brain-in vitro. Neurochemical Research 38 (2):413–419. doi:10.1007/s11064-012-0935-6.
  • Oboh, G., O. B. Ogunsuyi, and O. E. Olonisola. 2017. Does caffeine influence the anticholinesterase and antioxidant properties of donepezil? Evidence from in vitro and in vivo studies. Metabolic Brain Disease 32 (2):629–639. doi:10.1007/s11011-017-9951-1.
  • Ojha, S., H. Javed, S. Azimullah, S. B. Abul Khair, and M. E. Haque. 2015. Neuroprotective potential of ferulic acid in the rotenone model of Parkinson's disease. Drug Design, Development and Therapy 9:5499–5510. doi:10.2147/DDDT.S90616.
  • Ono, K., M. Hirohata, and M. Yamada. 2005. Ferulic acid destabilizes preformed beta-amyloid fibrils in vitro. Biochemical and Biophysical Research Communications 336 (2):444–449. doi:10.1016/j.bbrc.2005.08.148.
  • Ono, K., and M. Yamada. 2006. Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for a-synuclein fibrils in vitro. Journal of Neurochemistry 97 (1):105–115. doi:10.1111/j.1471-4159.2006.03707.x.
  • Opitz, S. E., B. A. Goodman, M. Keller, S. Smrke, M. Wellinger, S. Schenker, and C. Yeretzian. 2017. Understanding the effects of roasting on antioxidant components of coffee brews by coupling on-line ABTS assay to high performance size exclusion chromatography. Phytochemical Analysis 28 (2):106–114. doi:10.1002/pca.2661.
  • Palacios, N., X. Gao, M. L. McCullough, M. A. Schwarzschild, R. Shah, S. Gapstur, and A. Ascherio. 2012. Caffeine and risk of Parkinson's disease in a large cohort of men and women. Movement Disorders 27 (10):1276–1282. doi:10.1002/mds.25076.
  • Pan, W., K. Hu, P. Bai, L. Yu, Q. Ma, T. Li, X. Zhang, C. Chen, K. Peng, W. Liu, and Z. Sang. 2016. Design, synthesis and evaluation of novel ferulic acid-memoquin hybrids as potential multifunctional agents for the treatment of Alzheimer's disease. Bioorganic & Medicinal Chemistry Letters 26 (10):2539–2543. doi:10.1016/j.bmcl.2016.03.086.
  • Panza, F., V. Solfrizzi, M. R. Barulli, C. Bonfiglio, V. Guerra, A. Osella, D. Seripa, C. Sabbà, A. Pilotto, and G. Logroscino. 2015. Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: A systematic review. The Journal of Nutrition, Health & Aging 19 (3):313–328. doi:10.1007/s12603-014-0563-8.
  • Park, J. B. 2013. Isolation and quantification of major chlorogenic acids in three major instant coffee brands and their potential effects on H2O2-induced mitochondrial membrane depolarization and apoptosis in PC-12 cells. Food & Function 4 (11):1632–1638. doi:10.1039/c3fo60138b.
  • Patay, E. B., T. Bencsik, and N. Papp. 2016. Phytochemical overview and medicinal importance of coffea species from the past until now. Asian Pacific Journal of Tropical Medicine 9 (12):1127–1135. doi:10.1016/j.apjtm.2016.11.008.
  • Perluigi, M., G. Joshi, R. Sultana, V. Calabrese, C. De Marco, R. Coccia, C. Cini, and D. A. Butterfield. 2006. In vivo protective effects of ferulic acid ethyl ester against amyloid-beta peptide 1-42-induced oxidative stress. Journal of Neuroscience Research 84 (2):418–426. doi:10.1002/jnr.20879.
  • Pero, R., H. Lund, and T. Leanderson. 2009. Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide. Phytotherapy Research 23 (3):335–346. doi:10.1002/ptr.2628.
  • Perrone, D., R. Donangelo, C. M. Donangelo, and A. Farah. 2010. Modeling weight loss and chlorogenic acids content in coffee during roasting. Journal of Agricultural and Food Chemistry 58 (23):12238–12243. doi:10.1021/jf102110u.
  • Pohanka, M., and P. Dobes. 2013. Caffeine inhibits acetylcholinesterase, but not butyrylcholinesterase. International Journal of Molecular Sciences 14 (5):9873–9882. doi:10.3390/ijms14059873.
  • Qosa, H., A. H. Abuznait, R. A. Hill, and A. Kaddoumi. 2012. Enhanced brain amyloid-β clearance by rifampicin and caffeine as a possible protective mechanism against Alzheimer's disease. Journal of Alzheimer's Disease 31 (1):151–165. doi:10.3233/JAD-2012-120319.
  • Regitz, C., L. M. Dußling, and U. Wenzel. 2014. Amyloid-beta (Aβ1-42)-induced paralysis in Caenorhabditis elegans is inhibited by the polyphenol quercetin through activation of protein degradation pathways. Molecular Nutrition & Food Research 58 (10):1931–1940. doi:10.1002/mnfr.201400014.
  • Ross, C. A., and M. A. Poirier. 2004. Protein aggregation and neurodegenerative disease. Nature Medicine 10 Suppl:S10–S17. doi:10.1038/nm1066.
  • Sabogal-Guáqueta, A. M., J. I. Muñoz-Manco, J. R. Ramírez-Pineda, M. Lamprea-Rodriguez, E. Osorio, and G. P. Cardona-Gómez. 2015. The flavonoid quercetin ameliorates Alzheimer's disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer's disease model mice. Neuropharmacology 93:134–145. doi:10.1016/j.neuropharm.2015.01.027.
  • Sang, Z., W. Pan, K. Wang, Q. Ma, L. Yu, Y. Yang, P. Bai, C. Leng, Q. Xu, X. Li, et al. 2017. Design, synthesis and evaluation of novel ferulic acid-O-alkylamine derivatives as potential multifunctional agents for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry 130:379–392. doi:10.1016/j.ejmech.2017.02.039.
  • Santos, C., J. Costa, J. Santos, A. Vaz-Carneiro, and N. Lunet. 2010. Caffeine intake and dementia: Systematic review and meta-analysis. Journal of Alzheimer's Disease 20 Suppl 1:S187–S204. doi:10.3233/JAD-2010-091387.
  • Selkoe, D. J., and J. Hardy. 2016. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Molecular Medicine 8 (6):595–608. doi:10.15252/emmm.201606210.
  • Sergeant, N., A. Bretteville, M. Hamdane, M. L. Caillet-Boudin, P. Grognet, S. Bombois, D. Blum, A. Delacourte, F. Pasquier, E. Vanmechelen, et al. 2008. Biochemistry of tau in Alzheimer's disease and related neurological disorders. Expert Review of Proteomics 5 (2):207–224. doi:10.1586/14789450.5.2.207.
  • Sgarbossa, A., D. Giacomazza, and M. di Carlo. 2015. Ferulic acid: A hope for Alzheimer's disease therapy from plants. Nutrients 7 (7):5764–5782. doi:10.3390/nu7075246.
  • Sgarbossa, A., S. Monti, F. Lenci, E. Bramanti, R. Bizzarri, and V. Barone. 2013. The effects of ferulic acid on β-amyloid fibrillar structures investigated through experimental and computational techniques. Biochimica et Biophysica Acta 1830 (4):2924–2937. doi:10.1016/j.bbagen.2012.12.023.
  • Shamsi, A., A. Ahmed, and B. Bano. 2016. Glyoxal induced structural transition of buffalo kidney cystatin to molten globule and aggregates: Anti-fibrillation potency of quinic acid. IUBMB Life 68 (2):156–166. doi:10.1002/iub.1471.
  • Sharif, K., Watad, A. Bragazzi, N. L. Adaw, i Amital, M. H. Shoenfeld. and Y. 2017. Coffee and autoimmunity: More than a mere hot beverage! Autoimmunity Reviews 16 (7):712–721. doi:10.1016/j.autrev.2017.05.007.
  • Shen, W., R. Qi, J. Zhang, Z. Wang, H. Wang, C. Hu, Y. Zhao, M. Bie, Y. Wang, Y. Fu, et al. 2012. Chlorogenic acid inhibits LPS-induced microglial activation and improves survival of dopaminergic neurons. Brain Research Bulletin 88 (5):487–494. doi:10.1016/j.brainresbull.2012.04.010.
  • Shukitt-Hale, B., M. G. Miller, Y. F. Chu, B. J. Lyle, and J. A. Joseph. 2013. Coffee, but not caffeine, has positive effects on cognition and psychomotor behavior in aging. Age (Dordr) 35 (6):2183–2192. doi:10.1007/s11357-012-9509-4.
  • Silva, C. G., C. Métin, W. Fazeli, N. J. Machado, S. Darmopil, P. S. Launay, A. Ghestem, M. P. Nesa, E. Bassot, E. Szabó, et al. 2013. Adenosine receptor antagonists including caffeine alter fetal brain development in mice. Science Translational Medicine 5 (197):197ra104. 10.1126/scitranslmed.3006258.
  • Simon, D. K., C. Wu, B. C. Tilley, K. Lohmann, C. Klein, H. Payami, A. M. Wills, M. J. Aminoff, J. Bainbridge, R. Dewey, et al. 2017. Caffeine, creatine, GRIN2A and Parkinson's disease progression. Journal of the Neurological Sciences 375:355–359. doi:10.1016/j.jns.2017.02.032.
  • Simonin, C., C. Duru, J. Salleron, P. Hincker, P. Charles, A. Delval, K. Youssov, S. Burnouf, J. P. Azulay, C. Verny, et al. 2013. Association between caffeine intake and age at onset in Huntington's disease. Neurobiology of Disease 58:179–182. doi:10.1016/j.nbd.2013.05.013.
  • Smith, I. F., B. Hitt, K. N. Green, S. Oddo, and F. M. LaFerla. 2005. Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer's disease. Journal of Neurochemistry 94 (6):1711–1718. doi:10.1111/j.1471-4159.2005.03332.x.
  • Soliman, M. L., J. D. Geiger, and X. Chen. 2017. Caffeine blocks HIV-1 tat-induced amyloid beta production and tau phosphorylation. Journal of Neuroimmune Pharmacology 12 (1):163–170. doi:10.1007/s11481-016-9707-4.
  • Somporn, C., A. Kamtuo, P. Theerakulpisut, and S. Siriamornpun. 2011. Effects of roasting degree on radical scavenging activity, phenolics and volatile compounds of arabica coffee beans (Coffea arabica L. cv. Catimor). International Journal of Food Science & Technology 46 (11):2287–2296. doi:10.1111/j.1365-2621.2011.02748.x.
  • Souza, A. C., A. Souza, L. F. Medeiros, C. De Oliveira, V. L. Scarabelot, R. S. Da Silva, M. R. Bogo, K. M. Capiotti, L. W. Kist, C. D. Bonan, et al. 2015. Maternal caffeine exposure alters neuromotor development and hippocampus acetylcholinesterase activity in rat offspring. Brain Research 1595:10–18. doi:10.1016/j.brainres.2014.10.039.
  • Spagnuolo, C., S. Moccia, and G. L. Russo. 2017. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. European Journal of Medicinal Chemistry 153:105–115. doi:10.1016/j.ejmech.2017.09.001.
  • Stalmach, A., W. Mullen, D. Barron, K. Uchida, T. Yokota, C. Cavin, H. Steiling, G. Williamson, and A. Crozier. 2009. Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: Identification of biomarkers of coffee consumption. Drug Metabolism and Disposition 37 (8):1749–1758. doi:10.1124/dmd.109.028019.
  • Stephenson, J., E. Nutma, P. van der Valk, and S. Amor. 2018. Inflammation in CNS neurodegenerative diseases. Immunology 154 (2):204–219. doi:10.1111/imm.12922.
  • Suganthy, N., K. P. Devi, S. F. Nabavi, N. Braidy, and S. M. Nabavi. 2016. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomedicine & Pharmacotherapy 84:892–908. doi:10.1016/j.biopha.2016.10.011.
  • Sul, D., H. S. Kim, D. Lee, S. S. Joo, K. W. Hwang, and S. Y. Park. 2009. Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sciences 84 (9–10):257–262. doi:10.1016/j.lfs.2008.12.001.
  • Sultana, R., A. Ravagna, H. Mohmmad-Abdul, V. Calabrese, and D. A. Butterfield. 2005. Ferulic acid ethyl ester protects neurons against amyloid beta-peptide(1-42)-induced oxidative stress and neurotoxicity: Relationship to antioxidant activity. Journal of Neurochemistry 92 (4):749–758. doi:10.1111/j.1471-4159.2004.02899.x.
  • Szwajgier, D., K. Borowiec, and K. Pustelniak. 2017. The neuroprotective effects of phenolic acids: Molecular mechanism of action. Nutrients 9 (5):E477. 10.3390/nu9050477.
  • Tagliazucchi, D., and A. Bellesia. 2015. The gastro-intestinal tract as the major site of biological action of dietary melanoidins. Amino Acids 47 (6):1077–1089. doi:10.1007/s00726-015-1951-z.
  • Tajes, M., A. Eraso-Pichot, F. Rubio-Moscardó, B. Guivernau, M. Bosch-Morató, V. Valls-Comamala, and F. J. Muñoz. 2014. Methylglyoxal reduces mitochondrial potential and activates bax and caspase-3 in neurons: Implications for Alzheimer's disease. Neuroscience Letters 580:78–82. doi:10.1016/j.neulet.2014.07.047.
  • Takahashi, R., K. Ono, Y. Takamura, M. Mizuguchi, T. Ikeda, H. Nishijo, and M. Yamada. 2015. Phenolic compounds prevent the oligomerization of α-synuclein and reduce synaptic toxicity. Journal of Neurochemistry 134 (5):943–955. doi:10.1111/jnc.13180.
  • Taram, F., A. N. Winter, and D. A. Linseman. 2016. Neuroprotection comparison of chlorogenic acid and its metabolites against mechanistically distinct cell death-inducing agents in cultured cerebellar granule neurons. Brain Research 1648 (Pt A):69–80. doi:10.1016/j.brainres.2016.07.028.
  • Teraoka, M., K. Nakaso, C. Kusumoto, S. Katano, N. Tajima, A. Yamashita, T. Zushi, S. Ito, and T. Matsura. 2012. Cytoprotective effect of chlorogenic acid against α-synuclein-related toxicity in catecholaminergic PC12 cells. Journal of Clinical Biochemistry and Nutrition 51 (2):122–127. doi:10.3164/jcbn.D-11-00030.
  • Trinh, K., L. Andrews, J. Krause, T. Hanak, D. Lee, M. Gelb, and L. Pallanck. 2010. Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in drosophila models of Parkinson's disease through an NRF2-dependent mechanism. The Journal of Neuroscience 30 (16):5525–5532. doi:10.1523/JNEUROSCI.4777-09.2010.
  • Tsai, C. F., Y. H. Kuo, W. L. Yeh, C. Y. Wu, H. Y. Lin, S. W. Lai, Y. S. Liu, L. H. Wu, J. K. Lu, and D. Y. Lu. 2015. Regulatory effects of caffeic acid phenethyl ester on neuroinflammation in microglial cells. International Journal of Molecular Sciences 16 (12):5572–5589. doi:10.3390/ijms16035572.
  • van Beers-Tas, M. H., S. A. Turk, and D. van Schaardenburg. 2015. How does established rheumatoid arthritis develop, and are there possibilities for prevention? Best Practice & Research: Clinical Rheumatology 29 (4-5):527–542. doi:10.1016/j.berh.2015.09.001.
  • Van der Walt, M. M., G. Terre’Blanche, A. Petzer, A. C. U. Lourens, and J. P. Petzer. 2013. The adenosine A(2A) antagonistic properties of selected C8-substituted xanthines. Bioorganic Chemistry 49:49–58. doi:10.1016/j.bioorg.2013.06.006.
  • Vicente, S. J., E. Y. Ishimoto, and E. A. Torres. 2014. Coffee modulates transcription factor Nrf2 and highly increases the activity of antioxidant enzymes in rats. Journal of Agricultural and Food Chemistry 62 (1):116–122. doi:10.1021/jf401777m.
  • Vignoli, J. A., D. G. Bassoli, and M. T. Benassi. 2011. Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food Chemistry 124 (3):863–868. doi:10.1016/j.foodchem.2010.07.008.
  • Wang, D. M., S. Q. Li, W. L. Wu, X. Y. Zhu, Y. Wang, and H. Y. Yuan. 2014. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer's disease. Neurochemical Research 39 (8):1533–1543. doi:10.1007/s11064-014-1343-x.
  • Wang, H.-Y., H. Qian, and W.-R. Yao. 2011. Melanoidins produced by the maillard reaction: Structure and biological activity. Food Chemistry 128 (3):573–584. doi:10.1016/j.foodchem.2011.03.075.
  • Wang, X., X. Fan, S. Yuan, W. Jiao, B. Liu, J. Cao, and W. Jiang. 2017. Chlorogenic acid protects against aluminium-induced cytotoxicity through chelation and antioxidant actions in primary hippocampal neuronal cells. Food & Function 8 (8):2924–2934. doi:10.1039/c7fo00659d.
  • Wang, Y., W. Li, M. Wang, C. Lin, G. Li, X. Zhou, J. Luo, and D. Jin. 2018. Quercetin reduces neural tissue damage and promotes astrocyte activation after spinal cord injury in rats. Journal of Cellular Biochemistry 119 (2):2298–2306. doi:10.1002/jcb.26392.
  • Wang, Y., Y. Wang, J. Li, L. Hua, B. Han, Y. Zhang, X. Yang, Z. Zeng, H. Bai, H. Yin, and J. Lou. 2016. Effects of caffeic acid on learning deficits in a model of Alzheimer's disease. International Journal of Molecular Medicine 38 (3):869–875. doi:10.3892/ijmm.2016.2683.
  • Wei, M., L. Chen, J. Liu, J. Zhao, W. Liu, and F. Feng. 2016. Protective effects of a chotosan fraction and its active components on β-amyloid-induced neurotoxicity. Neuroscience Letters 617:143–149. doi:10.1016/j.neulet.2016.w02.019.
  • Wierzejska, R. 2017. Can coffee consumption lower the risk of Alzheimer's disease and Parkinson's disease? A literature review. Archives of Medical Science 13 (3):507–514. doi:10.5114/aoms.2016.63599.
  • Wirdefeldt, K., H. O. Adami, P. Cole, D. Trichopoulos, and J. Mandel. 2011. Epidemiology and etiology of Parkinson's disease: A review of the evidence. European Journal of Epidemiology 26 Suppl 1:S1–S58. doi:10.1007/s10654-011-9581-6.
  • Wostyn, P., D. Van Dam, K. Audenaert, and P. P. De Deyn. 2011. Increased cerebrospinal fluid production as a possible mechanism underlying caffeine's protective effect against Alzheimer's disease. International Journal of Alzheimer's Disease 2011:617420. 10.4061/2011/617420.
  • Wu, L., D. Sun, and Y. He. 2017. Coffee intake and the incident risk of cognitive disorders: A dose-response Meta-analysis of nine prospective cohort studies. Clinical Nutrition 36 (3):730–736. doi:10.1016/j.clnu.2016.05.015.
  • Wu, W., J. Shao, H. Lu, J. Xu, A. Zhu, W. Fang, and G. Hui. 2014. Guard of delinquency? A role of microglia in inflammatory neurodegenerative diseases of the CNS. Cell Biochemistry and Biophysics 70 (1):1–8. doi:10.1007/s12013-014-9872-0.
  • Xu, K., D. G. Di Luca, M. Orrú, Y. Xu, J. F. Chen, and M. A. Schwarzschild. 2016a. Neuroprotection by caffeine in the MPTP model of Parkinson's disease and its dependence on adenosine A2A receptors. Neuroscience 322:129–137. doi:10.1016/j.neuroscience.2016.02.035.
  • Xu, Y., D. Lin, X. Yu, X. Xie, L. Wang, L. Lian, N. Fei, J. Chen, N. Zhu, G. Wang, et al. 2016b. The antinociceptive effects of ferulic acid on neuropathic pain: Involvement of descending monoaminergic system and opioid receptors. Oncotarget 7 (15):20455–20468. doi:10.18632/oncotarget.7973.
  • Yabe, T., H. Hirahara, N. Harada, N. Ito, T. Nagai, T. Sanagi, and H. Yamada. 2010. Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo. Neuroscience 165 (2):515–524. doi:10.1016/j.neuroscience.2009.10.023.
  • Yan, J. J., J. Y. Cho, H. S. Kim, K. L. Kim, J. S. Jung, S. O. Huh, H. W. Suh, Y. H. Kim, and D. K. Song. 2001. Protection against beta-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. British Journal of Pharmacology 133 (1):89–96. doi:10.1038/sj.bjp.0704047.
  • Yang, T., B. Kong, J. W. Gu, Y. Q. Kuang, L. Cheng, W. T. Yang, X. Xia, and H. F. Shu. 2014. Anti-apoptotic and anti-oxidative roles of quercetin after traumatic brain injury. Cellular and Molecular Neurobiology 34 (6):797–804. doi:10.1007/s10571-014-0070-9.
  • Yao, Y., D. D. Han, T. Zhang, and Z. Yang. 2010. Quercetin improves cognitive deficits in rats with chronic cerebral ischemia and inhibits voltage-dependent sodium channels in hippocampal CA1 pyramidal neurons. Phytotherapy Research 24 (1):136–140. doi:10.1002/ptr.2902.
  • Yoshimura, T., M. Harashima, K. Kurogi, M. Suiko, M. C. Liu, and Y. Sakakibara. 2016. A novel procedure for the assessment of the antioxidant capacity of food components. Analytical Biochemistry 507:7–12. doi:10.1016/j.ab.2016.05.002.
  • Zeitlin, R., S. Patel, S. Burgess, G. W. Arendash, and V. Echeverria. 2011. Caffeine induces beneficial changes in PKA signaling and JNK and ERK activities in the striatum and cortex of Alzheimer's transgenic mice. Brain Research 1417:127–136. doi:10.1016/j.brainres.2011.08.036.
  • Zhang, Y. J., X. W. Lu, N. Song, L. Kou, M. K. Wu, F. Liu, H. Wang, and J. F. Shen. 2014. Chlorogenic acid alters the voltage-gated potassium channel currents of trigeminal ganglion neurons. International Journal of Oral Science 6 (4):233–240. doi:10.1038/ijos.2014.58.
  • Zhang, L. F., Z. W. Zhou, Z. H. Wang, Y. H. Du, Z. X. He, C. Cao, and S. F. Zhou. 2015. Coffee and caffeine potentiate the antiamyloidogenic activity of melatonin via inhibition of Aβ oligomerization and modulation of the tau-mediated pathway in N2a/APP cells. Drug Design, Development and Therapy 9:241–272. doi:10.2147/DDDT.S71106.
  • Zhang, L. N., Y. J. Sun, S. Pan, J. X. Li, Y. E. Qu, Y. Li, Y. L. Wang, and Z. B. Gao. 2013. Na+-K+-ATPase, a potent neuroprotective modulator against Alzheimer disease. Fundamental & Clinical Pharmacology 27 (1):96–103. doi:10.1111/fcp.12000.
  • Zhao, Z. A., Y. Zhao, Y. L. Ning, N. Yang, Y. Peng, P. Li, X. Y. Chen, D. Liu, H. Wang, X. Chen, et al. 2017. Adenosine A2A receptor inactivation alleviates early-onset cognitive dysfunction after traumatic brain injury involving an inhibition of tau hyperphosphorylation. Translational Psychiatry 7 (5):e1123. 10.1038/tp.2017.98.
  • Zhu, M., S. Han, and A. L. Fink. 2013. Oxidized quercetin inhibits α-synuclein fibrillization. Biochimica et Biophysica Acta 1830 (4):2872–2881. doi:10.1016/j.bbagen.2012.12.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.