948
Views
19
CrossRef citations to date
0
Altmetric
Reviews

The nanotech potential of turmeric (Curcuma longa L.) in food technology: A review

, , , , , & show all

References

  • Abraham, E., B. Deepa, L. A. Pothan, M. Jacob, S. Thomas, U. Cvelbar, and R. Anandjiwala. 2011. Extraction of Nanocellulose Fibrils from Lignocellulosic Fibres: A Novel Approach. Carbohydrate Polymers 86 (4):1468–75. doi:10.1016/j.carbpol.2011.06.034.
  • Acevedo-Guevara, L., L. Nieto-Suaza, L. Sanchez, M. Pinzon, and C. Villa. 2018. Development of Native and Modified Banana Starch Nanoparticles as Vehicles for Curcumin. International Journal of Biological Macromolecules 111:498–504. doi:10.1016/j.ijbiomac.2018.01.063.
  • Aditya, N. P., H. Yang, S. Kim, and S. Ko. 2015. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability. Colloids and Surfaces B: Biointerfaces 127:114–21. doi: 10.1016/j.colsurfb.2015.01.027.
  • Aggarwal, B. B., A. Kumar, and A. C. Bharti. 2003. Anticancer potential of curcumin preclinical and clinical studies. Anticancer Research 23 (1A):363–98.
  • Alemdar, A., and M. Sain. 2008. Isolation and Characterization of Nanofibers from Agricultural Residues - Wheat Straw and Soy Hulls. Bioresource Technology 99 (6):1664–71. doi:10.1016/j.biortech.2007.04.029.
  • Amenta, V., K. Aschberger, M. Arena, H. Bouwmeester, F. Botelho Moniz, P. Brandhoff, S. Gottardo, H. J. P. Marvin, A. Mech, and L. Quiros Pesudo. 2015. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regulatory Toxicology and Pharmacology 73 (1):463–76. doi: 10.1016/j.yrtph.2015.06.016.
  • Araújo, C. C., and L. L. Leon. 2001. Biological activities of Curcuma longa L. Memórias Do Instituto Oswaldo Cruz 96 (5):723–8. doi: 10.1590/S0074-02762001000500026.
  • Assadpour, E., S. M. Jafari, and Y. Maghsoudlou. 2017. Evaluation of folic acid release from spray dried powder particles of pectin-whey protein nano-capsules. International Journal of Biological Macromolecules 95:238–47. doi: 10.1016/j.ijbiomac.2016.11.023.
  • Bagchi, A. 2012. Extraction of curcumin. IOSR Journal of Environmental Science, Toxicology and Food Technology 1 (3):1–16. doi: 10.9790/2402-0130116.
  • Bai, L., S. Huan, J. Gu, and D. J. McClements. 2016. Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocolloids 61 (1):703–11. doi: 10.1016/j.foodhyd.2016.06.035.
  • Basniwal, R. K., H. Singh Buttar, V. K. Jain, and N. Jain. 2011. Curcumin nanoparticles: Preparation, characterization, and antimicrobial study. Journal of Agricultural and Food Chemistry 59 (5):2056–61. doi: 10.1021/jf104402t.
  • Bastaki, M., T. Farrell, S. Bhusari, K. Pant, and R. Kulkarni. 2017. Lack of genotoxicity in vivo for food color additive allura red AC. Food and Chemical Toxicology 105:308–14. doi: 10.1016/j.fct.2017.04.037.
  • Bigliardi, B., and F. Galati. 2013. Models of adoption of open innovation within the food industry. Trends in Food Science and Technology 30 (1):16–26. doi: 10.1016/j.tifs.2012.11.001.
  • Boufi, S., S. Bel Haaj, A. Magnin, F. Pignon, M. Impéror-Clerc, and G. Mortha. 2018. Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration. Ultrasonics Sonochemistry 41:327–36. doi: 10.1016/j.ultsonch.2017.09.033.
  • Braga, M. E. M., S. R. M. Moreschi, and M. A. A. Meireles. 2006. Effects of supercritical fluid extraction on Curcuma longa L. and Zingiber officinale R. starches. Carbohydrate Polymers 63 (3):340–6. doi: 10.1016/j.carbpol.2005.08.055.
  • Busquets, R. 2017. Emerging nanotechnologies in food science. Oxford, UK: Elsevier.
  • Cavaliere, A., E. De Marchi, and A. Banterle. 2017. Investigation on the role of consumer health orientation in the use of food labels. Public Health 147:119–27. doi: 10.1016/j.puhe.2017.02.011.
  • Cerqueira, M. A., A.C. Pinheiro, O.L. Ramos, H. Siva, A.I. Bourbon, and A.A. Vicente. 2017. Advances in food nanotechnology. In Emerging nanotechnologies in food science, ed. R. Busquets, 11–33. Oxford, UK: Elsevier.
  • Chellaram, C., G. Murugaboopathi, A. A. John, R. Sivakumar, S. Ganesan, S. Krithika, and G. Priya. 2014. Significance of nanotechnology in food industry. APCBEE Procedia 8:109–13. doi: 10.1016/j.apcbee.2014.03.010.
  • Chen, X., L.-Q. Zou, J. Niu, W. Liu, S.-F. Peng, and C.-M. Liu. 2015. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 20 (8):14293–311. doi: 10.103390/molecules200814293.
  • Coban, D., D. Milenkovic, A. Chanet, J. Khallou-Laschet, L. Sabbe, A. Palagani, W. Vanden Berghe, A. Mazur, and C. Morand. 2012. Dietary curcumin inhibits atherosclerosis by affecting the expression of genes involved in leukocyte adhesion and transendothelial migration. Molecular Nutrition & Food Research 56 (8):1270–81. doi: 10.1002/mnfr.201100818.
  • Collnot, E. M., H. Ali, and C. M. Lehr. 2012. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. Journal of Controlled Release 161 (2):235–46. doi: 10.1016/j.jconrel.2012.01.028.
  • Cushen, M., J. Kerry, M. Morris, M. Cruz-Romero, and E. Cummins. 2012. Nanotechnologies in the food industry – Recent developments, risks and regulation. Trends in Food Science and Technology 24 (1):30–46. doi: 10.1016/j.tifs.2011.10.006.
  • Dall’Acqua, S., M. Stocchero, I. Boschiero, M. Schiavon, S. Golob, J. Uddin, D. Voinovich, S. Mammi, and E. Schievano. 2016. New findings on the in vivo antioxidant activity of Curcuma longa extract by an integrated 1H NMR and HPLC-MS metabolomic approach. Fitoterapia 109:125–31. doi: 10.1016/j.fitote.2015.12.013.
  • Dash, R., S. K. Ghosh, D. L. Kaplan, and S. C. Kundu. 2007. Purification and biochemical characterization of a 70-KDa sericin from tropical tasar silkworm, Antheraea mylitta. Comparative Biochemistry and Physiology B 147 (1):129–34. doi: 10.1016/j.cbpb.2007.01.009.
  • de Freitas Zompero, R. H., A. López-Rubio, S. C. de Pinho, J. M. Lagaron, and L. G. de la Torre. 2015. Hybrid encapsulation structures based on β-carotene-loaded nanoliposomes within electrospun fibers. Colloids and Surfaces B: Biointerfaces 134:475–82. doi: 10.101016/j.colsurfb.2015.03.015.
  • Donsí, F., Y. Wang, J. I. Li, and Q. Huang. 2010. Preparation of curcumin sub-micrometer dispersions by high-pressure homogenization. Journal of Agricultural and Food Chemistry 58 (5):2848–53. doi: 10.1021/jf903968x.
  • dos Santos Aguilar, J. G., M. Cristianini, and H. H. Sato. 2018. Modification of enzymes by use of high-pressure homogenization. Food Research International 109:120–5. doi: 10.1016/j.foodres.2018.04.011.
  • EFSA Scientific Committee. 2011. Guidance for risk assessment of engineered nanomaterials. EFSA Journal 9 (5):2–36.
  • Eigner, D., and D. Scholz. 1999. Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. Journal of Ethnopharmacology 67 (1):1–6. doi: 10.1016/S0378-8741(98)00234-7.
  • El Khoury, E., M. Abiad, Z. G. Kassaify, and D. Patra. 2015. Green synthesis of curcumin conjugated nanosilver for the applications in nucleic acid sensing and anti-bacterial activity. Colloids and Surfaces B: Biointerfaces 127:274–80. doi: 10.1016/j.colsurfb.2015.01.050.
  • Embuscado, M. E. 2015. Spices and herbs: Natural sources of antioxidants – A mini review. Journal of Functional Foods 18:811–9. doi: 10.1016/j.jff.2015.03.005.
  • Esmaili, M., S. M. Ghaffari, Z. Moosavi-Movahedi, M. S. Atri, A. Sharifizadeh, M. Farhadi, R. Yousefi, J. M. Chobert, T. Haertlé, and A. A. Moosavi-Movahedi. 2011. Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT - Food Science and Technology 44 (10):2166–72. doi: 10.1016/j.lwt.2011.05.023.
  • Estevinho, B. N., and F. Rocha. 2017. A key for the future of the flavors in food industry: Nanoencapsulation and microencapsulation. In Nanotechnology applications in food – Flavor, stability, nutrition and safety, eds. A. E. Oprea and A. M. Grumezescu, 1–19. London, UK: Elsevier
  • European Food Safety Authority. 2008. REGLAMENTO (CE) No. 1333:2008. European Union. Accessed May 15, 2017. https://eur-lex.europa.eu/legal-content/ES/TXT/HTML/?uri=CELEX:32008R1333&from=en.
  • European Parliament. 2015. Regulation (UE) 2015/2283 of the European Parliament and the Council on Novel Foods. European Union. Accessed May 15, 2017. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32015R2283&from=EN.
  • Euterpio, M., C. Cavaliere, A. L. Capriotti, and C. Crescenzi. 2011. Extending the applicability of pressurized hot water extraction to compounds exhibiting limited water solubility by PH control: Curcumin from the turmeric rhizome. Analytical and Bioanalytical Chemistry 401 (9):2977–85. doi: 10.1007/s00216-011-5383-7.
  • Farrag, Y., W. Ide, B. Montero, M. Rico, S. Rodríguez-Llamazares, L. Barral, and R. Bouza. 2018. Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. International Journal of Biological Macromolecules 114:426–33. doi: 10.1016/j.ijbiomac.2018.03.134.
  • Fernandes, M. G., C. B. Cervi, R. Aparecida de Carvalho, and J. Lapa-Guimarães. 2017. Evaluation of turmeric extract as an antioxidant for frozen streaked prochilod (Prochilodus lineatus) fillets. Journal of Aquatic Food Product Technology 26 (9):1057–69. doi: 10.1080/10498850.2017.1376025.
  • Food and Agriculture Organization of the United Nations. 2012. Nanotechnologies in food and agriculture. Rome. http://www.fao.org/3/a-au206e.pdf.
  • Food and Agriculture Organization of the United Nations (FAO). 2004. Turmeric post-harvest operations. http://www.fao.org/3/a-au994e.pdf.
  • Ghosh, D., S. T. Choudhury, S. Ghosh, A. K. Mandal, S. Sarkar, A. Ghosh, K. D. Saha, and N. Das. 2012. Nanocapsulated curcumin: Oral chemopreventive formulation against diethylnitrosamine induced hepatocellular carcinoma in rat. Chemico-Biological Interactions 195 (3):206–14. doi: 10.1016/j.cbi.2011.12.004.
  • Gómez-Estaca, J., R. Gavara, and P. Hernández-Muñoz. 2015. Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innovative Food Science and Emerging Technologies 29:302–7. doi: 10.1016/j.ifset.2015.03.004.
  • Gómez H., C., A. Serpa, J. Velásquez-Cock, P. Gañán, C. Castro, L. Vélez, and R. Zuluaga. 2016. Vegetable nanocellulose in food science: A review. Food Hydrocolloids 57:178–86. doi: 10.1016/j.foodhyd.2016.01.023.
  • Gopi, S., A. Amalraj, S. Jude, K. Varma, T. R. Sreeraj, J. T. Haponiuk, and S. Thomas. 2017. Preparation, characterization and anti-colitis activity of curcumin-asafoetida complex encapsulated in turmeric nanofiber. Materials Science and Engineering C: Materials for Biological Applications 81:20–31. doi: 10.1016/j.msec.2017.07.037.
  • Gottesman, R., S. Shukla, N. Perkas, L. A. Solovyov, Y. Nitzan, and A. Gedanken. 2011. Sonochemical coating of paper by microbiocidal silver nanoparticles. Langmuir 27 (2):720–6. doi: 10.1021/la103401z.
  • Gul, P., and J. Bakht. 2015. Antimicrobial activity of turmeric extract and its potential use in food industry. Journal of Food Science and Technology 52 (4):2272–9. doi: 10.1007/s13197-013-1195-4.
  • Gupta, A., S. Mahajan, and R. Sharma. 2015. Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus. Biotechnology Reports 18:51–5. doi: 10.1016/j.btre.2015.02.001.
  • Haham, M., S. Ish-Shalom, M. Nodelman, I. Duek, E. Segal, M. Kustanovich, and Y. D. Livney. 2012. Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food & Function 3 (7):737–44. doi: 10.1039/c2fo10249h.
  • Handayani, B. R., B. Dipokusumo, W. Werdiningsih, T. I. Rahayu, and D. L. Sugita. 2018. Microbial quality of yellow seasoned ‘pindang’ fish treated with turmeric and tamarind. IOP Conference Series: Earth and Environmental Science 102:1–9. 1234567890. doi: 10.1088/1755-1315/102/1/012019.
  • Hani, U., and H. G. Shivakumar. 2014. Solubility enhancement and delivery systems of curcumin a herbal medicine: A review. Current Drug Delivery 11 (6):792–804.
  • He, X., and H. M. Hwang. 2016. Nanotechnology in food science: Functionality, applicability, and safety assessment. Journal of Food and Drug Analysis 24 (4):671–81. doi: 10.1016/j.jfda.2016.06.001.
  • Hefnawy, H. T., G. A. El-Shourbagy, and M. F. Ramadan. 2016. Phenolic extracts of carrot, grape leaf and turmeric powder: Antioxidant potential and application in biscuits. Journal of Food Measurement and Characterization 10 (3):576–83. doi: 10.1007/s694-016-9339-7.
  • Ho, K. K. H. Y., K. Schroën, M. F. San Martín-González, and C. C. Berton-Carabin. 2017. Physicochemical stability of lycopene-loaded emulsions stabilized by plant or dairy proteins. Food Structure 12:34–42. doi: 10.1016/j.foostr.2016.12.001.
  • Hoek, A. C., D. Pearson, S. W. James, M. A. Lawrence, and S. Friel. 2017. Shrinking the food-print: A qualitative study into consumer perceptions, experiences and attitudes towards healthy and environmentally friendly food behaviours. Appetite 108:117–31. doi: 10.1016/j.appet.2016.09.030.
  • Hussain, Z., H. E. Thu, S.-F. Ng, S. Khan, and H. Katas. 2017. Nanoencapsulation, an efficient and promising approach to maximize wound healing efficacy of curcumin: A review of new trends and state-of-the-art. Colloids and Surfaces B 150:223–41. doi: 10.1016/j.colsurfb.2016.11.036.
  • Ilangovan, M., V. Guna, C. Hu, G. S. Nagananda, and N. Reddy. 2018. Curcuma longa L. plant residue as a source for natural cellulose fibers with antimicrobial activity. Industrial Crops and Products 112:556–60. doi: 10.1016/j.indcrop.2017.12.042.
  • Indira Priyadarsini, K. 1997. Free radical reactions of curcumin in membrane models. Free Radical Biology & Medicine 23 (6):838–43.
  • Ji, W.-H., Z.-B. Xiao, G.-Y. Liu, and X. Zhang. 2017. Development and application of nano-flavor-drug carriers in neurodegenerative diseases. Chinese Chemical Letters 28 (9):1829–34. doi: 10.1016/j.cclet.2017.06.024.
  • Jin, H., F. Xia, C. Jiang, Y. Zhao, and L. He. 2009. Nanoencapsulation of lutein with hydroxypropylmethyl cellulose phthalate by supercritical antisolvent. Chinese Journal of Chemical Engineering 17 (4):672–7. doi: 10.1016/S1004-9541(08)60262-1.
  • Joshi, P., S. Jain, and V. Sharma. 2011. Acceptability assessment of yellow colour obtained from turmeric in food products and at consumer level. Asian Journal of Food & Agro-industry 4 (1):1–15. doi: 10.4103/1793‑5482.145102.
  • Kakkar, V., S. K. Muppu, K. Chopra, and I. P. Kaur. 2013. Curcumin loaded solid lipid nanoparticles: An efficient formulation approach for cerebral ischemic reperfusion injury in rats. European Journal of Pharmaceutics and Biopharmaceutics 85 (3):339–45. doi: 10.1016/j.ejpb.2013.02.005.
  • Kapakos, G., V. Youreva, and A. K. Srivastava. 2012. Cardiovascular protection by curcumin: Molecular aspects. Indian Journal of Biochemistry & Biophysics 49 (5):306–15.
  • Karimi, M., R. Sadeghi, and J. Kokini. 2018. Human exposure to nanoparticles through trophic transfer and the biosafety concerns that nanoparticle-contaminated foods pose to consumers. Trends in Food Science and Technology 75:129–45. doi:S0924224417301267. doi: 10.1016/j.tifs.2018.03.012.
  • Karizaki, V. M. 2017. Ethnic and traditional Iranian breads: Different types, and historical and cultural aspects. Journal of Ethnic Foods 4 (1):8–14. doi: 10.1016/j.jef.2017.01.002.
  • Karthik, V., and J. S. Amarnath. 2014. An economic analysis of turmeric production in Tamil Nadu, India. Direct Research Journal of Agriculture and Food Science 2 (6):66–76.
  • Kaur, J., G. Kaur, S. Sharma, and K. Jeet. 2018. Cereal starch nanoparticles – A prospective food additive: A review. Critical Reviews in Food Science and Nutrition 58 (7):1097–107. doi: 10.1080/10408398.2016.1238339.
  • Komaiko, J., A. Sastrosubroto, and D. J. McClements. 2016. Encapsulation of ω-3 fatty acids in nanoemulsion-based delivery systems fabricated from natural emulsifiers: Sunflower phospholipids. Food Chemistry 203 (15):331–9. doi: 10.1016/j.foodchem.2016.02.080.
  • Kurien, B. T., A. Singh, H. Matsumoto, and R. H. Scofield. 2007. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. ASSAY and Drug Development Technologies 5 (4):567–76. doi: 10.1089/adt.2007.064.
  • Kuttigounder, D., J. R. Lingamallu, and S. Bhattacharya. 2011. Turmeric powder and starch: Selected physical, physicochemical, and microstructural properties. Journal of Food Science 76 (9):C1284–91. doi: 10.1111/j.1750-3841.2011.02403.x.
  • Lane, K. E., W. Li, C. J. Smith, and E. J. Derbyshire. 2016. The development of vegetarian omega-3 oil in water nanoemulsions suitable for integration into functional food products. Journal of Functional Foods 23:306–14. doi: 10.1016/j.jff.2016.02.043.
  • Leach, A. E. 1904. The composition of turmeric. Journal of the American Chemical Society 26 (10):1210–1. doi: 10.1021/ja02000a005.
  • Le Corre, D., J. Bras, and A. Dufresne. 2010. Starch nanoparticles: A review. Biomacromolecules 11 (5):1139–53. doi: 10.1021/bm901428y.
  • LeCorre, D., E. Vahanian, A. Dufresne, and J. Bras. 2012. Enzymatic pretreatment for preparing starch nanocrystals. Biomacromolecules 13 (1):132–7. doi: 10.1021/bm201333k.
  • Lekshmi, P. C., R. Arimboor, K. G. Raghu, and A. Nirmala. 2012. Turmerin the antioxidant protein from turmeric (Curcuma longa) exhibits antihyperglycaemic effects. Natural Product Research 26 (17):37–41. doi: 10.1080/14786419.2011.589386.
  • Leonel, M., S. B. S. Sarmento, and M. P. Cereda. 2003. New starches for the food industry: Curcuma longa and curcuma zedoaria. Carbohydrate Polymers 54 (3):385–8. doi: 10.1016/S0144-8617(03)00179-6.
  • Li, J., X. Wei, Q. Wang, J. Chen, G. Chang, L. Kong, J. Su, and Y. Liu. 2012. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydrate Polymers 90 (4):1609–13. doi: 10.1016/j.carbpol.2012.07.038.
  • Li, J., G. H. Shin, X. Chen, and H. J. Park. 2015. Modified curcumin with hyaluronic acid: Combination of pro-drug and nano-micelle strategy to address the curcumin challenge. Food Research International 69:202–8. doi: 10.1016/j.foodres.2014.12.045.
  • Li, W. Jiang, Z. X. Xiao, Z. Wang, Z. Wu, Q. Ma, and L. Cao. 2018. Curcumin inhibits superoxide Dismutase-Induced epithelial-to-mesenchymal transition via the PI3K/akt/NF-ΚB pathway in pancreatic cancer cells. International Journal of Oncology 52 (5):1593–602. doi: 10.3892/ijo.2018.4295.
  • Li, X., N. Anton, C. Arpagaus, F. Belleteix, and T. F. Vandamme. 2010. Nanoparticles by spray drying using innovative new technology: The büchi nano spray dryer B-90. Journal of Controlled Release 147 (2):304–10. doi: 10.1016/j.jconrel.2010.07.113.
  • Lim, H. S., S. H. Park, K. Ghafoor, S. Y. Hwang, and J. Park. 2011. Quality and antioxidant properties of bread containing turmeric (Curcuma longa L.) cultivated in South Korea. Food Chemistry 124 (4):1577–82. doi: 10.1016/j.foodchem.2010.08.016.
  • Liu, A., H. Lou, L. Zhao, and P. Fan. 2006. Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin. Journal of Pharmaceutical and Biomedical Analysis 40 (3):720–7. doi: 10.1016/j.jpba.2005.09.032.
  • Liu, D., Q. Wu, H. Chen, and P. R. Chang. 2009. Transitional properties of starch colloid with particle size reduction from micro- to nanometer. Journal of Colloid and Interface Science 339 (1):117–24. doi: 10.1016/j.jcis.2009.07.035.
  • Liu, W., M. Tian, Y. Kong, J. Lu, N. Li, and J. Han. 2017. Multilayered vitamin C nanoliposomes by self-assembly of alginate and chitosan: Long-term stability and feasibility application in mandarin juice. LWT - Food Science and Technology 75:608–15. doi: 10.1016/j.lwt.2016.10.010.
  • Mahfouz, H. 2013. Protective action of vitamin C against mutagenic effects of synthetic food color tartrazine. African Journal of Pharmacy and Pharmacology 7 (35):2474–83. doi: 10.5897/AJPP2013.3561.
  • Mahmood, K., H. Kamilah, P. L. Shang, S. Sulaiman, F. Ariffin, and A. K. Alias. 2017. A review: Interaction of starch/non-starch hydrocolloid blending and the recent food applications. Food Bioscience 19:110–20. doi: 10.1016/j.fbio.2017.05.006.
  • Maiti, P. 2015. Dietary curcumin: A potent natural polyphenol for neurodegenerative diseases therapy. MOJ Anatomy & Physiology 1 (5):127–32. doi: 10.15406/mojap.2015.01.00026.
  • Mancini, S., G. Paci, F. Pisseri, and G. Preziuso. 2017. Effect of turmeric (Curcuma longa L.) powder as dietary antioxidant supplementation on pig meat quality. Journal of Food Processing and Preservation 41 (1):1–6. doi: 10.1111/jfpp.12878.
  • Mancini, S., G. Preziuso, and G. Paci. 2016. Effect of turmeric powder (Curcuma longa L) and ascorbic acid on antioxidant capacity and oxidative status in rabbit burgers after cooking. World Rabbit Science 24 (2):121–7. doi: 10.4995/wrs.2016.4207.
  • Maniglia, B. C., R. L. De Paula, J. R. Domingos, and D. R. Tapia-Blácido. 2015. Turmeric dye extraction residue for use in bioactive film production: Optimization of turmeric film plasticized with glycerol. LWT - Food Science and Technology 64 (2):1187–95. doi: 10.1016/j.lwt.2015.07.025.
  • Manoharan, A., D. Ramasamy, B. Dhanalashmi, K. S. Gnanalashmi, and D. Thyagaranjan. 2012. Studies on sensory evaluation of curcumin powder as natural color for butterscotch flavor ice cream. Indian Journal of Drugs and Diseases 1 (1):43–6.
  • Martinez, M. G., and J. Briz. 2000. Innovation activities in the spanish food and drink industry. International Food and Agribusiness Management Review 3:155–76. doi: 10.1016/S1096-7508(00)00033-1.
  • Massimino, L. C., H. A. M. Faria, and S. A. Yoshioka. 2017. Curcumin bioactive nanosizing: Increase of bioavailability. Industrial Crops and Products 109:493–7. doi: 10.1016/j.indcrop.2017.09.001.
  • Moghaddasi, F., M. R. Housaindokht, M. Darroudi, M. R. Bozorgmehr, and A. Sadeghi. 2018. Synthesis of nano curcumin using black pepper oil by O/W nanoemulsion technique and investigation of their biological activities. LWT 92:92–100. doi: 10.1016/j.lwt.2018.02.023.
  • Mohammadi, M., B. Ghanbarzadeh, and H. Hamishehkar. 2014. Formulation of nanoliposomal vitamin D3 for potential application in beverage fortification. Advanced Pharmaceutical Bulletin 4:569–75. doi: 10.5681/apb.2014.084.
  • Mohanty, C., M. Das, and S. K. Sahoo. 2012. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opinion on Drug Delivery 9 (11):1347–64. doi: 10.1517/17425247.2012.724676.
  • Naksuriya, O., S. Okonogi, R. M. Schiffelers, and W. E. Hennink. 2014. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 35 (10):3365–83. doi: 10.1016/j.biomaterials.2013.12.090.
  • Nsor-Atindana, J., M. Chen, H. D. Goff, F. Zhong, H. R. Sharif, and Y. Li. 2017. Functionality and nutritional aspects of microcrystalline cellulose in food. Carbohydrate Polymers 172:159–74. doi: 10.1016/j.carbpol.2017.04.021.
  • Organización de las Naciones Unidas para la Agricultura y la Alimentación Salud, y Organización Mundial de la. 2011. Reunión Conjunta FAO/OMS de Expertos Acerca de La Nanotecnología En Los Sectores Alimentario y Agropecuario: Posibles Consecuencias Para La Inocuidad de Los Alimentos. Roma, Italia.
  • Pan, K., Q. Zhong, and S. J. Baek. 2013. Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules. Journal of Agricultural and Food Chemistry 61 (25):6036–43. doi: 10.1021/jf400752a.
  • Panahi, Y., N. Khalili, M. S. Hosseini, M. Abbasinazari, and A. Sahebkar. 2014. Lipid-modifying effects of adjunctive therapy with curcuminoids-piperine combination in patients with metabolic syndrome: Results of a randomized controlled trial. Complementary Therapies in Medicine 22 (5):851–7. doi: 10.1016/j.ctim.2014.07.006.
  • Pandit, R. S., S. C. Gaikwad, G. A. Agarkar, A. K. Gade, and M. Rai. 2015. Curcumin nanoparticles: Physico-chemical fabrication and its in vitro efficacy against human pathogens. 3 Biotech 5 (6):991–7. doi: 10.1007/s13205-015-0302-9.
  • Parck, S. J., C. V. Garcia, G. H. Shin, and J. T. Kim. 2018. Improvement of curcuminoid bioaccessibility from turmeric by a nanostructured lipid carrier system. Food Chemistry 251 (51):15–57. doi: 10.1016/j.foodchem.2018.01.071.
  • Park, S. H., H. S. Lim, and S. Y. Hwang. 2012. Evaluation of antioxidant, rheological, physical and sensorial properties of wheat flour dough and cake containing turmeric powder. Food Science and Technology International 18 (5):435–43. doi: 10.1177/1082013211428220.
  • Payton, F., P. Sandusky, and W. L. Alworth. 2007. NMR study of the solution structure of curcumin. Journal of Natural Products 70 (2):143–6. doi: 10.1021/np060263s.
  • Perez-Herrera, M., T. Vasanthan, and R. Hoover. 2016. Characterization of Maize Starch Nanoparticles Prepared by Acid Hydrolysis. Cereal Chemestry Journall 93 (3):323–30. doi:10.1094/cchem-08-15-0175-r.
  • Peters, R., E. Kramer, A. G. Oomen, Z. E. Herrera Rivera, G. Oegema, P. C. Tromp, R. Fokkink, A. Rietveld, H. J. P. Marvin, S. Weigel, et al. 2012. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano 6 (3):2441–51. doi: 10.1021/nn204728k.
  • Popuri, A. K., and B. Pagala. 2013. Extraction of curcumin from turmeric roots. International Journal of Innovative Research & Studies 2 (5):289–99.
  • Pornanek, P., and S. Uriyapongson. 2014. Solubility enhancement of curcumin from turmeric oleoresin by solid dispersion technique. Pakistan Journal of Nutrition 13 (8):2014.
  • Prasad, S., A. K. Tyagi, and B. B. Aggarwal. 2014. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice. Cancer Research and Treatment 46 (1):2–18. doi: 10.4143/crt.2014.46.1.2.
  • Quiles, J. L., M. D. Mesa, C. L. Ramírez-Tortosa, C. M. Aguilera, M. Battino, Á. Gil, and M. C. Ramírez-Tortosa. 2002. Curcuma longa extract supplementation reduces oxidative stress and attenuates aortic fatty streak development in rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology 22 (7):1225–31. doi: 10.1161/01.ATV.0000020676.11586.F2.
  • Ramírez-Tortosa, M. C., M. D. Mesa, M. C. Aguilera, J. L. Quiles, L. Baró, C. L. Ramirez-Tortosa, E. Martinez-Victoria, and A. Gil. 1999. Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis. Atherosclerosis 147 (2):371–8. doi: 10.1016/S0021-9150(99)00207-5.
  • Ravidran, P.N., K.N. Babu, and K. Sivaraman. 2013. Turmeric: The genus Curcuma. Boca Raton, FL: CRC Press.
  • Ribeiro, H. S., B. Seang Chu, S. Ichikawa, and M. Nakajima. 2008. Preparation of nanodispersions containing β-carotene by solvent displacement method. Food Hydrocolloids 22 (1):12–7. doi: 10.1016/j.foodhyd.2007.04.009.
  • Sathuvan, M., R. Thangam, M. Gajendiran, R. Vivek, S. Balasubramanian, S. Nagaraj, P. Gunasekaran, B. Madhan, and R. Rengasamy. 2017. κ-Carrageenan: An effective drug carrier to deliver curcumin in cancer cells and to induce apoptosis. Carbohydrate Polymers 160 (15):184–93. doi: 10.1016/j.carbpol.2016.12.049.
  • Saxena, A., T. Maity, A. Paliwal, and S. Wadhwa. 2017. Tecnological aspects of nanoemulsions and their applications in the food sector. In Nanotechnology applications in Food - Flavor, stability, nutrition and safety, ed. A. E. Oprea and A. M. Grumezescu, 1st ed., 129–52. London, UK: Elsevier.
  • Schlender, M., K. Minke, B. Spiegel, and H. P. Schuchmann. 2015. High-Pressure double stage homogenization processes: Influences of plant setup on oil droplet size. Chemical Engineering Sciences 131:162–71. doi: 10.1016/j.ces.2015.03.055.
  • Shah, B. R., C. Zhang, Y. Li, and B. Li. 2016. Bioaccessibility and antioxidant activity of curcumin after encapsulated by nano and pickering emulsion based on chitosan-tripolyphosphate nanoparticles. Food Research International 89:399–407. doi: 10.1016/j.foodres.2016.08.022.
  • Shi, Z., Y. Zhang, G. O. Phillips, and G. Yang. 2014. Utilization of bacterial cellulose in food. Food Hydrocolloids 35:539–45. doi: 10.1016/j.foodhyd.2013.07.012.
  • Shin, G. H., J. Li, J. H. Cho, J. T. Kim, and H. J. Park. 2016. Enhancement of curcumin solubility by phase change from crystalline to amorphous in Cur-TPGS nanosuspension. Journal of Food Science 81 (2):N494–501. doi: 10.1111/1750-3841.13208.
  • Singh, R. P., and R. Agarwal. 2006. Mechanisms of action of novel agents for prostate cancer chemoprevention. Endocrine-Related Cancer 13 (3):751–78. doi: 10.1677/erc.1.01126.
  • Siqueira, G., K. Oksman, S. K. Tadokoro, and A. P. Mathew. 2016. Re-Dispersible Carrot Nano Fi Bers with High Mechanical Properties and Reinforcing Capacity for Use in Composite Materials. Composites Science and Technology 123:49–56. doi:10.1016/j.compscitech.2015.12.001.
  • Sotomayor-Gerdin, D., B. D. Oomah, F. Acevedo, E. Morales, M. Bustamante, C. Shene, and M. Rubilar. 2016. High carotenoid bioaccessibility through linseed oil nanoemulsions with enhanced physical and oxidative stability. Food Chemistry 199 (15):463–70. doi: 10.1016/j.foodchem.2015.12.004.
  • Srinivas, L., and V. K. Shalini. 1991. DNA damage by smoke: Protection by turmeric and other inhibitors of ROS. Free Radical Biology & Medicine 11 (3):277–83.
  • Szymusiak, M., X. Hu, P. A. Leon Plata, P. Ciupinski, Z. J. Wang, and Y. Liu. 2016. Bioavailability of curcumin and curcumin glucuronide in the Central nervous system of mice after oral delivery of Nano-Curcumin. International Journal of Pharmaceutics 511 (1):415–23. doi: 10.1016/j.ijpharm.2016.07.027.
  • U.S. Department of Health and Human Services. 2014. Guidance for industry considering whether an FDA-regulated product involves the application of nanotechnology. FDA. https://www.fda.gov/downloads/RegulatoryInformation/Guidances/UCM401695.pdf.
  • United Nations Office on Drugs and Crime. 2013. Informe Ejecutivo: Encuentro Nacional de Desarrollo Alternativo. Accessed October 10, 2017. https://www.unodc.org/documents/colombia/2014/Agosto/EncuentroDA/ENDA_2013_ESPANOL.pdf.
  • Uzun, S., and J. L. Kokini. 2014. Preparation and characterization of starch nanoparticles by desolvation method. International Journal of Polymer Science 2014:292–5. doi: 10.1016/j.carbpol.2014.02.067.
  • Vecchione, R., V. Quagliariello, D. Calabria, V. Calcagno, E. De Luca, R. V. Iaffaioli, and P. A. Netti. 2016. Curcumin bioavailability from oil in water nano-emulsions: In vitro and in vivo study on the dimensional, compositional and interactional dependence. Journal of Controlled Release 233:88–100. doi: 10.1016/j.jconrel.2016.05.004.
  • Velásquez-Cock, J., P. Gañán, C. Gómez H., P. Posada, C. Castro, A. Dufresne, and R. Zuluaga. 2018a. Improved redispersibility of cellulose nanofibrils in water using maltodextrin as a green, easily removable and non-toxic additive. Food Hydrocolloids 79:30–9. doi: 10.1016/j.foodhyd.2017.12.024.
  • Velásquez-Cock, J., P. Gañán, P. Posada, C. Castro, A. Serpa, C. Gómez H., J.-L. Putaux, and R. Zuluaga. 2016. Influence of combined mechanical treatments on the morphology and structure of cellulose nanofibrils: Thermal and mechanical properties of the resulting films. Industrial Crops and Products 85:1–10. doi: 10.1016/j.indcrop.2016.02.036.
  • Velásquez-Cock, J., B. E. Gómez H., P. Posada, A. Serpa G., C. Gómez H., C. Castro, P. Gañán, and R. Zuluaga. 2018b. Poly (vinyl alcohol) as a capping agent in oven dried cellulose nanofibrils. Carbohydrate Polymers 179:118–25. doi: 10.1016/j.carbpol.2017.09.089.
  • Vélez, M. A., M. C. Perotti, L. Santiago, A. M. Gennaro, and E. Hynes. 2017. Bioactive compounds delivery using nanotechnology: Desing and applications in dairy food. In Nutrient delivery, ed. A. M. Grumezescu, 221–44. London, UK: Academic Press.
  • Vozza, G., M. Khalid, H. J. Byrne, S. Ryan, and J. Frias. 2017. Nutrition-nutrient delivery. In Nutient delivery, ed. A. M. Grumezescu, 1–30. London, UK: Academic Press.
  • Wakte, P. S., B. S. Sachin, A. A. Patil, D. M. Mohato, T. H. Band, and D. B. Shinde. 2011. Optimization of microwave, ultra-sonic and supercritical carbon dioxide assisted extraction techniques for curcumin from Curcuma longa. Separation and Purification Technology 79 (1):50–5. doi: 10.1016/j.seppur.2011.03.010.
  • Wang, K., P. Jin, H. Shang, H. Li, F. Xu, Q. Hu, and Y. Zheng. 2010. A combination of hot air treatment and nano-packing reduces fruit decay and maintains quality in postharvest Chinese bayberries. Journal of the Science of Food and Agriculture 90 (14):2427–32. doi: 10.1002/jsfa.4102.
  • Wang, S., M. Tan, Z. Zhong, M. Chen, and Y. Wang. 2011. Nanotechnologies for curcumin: An ancient puzzler meets modern solutions. Journal of Nanomaterials 2011:1–8. doi: 10.1155/2011/723178.
  • Wang, Y., W. Xiaoyi, L. Jihua, W. Fei, W. Qinghuang, Z. Yongdan, and K. Lingxue. 2017. Homogeneous Isolation of Nanocellulose from Eucalyptus Pulp by High Pressure Homogenization. Industrial Crops & Products 104:237–41. doi:10.1016/j.carbpol.2012.07.038.
  • Xie, X., Q. Tao, Y. Zou, F. Zhang, M. Guo, Y. Wang, H. Wang, Q. Zhou, and S. Yu. 2011. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: Characterizations and mechanisms. Journal of Agricultural and Food Chemistry 59 (17):9280–9. doi: 10.1021/jf202135j.
  • Yallapu, M. M., S. Khan, D. M. Maher, M. C. Ebeling, V. Sundram, N. Chauhan, A. Ganju, S. Balakrishna, B. K. Gupta, N. Zafar, et al. 2014. Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials 35 (30):8635–48. doi: 10.1016/j.biomaterials.2014.06.040.
  • Yang, F. M., H. M. Li, F. Li, Z. H. Xin, L. Y. Zhao, Y. H. Zheng, and Q. H. Hu. 2010. Effect of nano-packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during storage at 4 °C. Journal of Food Science 75 (3):C236–40. doi: 10.1111/j.1750-3841.2010.01520.x.
  • Zamarioli, C. M., R. M. Martins, E. C. Carvalho, and L. A. P. Freitas. 2015. Nanoparticles containing curcuminoids (Curcuma longa): Development of topical delivery formulation. Revista Brasileira de Farmacognosia 25 (1):53–60. doi: 10.1016/j.bjp.2014.11.010.
  • Zhang, H., T. Ren, M. Yu, H. Zhang, L. Bai, Y. Wu, S. Wang, and X. Ba. 2016. Synthesis and characterization of curcumin-incorporated glycopolymers with enhanced water solubility and reduced cytotoxicity. Macromolecular Research 24 (8):655–62. doi: 10.1007/s13233-016-4095-4.
  • Zhao, Y., C. Xu, C. Xing, X. Shi, L. M. Matuana, H. Zhou, and X. Ma. 2015. Fabrication and Characteristics of Cellulose Nanofibril Films from Coconut Palm Petiole Prepared by Different Mechanical Processing. Industrial Crops and Products 65:96–101. doi:10.1016/j.indcrop.2014.11.057.
  • Zuluaga, R., J. L. Putaux, J. Cruz, J. Vélez, I. Mondragon, and P. Gañán. 2009. Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohydrate Polymers 76 (1):51–9. doi: 10.1016/j.carbpol.2008.09.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.