1,661
Views
40
CrossRef citations to date
0
Altmetric
Reviews

State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector — current status and future trends

ORCID Icon & ORCID Icon

References

  • Adeel, M., M. Bilal, T. Rasheed, A. Sharma, and H. M. Iqbal. 2018. Graphene and graphene oxide: Functionalization and nano-bio-catalytic system for enzyme immobilization and biotechnological perspective. International Journal of Biological Macromolecules 120:1430–40.
  • Agarwal, S., and S. Sahu. 2014. Safety and regulatory aspects of food enzymes: An industrial perspective. International Journal of Interdisciplinary and Multidisciplinary Studies 1 (6):253–67.
  • Aguilar, C. N. 2008. Perspectives of solid state fermentation for production of food enzymes. American Journal of Biochemistry and Biotechnology 4:354–66. doi: 10.3844/ajbbsp.2008.354.366.
  • Amin, F., H. N. Bhatti, M. Bilal, and M. Asgher. 2017a. Improvement of activity, thermo-stability and fruit juice clarification characteristics of fungal exo-polygalacturonase. International Journal of Biological Macromolecules 95:974–84. doi: 10.1016/j.ijbiomac.2016.10.086.
  • Amin, F., H. N. Bhatti, M. Bilal, and M. Asgher. 2017b. Multiple parameter optimizations for enhanced biosynthesis of exo-polygalacturonase enzyme and its application in fruit juice clarification. International Journal of Food Engineering 13 (2):20160256.
  • Amin, F., H. N. Bhatti, M. Bilal, and M. Asgher. 2017c. Purification, kinetic, and thermodynamic characteristics of an exo-polygalacturonase from penicillium notatum with industrial perspective. Applied Biochemistry and Biotechnology 183 (1):426–43. doi: 10.1007/s12010-017-2455-y.
  • Ashraf, A., F. A. Rahman, and N. Abdullah. 2018. Poultry feed in Malaysia: An insight into the Halalan Toyyiban issues. In Proceedings of the 3rd International Halal Conference (INHAC 2016), 511–531. Springer, Singapore.
  • Baillet, E., G. Downey, and M. Tuohy. 2003. Improvement of texture and volume in white bread rolls by incorporation of microbial hemicellulase preparations. In Recent advances in enzymes in grain processing, Proceedings of the 3rd European Symposium on Enzymes in Grain Processing (ESEGP-3), 255–259. Katholieke Universiteit Leuven, Leuven, Belgium.
  • Bajaj, B. K., and N. P. Singh. 2010. Production of xylanase from an alkalitolerant Streptomyces sp. 7b under solid-state fermentation, its purification, and characterization. Applied Biochemistry and Biotechnology 162 (6):1804–18. doi: 10.1007/s12010-010-8960-x.
  • Bedford, M. A., and H. Schulze. 1998. Exogenous enzymes for pigs and poultry. Nutrition Research Reviews 11 (1):91–114. doi: 10.1079/NRR19980007.
  • Beniwal, V., A. Kumar, J. Sharma, and V. Chhokar. 2013. Recent advances in industrial application of tannases: A review. Recent Patents on Biotechnology 7 (3):228–33. doi: 10.2174/18722083113076660013.
  • Bernal, C., K. Rodríguez, and R. Martínez. 2018. Integrating enzyme immobilization and protein engineering: an alternative path for the development of novel and improved industrial biocatalysts. Biotechnology Advances 36 (5):1470–80. doi: 10.1016/j.biotechadv.2018.06.002.
  • Bilal, M., M. Adeel, T. Rasheed, and H. M. Iqbal. 2019. Multifunctional metal–organic frameworks-based biocatalytic platforms: Recent developments and future prospects. Journal of Materials Research and Technology 8 (2):2359–71. doi: 10.1016/j.jmrt.2018.12.001.
  • Bilal, M., and H. M. Iqbal. 2019a. Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities–A review. Food Research International 123:226–40. doi: 10.1016/j.foodres.2019.04.066.
  • Bilal, M., and H. M. Iqbal. 2019b. Chemical, physical, and biological coordination: An interplay between materials and enzymes as potential platforms for immobilization. Coordination Chemistry Reviews 388:1–23. doi: 10.1016/j.ccr.2019.02.024.
  • Bilal, M., and H. M. Iqbal. 2019c. Naturally-derived biopolymers: Potential platforms for enzyme immobilization. International Journal of Biological Macromolecules 130:462–82. doi: 10.1016/j.ijbiomac.2019.02.152.
  • Bilal, M., and H. M. Iqbal. 2019d. Tailoring multipurpose biocatalysts via protein engineering approaches: A review. Catalysis Letters: 1–14. In-Press. DOI: https://doi.org/10.1007/s10562-019-02821-8.
  • Bilal, M., M. Asgher, H. Cheng, Y. Yan, and H. M. Iqbal. 2019. Multi-point enzyme immobilization, surface chemistry, and novel platforms: A paradigm shift in biocatalyst design. Critical Reviews in Biotechnology 39 (2):202–19. doi: 10.1080/07388551.2018.1531822.
  • Bilal, M., M. Asgher, H. M. Iqbal, H. Hu, and X. Zhang. 2017. Delignification and fruit juice clarification properties of alginate-chitosan-immobilized ligninolytic cocktail. LWT-Food Science and Technology 80:348–54. doi: 10.1016/j.lwt.2017.02.040.
  • Bilal, M., M. Asgher, R. Parra-Saldivar, H. Hu, W. Wang, X. Zhang, and H. M. Iqbal. 2017. Immobilized ligninolytic enzymes: An innovative and environmental responsive technology to tackle dye-based industrial pollutants–A review. Science of the Total Environment 576:646–59. doi: 10.1016/j.scitotenv.2016.10.137.
  • Bilal, M., J. Cui, and H. M. Iqbal. 2019. Tailoring enzyme microenvironment: State-of-the-art strategy to fulfill the quest for efficient bio-catalysis. International Journal of Biological Macromolecules 130:186–96. doi: 10.1016/j.ijbiomac.2019.02.141.
  • Bilal, M., H. M. Iqbal, S. Guo, H. Hu, W. Wang, and X. Zhang. 2018. State-of-the-art protein engineering approaches using biological macromolecules: A review from immobilization to implementation viewpoint. International Journal of Biological Macromolecules 108:893–901. doi: 10.1016/j.ijbiomac.2017.10.182.
  • Bilal, M., T. Rasheed, Y. Zhao, H. M. Iqbal, and J. Cui. 2018. Smart” chemistry and its application in peroxidase immobilization using different support materials. International Journal of Biological Macromolecules 119:278–90. doi: 10.1016/j.ijbiomac.2018.07.134.
  • Bilal, M., Y. Zhao, S. Noreen, S. Z. H. Shah, R. N. Bharagava, and H. M. Iqbal. 2019. Modifying bio-catalytic properties of enzymes for efficient biocatalysis: A review from immobilization strategies viewpoint. Biocatalysis and Biotransformation 37 (3):159–82. doi: 10.1080/10242422.2018.1564744.
  • Bilal, M., Y. Zhao, T. Rasheed, and H. M. Iqbal. 2018. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. International Journal of Biological Macromolecules 120:2530–44. doi: 10.1016/j.ijbiomac.2018.09.025.
  • Blanco, C. A., I. Caballero, R. Barrios, and A. Rojas. 2014. Innovations in the brewing industry: Light beer. International Journal of Food Sciences and Nutrition 65 (6):655–60. doi: 10.3109/09637486.2014.893285.
  • Budak, Ş. Ö., C. Koçak, P. A. Bron, and R. P. de Vries. 2018. Role of microbial cultures and enzymes during cheese production and ripening. In Microbial cultures and enzymes in dairy technology, 182–203. Hershey, Pennsylvania, USA: IGI Global.
  • Butt, M. S., M. Tahir-Nadeem, Z. Ahmad, and M. T. Sultan. 2008. Xylanases and their applications in baking industry. Food Technology & Biotechnology 46 (1):22–31.
  • Choudhury, P., and B. Bhunia. 2017. Industrial application of lipase: A review. BioPharm Journal 1 (2):41–7.
  • Coutinho, P. M., and P. J. Reilly. 1997. Glucoamylase structural, functional, and evolutionary relationships. Proteins: Structure, Function, and Genetics 29 (3):334–47. doi: 10.1002/(SICI)1097-0134(199711)29:3<334::AID-PROT7>3.0.CO;2-A.
  • Demain, A. L. 2000. Small bugs, big business: The economic power of the microbe. Biotechnology Advances 18 (6):499–514. doi: 10.1016/S0734-9750(00)00049-5.
  • Dipasquale, L., A. Gambacorta, R. A. Siciliano, M. F. Mazzeo, and L. Lama. 2009. Purification and biochemical characterization of a native invertase from the hydrogen-producing Thermotoga neapolitana (DSM 4359). Extremophiles 13 (2):345. doi: 10.1007/s00792-008-0222-2.
  • Erich, S., B. Kuschel, T. Schwarz, J. Ewert, N. Böhmer, F. Niehaus, J. Eck, S. Lutz-Wahl, T. Stressler, and L. Fischer. 2015. Novel high-performance metagenome β-galactosidases for lactose hydrolysis in the dairy industry. Journal of Biotechnology 210:27–37. doi: 10.1016/j.jbiotec.2015.06.411.
  • Fenel, F., M. Leisola, J. Jänis, and O. Turunen. 2004. A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1, 4-β-xylanase II. Journal of Biotechnology 108 (2):137–43. doi: 10.1016/j.jbiotec.2003.11.002.
  • Fernandes, P. 2010. Enzymes in food processing: A condensed overview on strategies for better biocatalysts. Enzyme Research 2010:862537. doi: 10.4061/2010/862537.
  • Flamm, E. L. 1991. How FDA approved chymosin: A case history. Bio/Technology (Nature Publishing Company) 9 (4):349.
  • Fogarty, W. M., and C. T. Kelly. 1990. Recent advances in microbial amylases. In Microbial enzymes and biotechnology, 71–132. Dordrecht: Springer.
  • Garcia-Ruiz, E., D. Gonzalez-Perez, F. J. Ruiz-Dueñas, A. T. Martínez, and M. Alcalde. 2012. Directed evolution of a temperature-, peroxide-and alkaline pH-tolerant versatile peroxidase. Biochemical Journal 441 (1):487–98. doi: 10.1042/BJ20111199.
  • Ghorai, S., S. P. Banik, D. Verma, S. Chowdhury, S. Mukherjee, and S. Khowala. 2009. Fungal biotechnology in food and feed processing. Food Research International 42 (5–6):577–87. doi: 10.1016/j.foodres.2009.02.019.
  • Goesaert, H., K. Brijs, W. S. Veraverbeke, C. M. Courtin, K. Gebruers, and J. A. Delcour. 2005. Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends in Food Science & Technology 16 (1–3):12–30. doi: 10.1016/j.tifs.2004.02.011.
  • Gomes, J., and W. Steiner. 2004. The biocatalytic potential of extremophiles and extremozymes. Food Technology and Biotechnology 42 (4):223–35.
  • Gordon, S. R., E. J. Stanley, S. Wolf, A. Toland, S. J. Wu, D. Hadidi, J. H. Mills, D. Baker, I. S. Pultz, and J. B. Siegel. 2012. Computational design of an α-gliadin peptidase. Journal of the American Chemical Society 134 (50):20513–20. doi: 10.1021/ja3094795.
  • Guerra, N. P., A. Torrado-Agrasar, C. López-Macías, E. Martinez-Carballo, S. García-Falcón, J. Simal-Gándara, and L. M. Pastrana-Castro. 2009. Use of amylolytic enzymes in brewing. In Beer in health and disease prevention, 113–126. San Diego, California, USA: Academic Press.
  • Guerrand, D. 2017. Lipases industrial applications: focus on food and agroindustries. OCL 24 (4):D403. doi: 10.1051/ocl/2017031.
  • Habib, R. Z., M. Afzal, S. Z. H. Shah, M. Fatima, M. Bilal, and S. M. Hussain. 2018. Potential of phytase and citric acid treated canola meal based diet to enhance the minerals digestibility in Labeo Rohita fingerlings. Pakistan Journal of Zoology 50 (6):2045–50.
  • Hanbury, C. D., C. L. White, B. P. Mullan, and K. H. M. Siddique. 2000. A review of the potential of Lathyrus sativus L. and L. cicera L. grain for use as animal feed. Animal Feed Science and Technology 87 (1–2):1–27. doi: 10.1016/S0377-8401(00)00186-3.
  • Hasan, F., A. A. Shah, and A. Hameed. 2006. Industrial applications of microbial lipases. Enzyme and Microbial Technology 39 (2):235–51. doi: 10.1016/j.enzmictec.2005.10.016.
  • Hilvert, D. 2013. Design of protein catalysts. Annual Review of Biochemistry 82:447–70. doi: 10.1146/annurev-biochem-072611-101825.
  • Huang, P.-S., S. E. Boyken, and D. Baker. 2016. The coming of age of de novo protein design. Nature 537 (7620):320–7. doi: 10.1038/nature19946.
  • Hui, Y. H., and F. Sherkat. 2005. Handbook of food science, technology, and engineering-4 volume set. Boca Raton, Florida, USA: CRC Press.
  • Iyer, P. V., and L. Ananthanarayan. 2008. Enzyme stability and stabilization—Aqueous and non-aqueous environment. Process Biochemistry 43 (10):1019–32. doi: 10.1016/j.procbio.2008.06.004.
  • James, J., B. K. Simpson, and M. R. Marshall. 1996. Application of enzymes in food processing. Critical Reviews in Food Science & Nutrition 36 (5):437–63. doi: 10.1080/10408399609527735.
  • Johnson, E. A. 2013. Biotechnology of non-Saccharomyces yeasts — The ascomycetes. Applied Microbiology and Biotechnology 97:503–17. doi: 10.1007/s00253-012-4497-y.
  • Joo, J. C., S. Pohkrel, S. P. Pack, and Y. J. Yoo. 2010. Thermostabilization of Bacillus circulans xylanase via computational design of a flexible surface cavity. Journal of Biotechnology 146 (1–2):31–9. doi: 10.1016/j.jbiotec.2009.12.021.
  • Kamal, S., S. Rehman, and H. M. Iqbal. 2017. Biotechnological valorization of proteases: From hyperproduction to industrial exploitation—A review. Environmental Progress & Sustainable Energy 36 (2):511–22. doi: 10.1002/ep.12447.
  • Kapoor, S., A. Rafiq, and S. Sharma. 2017. Protein engineering and its applications in food industry. Critical Reviews in Food Science and Nutrition 57 (11):2321–9. doi: 10.1080/10408398.2014.1000481.
  • Kaur, M., and H. K. Sharma. 2013. Effect of enzymatic treatment on carrot cell wall for increased juice yield and effect on physicochemical parameters. African Journal of Plant Science 7:234–43. doi: 10.5897/AJPS12.166.
  • Khan, A. Z., M. Bilal, T. Rasheed, and H. M. Iqbal. 2018. Advancements in biocatalysis: From computational to metabolic engineering. Chinese Journal of Catalysis 39 (12):1861–8. doi: 10.1016/S1872-2067(18)63144-4.
  • Kieliszek, M., and A. Misiewicz. 2014. Microbial transglutaminase and its application in the food industry. A review. Folia Microbiologica 59 (3):241–50. doi: 10.1007/s12223-013-0287-x.
  • Kirk, O., T. V. Borchert, and C. C. Fuglsang. 2002. Industrial enzyme applications. Current Opinion in Biotechnology 13 (4):345–51. doi: 10.1016/S0958-1669(02)00328-2.
  • Kohli, P., and R. Gupta. 2015. Alkaline pectinases: A review. Biocatal Agric Biotechnol 4 (3):279–85. doi: 10.1016/j.bcab.2015.07.001.
  • Kolok, A. S., J. M. Ali, E. G. Rogan, and S. L. Bartelt-Hunt. 2018. The fate of synthetic and endogenous hormones used in the US beef and dairy industries and the potential for human exposure. Current Environmental Health Reports 5 (2):225–32. doi: 10.1007/s40572-018-0197-9.
  • Kries, H., R. Blomberg, and D. Hilvert. 2013. De novo enzymes by computational design. Current Opinion in Chemical Biology 17 (2):221–8. doi: 10.1016/j.cbpa.2013.02.012.
  • Kumar, A., and S. Singh. 2013. Directed evolution: Tailoring biocatalysts for industrial applications. Critical Reviews in Biotechnology 33 (4):365–78. doi: 10.3109/07388551.2012.716810.
  • Kuraishi, C., K. Yamazaki, and Y. Susa. 2001. Transglutaminase: Its utilization in the food industry. Food Reviews International 17 (2):221–46. doi: 10.1081/FRI-100001258.
  • Law, B.A. 2009. Enzymes in dairy product manufacture. In Enzymes in food technology, eds. M. Van Oort and R. J. Whitehurst, 88–102. Oxford, UK: Wiley-Blackwell.
  • Lei, H., H. Zhao, and M. Zhao. 2013. Proteases supplementation to high gravity worts enhances fermentation performance of brewer's yeast. Biochemical Engineering Journal 77:1–6.
  • Lin, L. L., J. S. Liu, W. C. Wang, S. H. Chen, C. C. Huang, and H. F. Lo. 2008. Glutamic acid 219 is critical for the thermostability of a truncated α-amylase from alkaliphilic and thermophilic Bacillus sp. strain TS-23. World Journal of Microbiology and Biotechnology 24 (5):619–26. doi: 10.1007/s11274-007-9518-0.
  • Liu, Y., and B. Kuhlman. 2006. RosettaDesign server for protein design. Nucleic Acids Research 34 (Web Server issue):W235–W238. doi: 10.1093/nar/gkl163.
  • Maitan-Alfenas, G. P., and S. N. Casarotti. 2018. Enzymes and dairy products: Focus on functional products. In Microbial cultures and enzymes in dairy technology, 1–22. Hershey, Pennsylvania, USA: IGI Global.
  • Mandal, A. 2015. Review on microbial xylanases and their applications. International Journal of Life Sciences 4:178–87.
  • Manoel, E. A., J. C. dos Santos, D. M. Freire, N. Rueda, and R. Fernandez-Lafuente. 2015. Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme and Microbial Technology 71:53–7. doi: 10.1016/j.enzmictec.2015.02.001.
  • Martínez-Alvarez, O., S. Chamorro, and A. Brenes. 2015. Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Research International 73:204–12. doi: 10.1016/j.foodres.2015.04.005.
  • Martín-Sampedro, R., A. Rodríguez, A. Ferrer, L. L. García-Fuentevilla, and M. E. Eugenio. 2012. Biobleaching of pulp from oil palm empty fruit bunches with laccase and xylanase. Bioresource Technology 110:371–8. doi: 10.1016/j.biortech.2012.01.111.
  • Mateo, C., J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, and R. Fernandez-Lafuente. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology 40 (6):1451–63. doi: 10.1016/j.enzmictec.2007.01.018.
  • Mohapatra, B. R., M. Bapuji, and A. Sree. 2003. Production of industrial enzymes (amylase, carboxymethylcellulase and protease) by bacteria isolated from marine sedentary organisms. Acta Biotechnologica 23 (1):75–84. doi: 10.1002/abio.200390011.
  • Nair, S. G., and S. Shashidhar. 2008. Fungal xylanase production under solid state and submerged fermentation conditions. African Journal of Microbiology Research 2 (4):82–6.
  • Nair, S. U., R. S. Singhal, and M. Y. Kamat. 2007. Induction of pullulanase production in Bacillus cereus FDTA-13. Bioresource Technology 98 (4):856–9. doi: 10.1016/j.biortech.2006.03.010.
  • Nakakuki, T. 2003. Development of functional oligosaccharides in Japan. Trends in Glycoscience and Glycotechnology 15 (82):57–64. doi: 10.4052/tigg.15.57.
  • Nakamura, Y. 1996. Some properties of starch debranching enzymes and their possible role in amylopectin biosynthesis. Plant Science 121 (1):1–18. doi: 10.1016/S0168-9452(96)04504-9.
  • Olempska-Beer, Z. S., R. I. Merker, M. D. Ditto, and M. J. DiNovi. 2006. Food-processing enzymes from recombinant microorganisms—A review. Regulatory Toxicology and Pharmacology 45 (2):144–58. doi: 10.1016/j.yrtph.2006.05.001.
  • Ozturkoglu-Budak, S., A. Wiebenga, P. A. Bron, and R. P. de Vries. 2016. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese. International Journal of Food Microbiology 237:17–27. doi: 10.1016/j.ijfoodmicro.2016.08.007.
  • Packer, M. S., and D. R. Liu. 2015. Methods for the directed evolution of proteins. Nature Reviews. Genetics 16 (7):379–94. doi: 10.1038/nrg3927.
  • Park, S. H., Y. Na, J. Kim, S. Dal Kang, and K. H. Park. 2018. Properties and applications of starch modifying enzymes for use in the baking industry. Food Science and Biotechnology 27 (2):299–312. doi: 10.1007/s10068-017-0261-5.
  • Patel, A. K., R. R. Singhania, and A. Pandey. 2016. Novel enzymatic processes applied to the food industry. Current Opinion in Food Science 7:64–72. doi: 10.1016/j.cofs.2015.12.002.
  • Penning, T. M., and J. M. Jez. 2001. Enzyme redesign. Chemical Reviews 101 (10):3027–46.
  • Pereira, R. N., J. A. Teixeira, A. A. Vicente, L. P. Cappato, M. V. S. Ferreira, R. S. Rocha, and A. G. da Cruz. 2018. Ohmic heating for the dairy industry: A potential technology to develop probiotic dairy foods in association with modifications of whey protein structure. Current Opinion in Food Science 22:95–101. doi: 10.1016/j.cofs.2018.01.014.
  • Porta, R., A. Pandey, and C. M. Rosell. 2010. Enzymes as additives or processing aids in food biotechnology. Enzyme Research 2010:1. doi: 10.4061/2010/436859.
  • Quan, T. H., and S. Benjakul. 2019a. Duck egg albumen: physicochemical and functional properties as affected by storage and processing. Journal of Food Science and Technology 56 (3):1104–15. doi: 10.1007/s13197-019-03669-x.
  • Quan, T. H., and S. Benjakul. 2019b. Impacts of desugarization and drying methods on physicochemical and functional properties of duck albumen powder. Drying Technology 37 (7):864–75. doi: 10.1080/07373937.2018.1469509.
  • Ramadan, M. F. 2019. Enzymes in fruit juice processing. In Enzymes in food biotechnology, 45–59. San Diego, California, USA: Academic Press.
  • Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews 62 (3):597–635.
  • Rastogi, H., and S. Bhatia. 2019. Future prospectives for enzyme technologies in the food industry. In Enzymes in food biotechnology, 845–860. San Diego, California, USA: Academic Press.
  • Raveendran, S., B. Parameswaran, S. B. Ummalyma, A. Abraham, A. K. Mathew, A. Madhavan, S. Rebello, and A. Pandey. 2018. Applications of microbial enzymes in food industry. Food Technology and Biotechnology 56 (1):16–30. doi: 10.17113/ftb.56.01.18.5491.
  • Ray, A. 2012. Application of lipase in industry. Asian Journal of Pharmacy and Technology 2 (2):33–7.
  • Rehman, S., H. N. Bhatti, M. Bilal, and M. Asgher. 2016. Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics. International Journal of Biological Macromolecules 91:1161–9. doi: 10.1016/j.ijbiomac.2016.06.081.
  • Rehman, S., H. N. Bhatti, M. Bilal, M. Asgher, and P. Wang. 2017. Catalytic, kinetic and thermodynamic characteristics of an extracellular lipase from Penicillium notatum. Catalysis Letters 147 (1):281–91. doi: 10.1007/s10562-016-1931-2.
  • Rehman, S., P. Wang, H. N. Bhatti, M. Bilal, and M. Asgher. 2017. Improved catalytic properties of Penicillium notatum lipase immobilized in nanoscale silicone polymeric films. International Journal of Biological Macromolecules 97:279–86. doi: 10.1016/j.ijbiomac.2017.01.038.
  • Rout, S., and R. Banerjee. 2006. Production of tannase under mSSF and its application in fruit juice debittering. Indian Journal of Biotechnology 5:351–6.
  • Sammartino, M. 2015. Enzymes in brewing. Mbaa TQ 52 (3):156–64.
  • Sanghi, A., N. Garg, V. K. Gupta, A. Mittal, and R. C. Kuhad. 2010. One-step purification and characterization of cellulase-free xylanase produced by alkalophilic Bacillus subtilis ash. Brazilian Journal of Microbiology 41 (2):467–76. doi: 10.1590/S1517-83822010000200029.
  • Sarker, P. K., S. A. Talukdar, P. Deb, S. A. Sayem, and K. Mohsina. 2013. Optimization and partial characterization of culture conditions for the production of alkaline protease from Bacillus licheniformis P003. SpringerPlus 2 (1):506.
  • Selle, P. H., and V. Ravindran. 2007. Microbial phytase in poultry nutrition. Animal Feed Science and Technology 135 (1–2):1–41. doi: 10.1016/j.anifeedsci.2006.06.010.
  • Shah, S. Z. H., M. Afzal, S. M. Hussain, M. Fatima, M. Bilal, T. Ahmed, and R. Z. Habib. 2015. Supplementation of citric acid and phytase improves the digestive enzymes activities in Labeo rohita fingerlings. Biologia (Pakistan) 61 (1):63–8.
  • Sharma, A., R. Tewari, S. S. Rana, R. Soni, and S. K. Soni. 2016. Cellulases: Classification, methods of determination and industrial applications. Applied Biochemistry and Biotechnology 179 (8):1346–80. doi: 10.1007/s12010-016-2070-3.
  • Sharma, P. K., and D. Chand. 2012. Production of cellulase free thermostable xylanase from pseudomonas sp. XPB-6. International Research Journal of Biological Sciences 1 (5):31–41.
  • Sheldon, R. A. 2007. Enzyme immobilization: the quest for optimum performance. Advanced Synthesis & Catalysis 349 (8-9):1289–307. doi: 10.1002/adsc.200700082.
  • Sindhu, R., P. Binod, A. Madhavan, U. S. Beevi, A. K. Mathew, A. Abraham, A. Pandey, and V. Kumar. 2017. Molecular improvements in microbial α-amylases for enhanced stability and catalytic efficiency. Bioresource Technology 245:1740–8.
  • Singh, J., D. Kundu, M. Das, and R. Banerjee. 2019. Enzymatic processing of juice from fruits/vegetables: An emerging trend and cutting edge research in food biotechnology. In Enzymes in food biotechnology, 419–432. San Diego, California, USA: Academic Press.
  • Singhania, R.R., A.K. Patel, and A. Pandey. 2010. The industrial production of enzymes. In Industrial biotechnology, 207–225. KGaA, Weinheim: Wiley-VCH Verlag GmbH & Co.
  • Sîrbu, T. 2011. The searching of active catalase producers among the microscopic fungi. Analele Universitatii Din Oradea, Fascicula Biologie 18 (2):164–7.
  • Sisak, C., Z. Csanádi, E. Ronay, and B. Szajáni. 2006. Elimination of glucose in egg white using immobilized glucose oxidase. Enzyme and Microbial Technology 39 (5):1002–7. doi: 10.1016/j.enzmictec.2006.02.010.
  • Sundarram, A., and T. P. K. Murthy. 2014. α-amylase production and applications: A review. Journal of Applied & Environmental Microbiology 2 (4):166–75.
  • Turner, P., G. Mamo, and E. N. Karlsson. 2007. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microbial Cell Factories 6 (1):9. doi: 10.1186/1475-2859-6-9.
  • Van Der Maarel, M. J., B. Van der Veen, J. C. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology 94 (2):137–55. doi: 10.1016/S0168-1656(01)00407-2.
  • Van Dorn, R., D. Shanahan, and V. Ciofalo. 2018. Safety evaluation of xylanase 50316 enzyme preparation (also known as VR007), expressed in Pseudomonas fluorescens, intended for use in animal feed. Regulatory Toxicology and Pharmacology 97:48–56. doi: 10.1016/j.yrtph.2018.05.016.
  • Walsh, M. K. 2007. Immobilized enzyme technology for food applications. In Novel enzyme technology for food applications, 60–84. Abington, Cambridge, England: Woodhead Publishing.
  • Wentworth, D. S., D. Skonberg, D. W. Donahue, and A. Ghanem. 2004. Application of chitosan‐entrapped β‐galactosidase in a packed‐bed reactor system. Journal of Applied Polymer Science 91 (2):1294–9. doi: 10.1002/app.13276.
  • Wong, D. E., M. Dai, J. N. Talbert, S. R. Nugen, and J. M. Goddard. 2014. Biocatalytic polymer nanofibers for stabilization and delivery of enzymes. Journal of Molecular Catalysis B: Enzymatic 110:16–22. doi: 10.1016/j.molcatb.2014.09.007.
  • Woods, L. F. J., and S. J. Swinton. 1995. Enzymes in the starch and sugar industries. In Enzymes in food processing, 250–267. Boston, MA: Springer.
  • World Enzymes to 2015. 2011. Study #2824, The Freedonia Group, Cleveland, OH, USA. Accessed April 14, 2019. https://www.freedoniagroup.com/brochure/28xx/2824smwe.pdf
  • Wu, J. 2014. Eggs and egg products processing. In Food processing: Principles and applications, eds. S. Clark, S. Jung, and B. Lamsa, 437–455, 2nd ed. Chichester: Wiley.
  • Yao, J., G. S. Guo, G. H. Ren, and Y. H. Liu. 2014. Production, characterization and applications of tannase. Journal of Molecular Catalysis B: Enzymatic 101:137–47. doi: 10.1016/j.molcatb.2013.11.018.
  • You, C., S. Myung, and Y. H. P. Zhang. 2012. Facilitated substrate channeling in a self‐assembled trifunctional enzyme complex. Angewandte Chemie International Edition 51 (35):8787–90. doi: 10.1002/anie.201202441.
  • Zareian, S., K. Khajeh, B. Ranjbar, B. Dabirmanesh, M. Ghollasi, and N. Mollania. 2010. Purification and characterization of a novel amylopullulanase that converts pullulan to glucose, maltose, and maltotriose and starch to glucose and maltose. Enzyme and Microbial Technology 46 (2):57–63. doi: 10.1016/j.enzmictec.2009.09.012.
  • Zhang, Z., R. Zhang, L. Chen, and D. J. McClements. 2016. Encapsulation of lactase (β-galactosidase) into κ-carrageenan-based hydrogel beads: Impact of environmental conditions on enzyme activity. Food Chemistry 200:69–75. doi: 10.1016/j.foodchem.2016.01.014.
  • Zhou, C., Y. Xue, and Y. Ma. 2015. Evaluation and directed evolution for thermostability improvement of a GH 13 thermostable α-glucosidase from Thermus thermophilus TC11. BMC Biotechnology 15 (1):97.
  • Zobel, H. F. 1992. Starch: Sources, production, and properties. In Starch hydrolysis products, eds. F. W. Schenck and R. E. Hebeda, 23–44. New York, NY: VCH.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.