1,826
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Mechanisms of deoxynivalenol (DON) degradation during different treatments: a review

ORCID Icon & ORCID Icon

References

  • Abramson, D., J. D. House, and C. Martin Nyachoti. 2005. Reduction of deoxynivalenol in barley by treatment with aqueous sodium carbonate and heat. Mycopathologia 160 (4):297–301. doi: 10.1007/s11046-005-0087-1.
  • Accerbi, M., V. E. A. Rinaldi, and P. K. W. Ng. 1999. Utilization of highly deoxynivalenol-contaminated wheat via extrusion processing. Journal of Food Protection 62 (12):1485–7. doi: 10.4315/0362-028x-62.12.1485.
  • Alexandre, A. P., N. Castanha, M. A. Calori-Domingues, and P. E. Augusto. 2017. Ozonation of whole wheat flour and wet milling effluent: Degradation of deoxynivalenol (DON) and rheological properties. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 52 (7):516–24. doi: 10.1080/03601234.2017.1303325.
  • Alizadeh, A., S. Braber, P. Akbari, A. Kraneveld, J. Garssen, and J. Fink-Gremmels. 2016. Deoxynivalenol and its modified forms: Are there major differences? Toxins 8 (11):334. doi: 10.3390/toxins8110334.
  • Aziz, N. H., E. ‐Attia, S. A., and S. A. Farag. 1997. Effect of gamma-irradiation on the natural occurrence of Fusarium mycotoxins in wheat, flour and bread . Die Nahrung 41 (1):34–7. doi: 10.1002/food.19970410109.
  • Bahrenthien, L., J. Kluess, A. Berk, S. Kersten, J. Saltzmann, L. Hüther, D. Schatzmayr, H. E. Schwartz-Zimmermann, A. Zeyner, and S. Dänicke. 2020. Detoxifying deoxynivalenol (DON)-contaminated feedstuff: Consequences of sodium sulphite (SoS) treatment on performance and blood parameters in fattening pigs. Mycotoxin Research 36 (2):213–23. doi: 10.1007/s12550-019-00385-5.
  • Bakutis, B., V. Baliukonienė, and A. Paškevičius. 2005. USE of biological method for detoxification of mycotoxins. Botanica Lithuanica 11: 123–9.
  • Bergamini, E., D. Catellani, C. Dall'asta, G. Galaverna, A. Dossena, R. Marchelli, and M. Suman. 2010. Fate of Fusarium mycotoxins in the cereal product supply chain: The deoxynivalenol (DON) case within industrial bread-making technology. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 27 (5):677–87. doi: 10.1080/19440041003660117.
  • Berthiller, F., R. Krska, K. J. Domig, W. Kneifel, N. Juge, R. Schuhmacher, and G. Adam. 2011. Hydrolytic fate of deoxynivalenol-3-glucoside during digestion. Toxicology Letters 206 (3):264–7. doi: 10.1016/j.toxlet.2011.08.006.
  • Boyacioğlu, D., N. S. Heltiarachchy, and B. L. D'appolonia. 1993. Additives affect deoxynivalenol (vomi toxin) flour during breadbaking. Journal of Food Science 58 (2):416–8. doi: 10.1111/j.1365-2621.1993.tb04288.x.
  • Bracarense, A., A. Pierron, P. Pinton, J. R. Gerez, G. Schatzmayr, W. D. Moll, T. Zhou, and I. P. Oswald. 2020. Reduced toxicity of 3-epi-deoxynivalenol and de-epoxy-deoxynivalenol through deoxynivalenol bacterial biotransformation: In vivo analysis in piglets. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 140:111241 doi: 10.1016/j.fct.2020.111241.
  • Bretz, M., M. Beyer, B. Cramer, A. Knecht, and H. U. Humpf. 2006. Thermal degradation of the Fusarium mycotoxin deoxynivalenol. Journal of Agricultural and Food Chemistry 54 (17):6445–51. doi: 10.1021/jf061008g.
  • Bretz, M., A. Knecht, S. Göckler, and H. U. Humpf. 2005. Structural elucidation and analysis of thermal degradation products of the Fusarium mycotoxin nivalenol. Molecular Nutrition & Food Research 49 (4):309–16. doi: 10.1002/mnfr.200400092.
  • Calado, T., M. L. Fernández-Cruz, S. Cabo Verde, A. Venâncio, and L. Abrunhosa. 2018. Gamma irradiation effects on ochratoxin A: Degradation, cytotoxicity and application in food. Food Chemistry 240:463–71. doi: 10.1016/j.foodchem.2017.07.136.
  • Campagnollo, F. B., L. T. Franco, G. E. Rottinghaus, E. Kobashigawa, D. R. Ledoux, A. Daković, and C. A. F. Oliveira. 2015. In vitro evaluation of the ability of beer fermentation residue containing Saccharomyces cerevisiae to bind mycotoxins. Food Research International 77:643–8. doi: . doi: 10.1016/j.foodres.2015.08.032.
  • Canadian Food Inspection Agency. 2020. Food irradiation. Accessed September 18, 2020. https://www.inspection.gc.ca/food-safety-for-industry/information-for-consumers/fact-sheets-and-infographics/irradiation/eng/1332358607968/1332358680017.
  • Cano-Sancho, G., V. Sanchis, A. J. Ramos, and S. Marín. 2013. Effect of food processing on exposure assessment studies with mycotoxins. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 30 (5):867–75. doi: 10.1080/19440049.2013.793824.
  • Cazzaniga, D., J. C. Basilico, R. J. Gonzalez, R. L. Torres, and D. M. De Greef. 2001. Mycotoxins inactivation by extrusion cooking of corn flour. Letters in Applied Microbiology 33 (2):144–7. doi: 10.1046/j.1472-765x.2001.00968.x.
  • Cetin, Y., and L. B. Bullerman. 2006. Confirmation of reduced toxicity of deoxynivalenol in extrusion-processed corn grits by the MTT bioassay. Journal of Agricultural and Food Chemistry 54 (5):1949–55. doi: 10.1021/jf052443y.
  • Chain, EFSA Panel on Contaminants in the Food, Knutsen, H. K., J. Alexander, L. Barregård, M. Bignami, B. Brüschweiler, S. Ceccatelli, B. Cottrill, M. Dinovi, B. Grasl-Kraupp, C. Hogstrand, et al. 2017. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA Journal. European Food Safety Authority 15 (9):e04718. doi: 10.2903/j.efsa.2017.4718.
  • Chen, D., P. Chen, Y. Cheng, P. Peng, J. Liu, Y. Ma, Y. Liu, and R. Ruan. 2019. Deoxynivalenol decontamination in raw and germinating barley treated by plasma-activated water and intense pulsed light. Food and Bioprocess Technology 12 (2):246–54. doi: 10.1007/s11947-018-2206-2.
  • Chlebicz, A., and K. Śliżewska. 2020. In vitro detoxification of aflatoxin B1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae Yeast. Probiotics Antimicrob Proteins 12 (1):289–301. doi: 10.1007/s12602-018-9512-x.
  • Collado-Fernández, M. 2003. BREAD | Dough fermentation. In Encyclopedia of food sciences and nutrition (2nd ed.), eds. Benjamin Caballero, 647–55. Oxford: Academic Press.
  • Colović, R., N. Puvača, F. Cheli, G. Avantaggiato, D. Greco, O. Đuragić, J. Kos, and L. Pinotti. 2019. Decontamination of mycotoxin-contaminated feedstuffs and compound feed. Toxins 11 (11). doi: 10.3390/toxins11110617.
  • Crippin, T., J. B. Renaud, M. W. Sumarah, and J. David Miller. 2019. Comparing genotype and chemotype of Fusarium graminearum from cereals in Ontario, Canada. PLoS ONE 14 (5):e0216735e. doi: 10.1371/journal.pone.0216735.
  • Dänicke, S., A.-K. Hegewald, S. Kahlert, J. Kluess, H.-J. Rothkötter, G. Breves, and S. Döll. 2010. Studies on the toxicity of deoxynivalenol (DON), sodium metabisulfite, DON-sulfonate (DONS) and de-epoxy-DON for porcine peripheral blood mononuclear cells and the intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2, and on effects of DON and DONS on piglets. Food and Chemical Toxicology 48 (8-9):2154–62. doi: 10.1016/j.fct.2010.05.022.
  • Dänicke, S., A. Beineke, T. Goyarts, H. Valenta, M. Beyer, and H.-U. Humpf. 2008. Effects of a Fusarium toxin-contaminated triticale, either untreated or treated with sodium metabisulphite (Na2S2O5, SBS), on weaned piglets with a special focus on liver function as determined by the 13C-methacetin breath test. Archives of Animal Nutrition 62 (4):263–86. doi: 10.1080/17450390802214167.
  • Dänicke, S., S. Kersten, H. Valenta, and G. Breves. 2012. Inactivation of deoxynivalenol-contaminated cereal grains with sodium metabisulfite: A review of procedures and toxicological aspects. Mycotoxin Research 28 (4):199–218. doi: 10.1007/s12550-012-0139-6.
  • Dänicke, S., G. Pahlow, T. Goyarts, D. Rohweder, K. Wilkerling, G. Breves, H. Valenta, and S. Döll. 2009. Effects of increasing concentrations of sodium metabisulphite (Na2S 2O 5, SBS) on deoxynivalenol (DON) concentration and microbial spoilage of triticale kernels preserved without and with propionic acid at various moisture contents. Mycotoxin Research 25 (4):215–23. doi: 10.1007/s12550-009-0030-2.
  • El-Nezami, H. S., A. Chrevatidis, S. Auriola, S. Salminen, and H. Mykkänen. 2002. Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium. Food Additives and Contaminants 19 (7):680–6. doi: 10.1080/02652030210134236.
  • Eriksen, G. S., H. Pettersson, and T. Lundh. 2004. Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 42 (4):619–24. doi: 10.1016/j.fct.2003.11.006.
  • European Commission. 1999. Foods & food ingredients authorised for irradiation in the EU. Accessed February 12, 2021. https://ec.europa.eu/food/safety/biosafety/irradiation/legislation_en.
  • Feizollahi, E., M. Arshad, B. Yadav, A. Ullah, and M. S. Roopesh. 2020. Degradation of deoxynivalenol by atmospheric-pressure cold plasma and sequential treatments with heat and UV light. Food Engineering Reviews.doi: 10.1007/s12393-020-09241-0.
  • Feizollahi, E., N. N. Misra, and M. S. Roopesh. 2021. Factors influencing the antimicrobial efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in food processing applications. Critical Reviews in Food Science and Nutrition 61 (4):666–24. doi: 10.1080/10408398.2020.1743967.
  • Feizollahi, E., B. Iqdiam, T. Vasanthan, M. S. Thilakarathna, and M. S. Roopesh. 2020. Effects of atmospheric-pressure cold plasma treatment on deoxynivalenol degradation, quality parameters, and germination of barley grains. Applied Sciences 10 (10):3530. doi: 10.3390/app10103530.
  • Feltrin, A. C. P., S. O. Garcia, S. S. Caldas, E. G. Primel, E. Badiale-Furlong, and J. Garda-Buffon. 2017. Characterization and application of the enzyme peroxidase to the degradation of the mycotoxin DON. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 52 (10):777–83. doi: 10.1080/03601234.2017.1356672.
  • Fox, G. 2018. Chapter 16 - Starch in brewing applications. In Starch in food (2nd ed.), eds. Malin Sjöö and Lars Nilsson, 633–59. Duxford, United Kingdom: Woodhead Publishing.
  • Franco, T. S., S. Garcia, E. Y. Hirooka, Y. S. Ono, and J. S. dos Santos. 2011. Lactic acid bacteria in the inhibition of Fusarium graminearum and deoxynivalenol detoxification. Journal of Applied Microbiology 111 (3):739–48. doi: 10.1111/j.1365-2672.2011.05074.x.
  • Fuchs, E., E. M. Binder, D. Heidler, and R. Krska. 2002. Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Additives and Contaminants 19 (4):379–86. doi: 10.1080/02652030110091154.
  • Fung, F., and R. F. Clark. 2004. Health effects of mycotoxins: A toxicological overview. Journal of Toxicology. Clinical Toxicology 42 (2):217–34. doi: 10.1081/clt-120030947.
  • Gallo, M., L. Ferrara, and D. Naviglio. 2018. Application of ultrasound in food science and technology: A perspective. Foods 7 (10). doi: 10.3390/foods7100:164.
  • Gao, X., P. Mu, J. Wen, Y. Sun, Q. Chen, and Y. Deng. 2018. Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 112:310–9. doi: 10.1016/j.fct.2017.12.066.
  • García, G. R., D. Payros, P. Pinton, C. A. Dogi, J. Laffitte, M. Neves, M. L. González Pereyra, L. R. Cavaglieri, and I. P. Oswald. 2018. Intestinal toxicity of deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants. Archives of Toxicology 92 (2):983–93. doi: 10.1007/s00204-017-2083-x.
  • Garda-Buffon, J., L. Kupski, and E. Badiale-Furlong. 2011. Deoxynivalenol (DON) degradation and peroxidase enzyme activity in submerged fermentation. Ciência e Tecnologia de Alimentos 31 (1):198–203. doi: 10.1590/S0101-20612011000100030.
  • Golash, N., and P. R. Gogate. 2012. Degradation of dichlorvos containing wastewaters using sonochemical reactors. Ultrasonics Sonochemistry 19 (5):1051–60. doi: 10.1016/j.ultsonch.2012.02.011.
  • Government of Manitoba. 2021. Ozonation in food applications. Accessed February 15, 2021. https://www.gov.mb.ca/agriculture/food-safety/at-the-food-processor/ozonation.html.
  • Guan, S., J. He, J. C. Young, H. Zhu, X.-Z. Li, C. Ji, and T. Zhou. 2009. Transformation of trichothecene mycotoxins by microorganisms from fish digesta. Aquaculture 290 (3-4):290–5. doi: 10.1016/j.aquaculture.2009.02.037.
  • Harder, M. N. C., V. Arthur, and P. B. Arthur. 2016. Irradiation of foods: Processing technology and effects on nutrients: Effect of ionizing radiation on food components. In Encyclopedia of food and health, eds. Benjamin Caballero, Paul M. Finglas and Fidel Toldrá, 476–81. Oxford: Academic Press.
  • He, C., Y. Fan, G. Liu, and H. Zhang. 2008. Isolation and identification of a strain of Aspergillus tubingensis with deoxynivalenol biotransformation capability. International Journal of Molecular Sciences 9 (12):2366–75. doi: 10.3390/ijms9122366.
  • He, J. W., G. S. Bondy, T. Zhou, D. Caldwell, G. J. Boland, and P. M. Scott. 2015. Toxicology of 3-epi-deoxynivalenol, a deoxynivalenol-transformation product by Devosia mutans 17-2-E-8. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 84:250–9. doi: 10.1016/j.fct.2015.09.003.
  • He, P. I. N. G., L. G. Young, and C. Forsberg. 1992. Microbial transformation of deoxynivalenol (vomitoxin). Applied and Environmental Microbiology 58 (12):3857–63. doi: 10.1128/AEM.58.12.3857-3863.1992.
  • He, W.-J., L. Zhang, S.-Y. Yi, X.-L. Tang, Q.-S. Yuan, M.-W. Guo, A.-B. Wu, B. Qu, H.-P. Li, and Y.-C. Liao. 2017. An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain. Scientific Reports 7 (1):1–13. doi: 10.1038/s41598-017-08799-w.
  • Hojnik, N., U. Cvelbar, G. Tavčar-Kalcher, J. L. Walsh, and I. Križaj. 2017. Mycotoxin decontamination of food: Cold atmospheric pressure plasma versus “classic” decontamination. Toxins 9 (5).151. doi: 10.3390/toxins9050:.
  • Hooshmand, H., and C. F. Klopfenstein. 1995. Effects of gamma irradiation on mycotoxin disappearance and amino acid contents of corn, wheat, and soybeans with different moisture contents. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 47 (3):227–38. doi: 10.1007/BF01088331.
  • Ikunaga, Y., I. Sato, S. Grond, N. Numaziri, S. Yoshida, H. Yamaya, S. Hiradate, M. Hasegawa, H. Toshima, M. Koitabashi, et al. 2011. Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol. Applied Microbiology and Biotechnology 89 (2):419–27. doi: 10.1007/s00253-010-2857-z.
  • Islam, R., T. Zhou, J. C. Young, P. H. Goodwin, and K. P. Pauls. 2012. Aerobic and anaerobic de-epoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil. World Journal of Microbiology & Biotechnology 28 (1):7–13. doi: 10.1007/s11274-011-0785-4.
  • Israel-Roming, F., and M. Avram. 2010. Deoxynivalenol stability during wheat processing. Romanian Biotechnological Letters 15 (3):48.
  • Janaviciene, S., A. Mankeviciene, S. Suproniene, Y. Kochiieru, and I. Keriene. 2018. The prevalence of deoxynivalenol and its derivatives in the spring wheat grain from different agricultural production systems in Lithuania. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 35 (6):1179–88. doi: 10.1080/19440049.2018.1427893.
  • Ji, C., Y. Fan, and L. Zhao. 2016. Review on biological degradation of mycotoxins. Animal Nutrition (Zhongguo xu mu Shou yi Xue Hui) 2 (3):127–33. doi: 10.1016/j.aninu.2016.07.003.
  • Jia, R., L. Cao, W. Liu, and Z. Shen. 2021. Detoxification of deoxynivalenol by Bacillus subtilis ASAG 216 and characterization the degradation process. European Food Research and Technology 247 (1):10–67. doi: 10.1007/s00217-020-03607-8.
  • Jin, Z., B. Zhou, J. Gillespie, T. Gross, J. Barr, S. Simsek, R. Brueggeman, and P. Schwarz. 2018. Production of deoxynivalenol (DON) and DON-3-glucoside during the malting of Fusarium infected hard red spring wheat. Food Control 85:6–10. doi: 10.1016/j.foodcont.2017.09.002.
  • Kostelanska, M., Z. Dzuman, A. Malachova, I. Capouchova, E. Prokinova, A. Skerikova, and J. Hajslova. 2011. Effects of milling and baking technologies on levels of deoxynivalenol and its masked form deoxynivalenol-3-glucoside. Journal of Agricultural and Food Chemistry 59 (17):9303–12. doi: 10.1021/jf202428f.
  • Kottapalli, B., C. E. Wolf-Hall, and P. Schwarz. 2006. Effect of electron-beam irradiation on the safety and quality of Fusarium-infected malting barley. International Journal of Food Microbiology 110 (3):224–31. doi: 10.1016/j.ijfoodmicro.2006.04.007.
  • Kříž, P., P. Bartoš, Z. Havelka, J. Kadlec, O. Olšan, P. Špatenka, and M. Dienstbier. 2015. Influence of plasma treatment in open air on mycotoxin content and grain nutriments. Plasma Medicine 5 (2-4):145–58. doi: 10.1615/PlasmaMed.2016015752.
  • Krstović, S., J. Krulj, S. Jakšić, A. Bočarov-Stančić, and I. Jajić. 2021. Ozone as decontaminating agent for ground corn containing deoxynivalenol, zearalenone, and ochratoxin A. Cereal Chemistry 98 (1):135–43. doi: 10.1002/cche.10289.
  • Kushiro, M. 2008. Effects of milling and cooking processes on the deoxynivalenol content in wheat. International Journal of Molecular Sciences 9 (11):2127–45. doi: 10.3390/ijms9112127.
  • Lancova, K., J. Hajslova, J. Poustka, A. Krplova, M. Zachariasova, P. Dostálek, and L. Sachambula. 2008. Transfer of Fusarium mycotoxins and 'masked' deoxynivalenol (deoxynivalenol-3-glucoside) from field barley through malt to beer . Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 25 (6):732–44. doi: 10.1080/02652030701779625.
  • Lauren, D. R., and W. A. Smith. 2001. Stability of the Fusarium mycotoxins nivalenol, deoxynivalenol and zearalenone in ground maize under typical cooking environments. Food Additives and Contaminants 18 (11):1011–6. doi: 10.1080/02652030110052283.
  • Li, M., E. Guan, and K. Bian. 2019a. Detoxification of deoxynivalenol by 60Co γ-ray irradiation and toxicity analyses of radiolysis products. Journal of AOAC International 102 (6):1749–55. doi: 10.5740/jaoacint.19-0246.
  • Li, M., E. Guan, and K. Bian. 2019b. Structure elucidation and toxicity analysis of the degradation products of deoxynivalenol by gaseous ozone. Toxins 11 (8):474. doi: 10.3390/toxins11080474.
  • Li, M. M., B. Ke, E. Q. Guan, and G-j Cui. 2013. Effects of irradiation on degradation of deoxynivalenol in aqueous solution. Food Research and Development 1:1–4.
  • Li, M. M., E. Q. Guan, and K. Bian. 2015. Effect of ozone treatment on deoxynivalenol and quality evaluation of ozonised wheat. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 32 (4):544–53. doi: 10.1080/19440049.2014.976596.
  • Li, P., R. Su, R. Yin, D. Lai, M. Wang, Y. Liu, and L. Zhou. 2020. Detoxification of Mycotoxins through Biotransformation. Toxins 12 (2):121. doi: 10.3390/toxins12020121.
  • Li, X. Z., C. Zhu, C. F. M. de Lange, T. Zhou, J. He, H. Yu, J. Gong, and J. C. Young. 2011. Efficacy of detoxification of deoxynivalenol-contaminated corn by Bacillus sp. LS100 in reducing the adverse effects of the mycotoxin on swine growth performance. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 28 (7):894–901. doi: 10.1080/19440049.2011.576402.
  • Liu, Y., M. Li, Y. Liu, F. Bai, and K. Bian. 2019. Effects of pulsed ultrasound at 20 kHz on the sonochemical degradation of mycotoxins. World Mycotoxin Journal 12 (4):357–66. doi: 10.3920/WMJ2018.2431.
  • Mayer, E., B. Novak, A. Springler, H. E. Schwartz-Zimmermann, V. Nagl, N. Reisinger, S. Hessenberger, and G. Schatzmayr. 2017. Effects of deoxynivalenol (DON) and its microbial biotransformation product deepoxy-deoxynivalenol (DOM-1) on a trout, pig, mouse, and human cell line. Mycotoxin Research 33 (4):297–308. doi: 10.1007/s12550-017-0289-7.
  • McCormick, S. P. 2013. Microbial detoxification of mycotoxins. Journal of Chemical Ecology 39 (7):907–18. doi: 10.1007/s10886-013-0321-0.
  • Joint FAO/WHO Expert Committee on Food Additives, Meeting. 2001. Safety evaluation of certain mycotoxins in food (No. 74). Geneva: Food & Agriculture Org.
  • Mishra, S., S. Dixit, P. D. Dwivedi, H. P. Pandey, and M. Das. 2014. Influence of temperature and pH on the degradation of deoxynivalenol (DON) in aqueous medium: Comparative cytotoxicity of DON and degraded product. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 31 (1):121–31. doi: 10.1080/19440049.2013.861613.
  • Mishra, S., S. Srivastava, J. Dewangan, A. Divakar, and S. Kumar Rath. 2020. Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: A survey. Critical Reviews in Food Science and Nutrition 60 (8):1346–74. doi: 10.1080/10408398.2019.1571479.
  • Misra, N. N., B. Yadav, M. S. Roopesh, and C. Jo. 2019. Cold plasma for effective fungal and mycotoxin control in foods: Mechanisms, inactivation effects, and applications. Comprehensive Reviews in Food Science and Food Safety 18 (1):106–20. doi: 10.1111/1541-4337.12398.
  • Moazami, F. E., S. Jinap, W. Mousa, and P. Hajeb. 2014. Effect of food additives on deoxynivalenol (DON) reduction and quality attributes in steamed‐and‐fried instant noodles. Cereal Chemistry Journal 91 (1):88–94. doi: 10.1094/CCHEM-12-12-0174-R.
  • Moreau, M., G. Lescure, A. Agoulon, P. Svinareff, N. Orange, and M. Feuilloley. 2013. Application of the pulsed light technology to mycotoxin degradation and inactivation. Journal of Applied Toxicology: JAT 33 (5):357–63. doi: 10.1002/jat.1749.
  • Morehouse, K., and V. Komolprasert. 2020. Overview of Irradiation of Food and Packaging. US. Food & Drug Administration (FDA), Accessed 7 July, 2020. https://www.fda.gov/food/irradiation-food-packaging/overview-irradiation-food-and-packaging.
  • Murata, H., M. Mitsumatsu, and N. Shimada. 2008. Reduction of feed-contaminating mycotoxins by ultraviolet irradiation: An in vitro study. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 25 (9):1107–10. doi: 10.1080/02652030802057343.
  • Murata, H., D. Yamaguchi, A. Nagai, and N. Shimada. 2011. Reduction of deoxynivalenol contaminating corn silage by short-term ultraviolet irradiation: A pilot study. Journal of Veterinary Medical Science 73 (8):1059–60. doi: 10.1292/jvms.10-0409.
  • Neira, M. S., A. M. Pacin, E. J. Martínez, G. Moltó, and S. L. Resnik. 1997. The effects of bakery processing on natural deoxynivalenol contamination. International Journal of Food Microbiology 37 (1):21–5. doi: 10.1016/S0168-1605(97)00038-X.
  • Niderkorn, V., D. P. Morgavi, E. Pujos, A. Tissandier, and H. Boudra. 2007. Screening of fermentative bacteria for their ability to bind and biotransform deoxynivalenol, zearalenone and fumonisins in an in vitro simulated corn silage model. Food Additives and Contaminants 24 (4):406–15. doi: 10.1080/02652030601101110.
  • Nowicki, T. W., D. G. Gaba, J. E. Dexter, R. R. Matsuo, and R. M. Clear. 1988. Retention of the Fusarium mycotoxin deoxynivalenol in wheat during processing and cooking of spaghetti and noodles. Journal of Cereal Science 8 (2):189–202. doi: 10.1016/S0733-5210(88)80029-8.
  • O'neill, K., A. P. Damoglou, and M. F. Patterson. 1993. The stability of deoxynivalenol and 3-acetyl deoxynivalenol to gamma irradiation . Food Additives and Contaminants 10 (2):209–15. doi: 10.1080/02652039309374143.
  • Oehmigen, K., Hähnel, M. R. Brandenburg, C. Wilke, K. ‐D. Weltmann, and T. Von Woedtke. 2010. The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Processes and Polymers 7 (3-4):250–7. doi: 10.1002/ppap.200900077.
  • Park, B. J., K. Takatori, Y. Sugita-Konishi, I. H. Kim, M. H. Lee, D. W. Han, K. H. Chung, S. O. Hyun, and J. C. Park. 2007. Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure. Surface and Coatings Technology 201 (9-11):5733–7. doi: 10.1016/j.surfcoat.2006.07.092.
  • Paulick, M., J. Winkler, S. Kersten, D. Schatzmayr, J. Frahm, J. Kluess, H. E. Schwartz-Zimmermann, and S. Dänicke. 2018. Effects of oral exposure to sodium sulphite-treated deoxynivalenol (DON)-contaminated maize on performance and plasma concentrations of toxins and metabolites in piglets. Archives of Animal Nutrition 72 (1):42–57. doi: 10.1080/1745039X.2017.1415550.
  • Paulick, M., I. Rempe, S. Kersten, D. Schatzmayr, H. E. Schwartz-Zimmermann, and S. Dänicke. 2015. Effects of increasing concentrations of sodium sulfite on deoxynivalenol and deoxynivalenol sulfonate concentrations of maize kernels and maize meal preserved at various moisture content. Toxins 7 (3):791–811. doi: 10.3390/toxins7030791.
  • Pestka, J. J., and A. T. Smolinski. 2005. Deoxynivalenol: Toxicology and potential effects on humans. Journal of Toxicology and Environmental Health. Part B, Critical Reviews 8 (1):39–69. doi: 10.1080/10937400590889458.
  • Pierron, A., S. Mimoun, L. S. Murate, N. Loiseau, Y. Lippi, A.-P F. L. Bracarense, G. Schatzmayr, J. W. He, T. Zhou, W.-D. Moll, et al. 2016. Microbial biotransformation of DON: Molecular basis for reduced toxicity. Scientific Reports 6 (1):29105 doi: 10.1038/srep29105.
  • Pinton, P.,. D. Tsybulskyy, J. Lucioli, J. Laffitte, P. Callu, F. Lyazhri, F. Grosjean, A. P. Bracarense, M. Kolf-Clauw, and I. P. Oswald. 2012. Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: Differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases. Toxicological Sciences: An official journal of the Society of Toxicology 130 (1):180–90. doi: 10.1093/toxsci/kfs239.
  • Popović, V., N. Fairbanks, J. Pierscianowski, M. Biancaniello, T. Zhou, and T. Koutchma. 2018. Feasibility of 3D UV-C treatment to reduce fungal growth and mycotoxin loads on maize and wheat kernels. Mycotoxin Research 34 (3):211–21. doi: 10.1007/s12550-018-0316-3.
  • Poppenberger, B., F. Berthiller, D. Lucyshyn, T. Sieberer, R. Schuhmacher, R. Krska, K. Kuchler, J. Glössl, C. Luschnig, and G. Adam. 2003. Detoxification of the Fusarium Mycotoxin Deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. The Journal of Biological Chemistry 278 (48):47905–14. doi: 10.1074/jbc.M307552200.
  • Puri, K. D., and S. Zhong. 2010. The 3ADON population of Fusarium graminearum found in North Dakota is more aggressive and produces a higher level of DON than the prevalent 15ADON population in spring wheat. Phytopathology 100 (10):1007–14. doi: 10.1094/PHYTO-12-09-0332.
  • Ren, D., E. Diao, H. Hou, P. Xie, R. Mao, H. Dong, and S. Qian. 2019. Cytotoxicity of deoxynivalenol after being exposed to gaseous ozone. Toxins 11 (11). doi: 10.3390/toxins11110:639.
  • Ren, D., E. Diao, H. Hou, and H. Dong. 2020. Degradation and ozonolysis pathway elucidation of deoxynivalenol. Toxicon: Official Journal of the International Society on Toxinology 174:13–8. doi: 10.1016/j.toxicon.2019.11.015.
  • Rotter, B. A., D. B. Prelusky, and J. J. Pestka. 1996. Invited review: Toxicology of deoxynivalenol (vomitoxin). Journal of Toxicology and Environmental Health 48 (1):1–34. doi: 10.1080/009841096161447.
  • Samar, M., S. L. Resnik, H. H. L. González, A. M. Pacin, and M. D. Castillo. 2007. Deoxynivalenol reduction during the frying process of turnover pie covers. Food Control 18 (10):1295–9. doi: 10.1016/j.foodcont.2006.08.008.
  • Samar, M. M., M. S. Neira, S. L. Resnik, and A. Pacin. 2001. Effect of fermentation on naturally occurring deoxynivalenol (DON) in Argentinean bread processing technology. Food Additives and Contaminants 18 (11):1004–10. doi: 10.1080/02652030110051284.
  • Santos Alexandre, A. P., R. S. Vela-Paredes, A. S. Santos, N. S. Costa, S. G. Canniatti-Brazaca, M. A. Calori-Domingues, and P. E. D. Augusto. 2018. Ozone treatment to reduce deoxynivalenol (DON) and zearalenone (ZEN) contamination in wheat bran and its impact on nutritional quality. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 35 (6):1189–99. doi: 10.1080/19440049.2018.1432899.
  • Savi, G. D., K. C. Piacentini, K. O. Bittencourt, and V. M. Scussel. 2014. Ozone treatment efficiency on Fusarium graminearum and deoxynivalenol degradation and its effects on whole wheat grains (Triticum aestivum L.) quality and germination. Journal of Stored Products Research 59:245–53. doi: 10.1016/j.jspr.2014.03.008.
  • Schatzmayr, G., F. Zehner, M. Täubel, D. Schatzmayr, A. Klimitsch, A. P. Loibner, and E. M. Binder. 2006. Microbiologicals for deactivating mycotoxins. Molecular Nutrition & Food Research 50 (6):543–51. doi: 10.1002/mnfr.200500181.
  • Schmeitzl, C., B. Warth, P. Fruhmann, H. Michlmayr, A. Malachová, F. Berthiller, R. Schuhmacher, R. Krska, and G. Adam. 2015. The metabolic fate of deoxynivalenol and its acetylated derivatives in a wheat suspension culture: Identification and detection of DON-15-O-glucoside, 15-acetyl-DON-3-O-glucoside and 15-acetyl-DON-3-sulfate. Toxins 7 (8):3112–26. doi: 10.3390/toxins7083112.
  • Schollenberger, M., S. Suchy, H. T. Jara, W. Drochner, and H.-M. MÜller. 1999. A survey of Fusarium toxins in cereal-based foods marketed in an area of southwest Germany. Mycopathologia 147 (1):49–57. doi: 10.1023/A:1007088502400.
  • Schwartz-Zimmermann, H. E., C. Hametner, V. Nagl, I. Fiby, L. Macheiner, J. Winkler, S. Dänicke, E. Clark, J. J. Pestka, and F. Berthiller. 2017. Glucuronidation of deoxynivalenol (DON) by different animal species: Identification of iso-DON glucuronides and iso-deepoxy-DON glucuronides as novel DON metabolites in pigs, rats, mice, and cows. Archives of Toxicology 91 (12):3857–72. doi: 10.1007/s00204-017-2012-z.
  • Schwartz, H. E., C. Hametner, V. Slavik, O. Greitbauer, G. Bichl, E. Kunz-Vekiru, D. Schatzmayr, and F. Berthiller. 2013. Characterization of three deoxynivalenol sulfonates formed by reaction of deoxynivalenol with sulfur reagents. Journal of Agricultural and Food Chemistry 61 (37):8941–8. doi: 10.1021/jf403438b.
  • Scudamore, K. A., R. C. Guy, B. Kelleher, and S. J. MacDonald. 2008. Fate of Fusarium mycotoxins in maize flour and grits during extrusion cooking. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 25 (11):1374–84. doi: 10.1080/02652030802136188.
  • Shalapy, A., S. Zhao, C. Zhang, Y. Li, H. Geng, S. Ullah, G. Wang, S. Huang, and Y. Liu. 2020. Adsorption of deoxynivalenol (DON) from corn steep liquor (CSL) by the microsphere adsorbent SA/CMC loaded with calcium. Toxins 12 (4):208. doi: 10.3390/toxins12040208.
  • Shima, J., S. Takase, Y. Takahashi, Y. Iwai, H. Fujimoto, M. Yamazaki, and K. Ochi. 1997. Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture. Applied and Environmental Microbiology 63 (10):3825–30. doi: 10.1128/AEM.63.10.3825-3830.1997.
  • Sobrova, P., V. Adam, A. Vasatkova, M. Beklova, L. Zeman, and R. Kizek. 2010. Deoxynivalenol and its toxicity. Interdisciplinary Toxicology 3 (3):94–9. doi: 10.2478/v10102-010-0019-x.
  • Springler, A., S. Hessenberger, N. Reisinger, C. Kern, V. Nagl, G. Schatzmayr, and E. Mayer. 2017. Deoxynivalenol and its metabolite deepoxy-deoxynivalenol: Multi-parameter analysis for the evaluation of cytotoxicity and cellular effects. Mycotoxin Research 33 (1):25–37. doi: 10.1007/s12550-016-0260-z.
  • Srecec, S.,. J. Štefanec, J. Pleadin, and I. Bauman. 2013. Decreasing deoxynivalenol concentration in maize within the production chain of animal feed. Agro Food Industry Hi Tech 24:62–5.
  • Stadler, D., F. Lambertini, C. Bueschl, G. Wiesenberger, C. Hametner, H. Schwartz-Zimmermann, R. Hellinger, M. Sulyok, M. Lemmens, R. Schuhmacher, et al. 2019. Untargeted LC-MS based 13C labelling provides a full mass balance of deoxynivalenol and its degradation products formed during baking of crackers, biscuits and bread. Food Chemistry 279:303–11. doi: 10.1016/j.foodchem.2018.11.150.
  • Stepanik, T., D. Kost, T. Nowicki, and D. Gaba. 2007. Effects of electron beam irradiation on deoxynivalenol levels in distillers dried grain and solubles and in production intermediates. Food Additives and Contaminants 24 (9):1001–6. doi: 10.1080/02652030701329629.
  • Sugita-Konishi, Y., B. J. Park, K. Kobayashi-Hattori, T. Tanaka, T. Chonan, K. Yoshikawa, and S. Kumagai. 2006. Effect of cooking process on the deoxynivalenol content and its subsequent cytotoxicity in wheat products. Bioscience, Biotechnology, and Biochemistry 70 (7):1764–8. doi: 10.1271/bbb.50571.
  • Sun, X., J. Ji, Y. Gao, Y. Zhang, G. Zhao, and C. Sun. 2020. Fate of deoxynivalenol and degradation products degraded by aqueous ozone in contaminated wheat. Food Research International (Ottawa, Ont.) 137:109357. doi: 10.1016/j.foodres.2020.109357.
  • Suzuki, T., and Y. Iwahashi. 2015. Low toxicity of deoxynivalenol-3-glucoside in microbial cells. Toxins 7 (1):187–200. doi: 10.3390/toxins7010187.
  • Swanson, S. P., C. Helaszek, W. B. Buck, H. D. Rood, and W. M. Haschek. 1988. The role of intestinal microflora in the metabolism of trichothecene mycotoxins. Food and Chemical Toxicology 26 (10):823–9. doi: 10.1016/0278-6915(88)90021-X.
  • Swanson, S. P., H. D. Rood, J. C. Behrens, and P. E. Sanders. 1987. Preparation and characterization of the deepoxy trichothecenes: Deepoxy HT-2, deepoxy T-2 triol, deepoxy T-2 tetraol, deepoxy 15-monoacetoxyscirpenol, and deepoxy scirpentriol. Applied and Environmental Microbiology 53 (12):2821–6. doi: 10.1128/AEM.53.12.2821-2826.1987.
  • Swanson, S. P., J. Nicoletti, H. D. Rood, Jr, W. B. Buck, L. M. Cote, and T. Yoshizawa. 1987. Metabolism of three trichothecene ycotoxins, T-2 toxin, diacetoxyscirpenol and deoxynivalenol, by bovne rumen microorganisms. Journal of Chromatography B: Biomedical Sciences and Applications 414:335–42. doi: 10.1016/0378-4347(87)80058-0.
  • ten Bosch, L., K. Pfohl, G. Avramidis, S. Wieneke, W. Viöl, and P. Karlovsky. 2017. Plasma-based degradation of mycotoxins produced by Fusarium, Aspergillus and Alternaria species. Toxins 9 (3). doi: 10.3390/toxins90300:97.
  • Tian, Y., R. Ma, Q. Zhang, H. Feng, Y. Liang, J. Zhang, and J. Fang. 2015. Assessment of the physicochemical properties and biological effects of water activated by non‐thermal plasma above and beneath the water surface. Plasma Processes and Polymers 12 (5):439–49. doi: 10.1002/ppap.201400082.
  • Tiwari, B. K., C. S. Brennan, T. Curran, E. Gallagher, P. J. Cullen, and C. P. O' Donnell. 2010. Application of ozone in grain processing. Journal of Cereal Science 51 (3):248–55. doi: 10.1016/j.jcs.2010.01.007.
  • Tucker, J. R., A. Badea, R. Blagden, K. Pleskach, S. A. Tittlemier, and W. G. D. Fernando. 2019. Deoxynivalenol-3-glucoside content is highly associated with deoxynivalenol levels in two-row barley genotypes of importance to Canadian Barley Breeding Programs. Toxins (Basel) 11 (6):319. doi: 10.3390/toxins11060319.
  • Turner, P. C., R. P. Hopton, K. L. M. White, J. Fisher, J. E. Cade, and C. P. Wild. 2011. Assessment of deoxynivalenol metabolite profiles in UK adults. Food and Chemical Toxicology 49 (1):132–5. doi: 10.1016/j.fct.2010.10.007.
  • U.S. Food and Drug Administration. 2021. CFR - Code of Federal Regulations, Title 21. Accessed February 15, 2021. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=184.1563.
  • U.S. Food and Drug Administration. 2020. Food irradiation: What you need to know. Accessed August 6, 2020. https://www.fda.gov/food/buy-store-serve-safe-food/food-irradiation-what-you-need-know.
  • U.S. Food and Drug Administration. 2021. CFR - Code of Federal Regulations Title 21. Accessed February 5, 2021. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=184.
  • Valle-Algarra, F. M., E. M. Mateo, A. Medina, F. Mateo, J. V. Gimeno-Adelantado, and M. Jiménez. 2009. Changes in ochratoxin A and type B trichothecenes contained in wheat flour during dough fermentation and bread-baking. Food Additives & Contaminants: Part A 26 (6):896–906. doi: 10.1080/02652030902788938.
  • Vanhoutte, I., K. Audenaert, and L. De Gelder. 2016. Biodegradation of mycotoxins: Tales from known and unexplored worlds. Frontiers in Microbiology 7:561. doi: 10.3389/fmicb.2016.00561.
  • Vidal, A., J. Bendicho, V. Sanchis, A. J. Ramos, and S. Marín. 2016. Stability and kinetics of leaching of deoxynivalenol, deoxynivalenol-3-glucoside and ochratoxin A during boiling of wheat spaghettis. Food Research International (Ottawa, Ont.) 85:182–90. doi: 10.1016/j.foodres.2016.04.037.
  • Vidal, A., L. Claeys, M. Mengelers, V. Vanhoorne, C. Vervaet, B. Huybrechts, S. D. Saeger, and M. D. Boevre. 2018. Humans significantly metabolize and excrete the mycotoxin deoxynivalenol and its modified form deoxynivalenol-3-glucoside within 24 hours. Scientific Reports 8 (1):5255. doi: 10.1038/s41598-018-23526-9.
  • Vidal, A., V. Sanchis, A. J. Ramos, and S. Marín. 2015. Thermal stability and kinetics of degradation of deoxynivalenol, deoxynivalenol conjugates and ochratoxin A during baking of wheat bakery products. Food Chemistry 178:276–86. doi: 10.1016/j.foodchem.2015.01.098.
  • Wang, G., Y. X. Wang, F. Ji, L. M. Xu, M. Z. Yu, J. R. Shi, and J. H. Xu. 2019. Biodegradation of deoxynivalenol and its derivatives by Devosia insulae A16. Food chemistry 276:436–42. doi: 10.1016/j.foodchem.2018.10.011.
  • Wang, G., Y. Wang, H. Man, Y.-W. Lee, J. Shi, and J. Xu. 2020. Metabolomics-guided analysis reveals a two-step epimerization of deoxynivalenol catalyzed by the bacterial consortium IFSN-C1. Applied Microbiology and Biotechnology 104 (13):6045–56. doi: 10.1007/s00253-020-10673-1.
  • Wang, L., Y. Luo, X. Luo, R. Wang, Y. Li, Y. Li, H. Shao, and Z. Chen. 2016. Effect of deoxynivalenol detoxification by ozone treatment in wheat grains. Food Control 66:137–44. doi: 10.1016/j.foodcont.2016.01.038.
  • Wang, L., H. Shao, X. Luo, R. Wang, Y. Li, Y. Li, Y. Luo, and Z. Chen. 2016. Effect of ozone treatment on deoxynivalenol and wheat quality. PLoS ONE 11 (1):e0147613e. doi: 10.1371/journal.pone.0147613.
  • Wang, L., Y. Wang, H. Shao, X. Luo, R. Wang, Y. Li, Y. Li, Y. Luo, D. Zhang, and Z. Chen. 2017. In vivo toxicity assessment of deoxynivalenol-contaminated wheat after ozone degradation. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 34 (1):103–12. doi: 10.1080/19440049.2016.1253 12.
  • Wang, Y., G. Wang, Y. Dai, Y. Wang, Y.-W. Lee, J. Shi, and J. Xu. 2020. 2019. Biodegradation of deoxynivalenol by a novel microbial consortium. Frontiers in Microbiology 10:2964. doi: 10.3389/fmicb02964.
  • Wolf-Hall, C. E., M. A. Hanna, and L. B. Bullerman. 1999. Stability of deoxynivalenol in heat-treated foods. Journal of Food Protection 62 (8):962–4. doi: 10.4315/0362-028X-62.8.962.
  • Wolf, C. E., and L. B. Bullerman. 1998. Heat and pH alter the concentration of deoxynivalenol in an aqueous environment. Journal of Food Protection 61 (3):365–7. doi: 10.4315/0362-028x-61.3.365.
  • World Health Organization. 2009. Benefits and risks of the use of chlorine-containing disinfectants in food production and food processing: Report of a joint FAO/WHO expert meeting, Ann Arbor, MI, USA. May 2008, 27–30.
  • World Health Organization, Food and Agriculture Organization of the United Nations & Joint FAO/WHO Expert Committee on Food Additives. Meeting (‎‎‎72nd : 2010 : Rome, Italy)‎‎‎. ‎2011. Evaluation of certain contaminants in food: seventy-second [‎‎‎72nd]‎‎‎ report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization.
  • Wu, L., and B. Wang. 2015. Evaluation on levels and conversion profiles of DON, 3-ADON, and 15-ADON during bread making process. Food Chemistry 185:509–16. doi: 10.1016/j.foodchem.2015.03.082.
  • Wu, Q., K. Kuča, H. U. Humpf, B. Klímová, and B. Cramer. 2017. Fate of deoxynivalenol and deoxynivalenol-3-glucoside during cereal-based thermal food processing: A review study. Mycotoxin Research 33 (1):79–91. doi: 10.1007/s12550-016-0263-9.
  • Wu, Q., L. Lohrey, B. Cramer, Z. Yuan, and H.-U. Humpf. 2011. Impact of physicochemical parameters on the decomposition of deoxynivalenol during extrusion cooking of wheat grits. Journal of Agricultural and Food Chemistry 59 (23):12480–5. doi: 10.1021/jf2038604.
  • Yan, P., Z. Liu, S. Liu, L. Yao, Y. Liu, Y. Wu, and Z. Gong. 2020. Natural occurrence of deoxynivalenol and its acetylated derivatives in Chinese maize and wheat collected in 2017. Toxins 12 (3):200. doi: 10.3390/toxins12030200.
  • Yang, S., Y. Wu, J. Yang, R. Yan, Y. Bao, K. Wang, G. Liu, and W. Wang. 2017. Isolation and identification of an extracellular enzyme from Aspergillus niger with Deoxynivalenol biotransformation capability. Emirates Journal of Food and Agriculture 29 (10):742–50. doi: 10.9755/ejfa.2017.v29.i10.1295.
  • Yao, Y., and M. Long. 2020. The biological detoxification of deoxynivalenol: A review. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 145:111649. doi: 10.1016/j.fct.2020.111649.
  • Yoshizawa, T., H. Takeda, and T. Ohi. 1983. Structure of a novel metabolite from deoxynivalenol, a trichothecene mycotoxin, in animals. Agricultural and Biological Chemistry 47 (9):2133–5. doi: 10.1271/bbb1961.47.2133.
  • Young, J. C. 1986a. Formation of sodium bisulfite addition products with trichothecenones and alkaline hydrolysis of deoxynivalenol and its sulfonate. Journal of Agricultural and Food Chemistry 34 (5):919–23. doi: 10.1021/jf00071a038.
  • Young, J. C. 1986b. Reduction in levels of deoxynivalenol in contaminated corn by chemical and physical treatment. Journal of Agricultural and Food Chemistry 34 (3):465–7. doi: 10.1021/jf00069a022.
  • Young, J. C., R. G. Fulcher, J. H. Hayhoe, P. M. Scott, and J. E. Dexter. 1984. Effect of milling and baking on deoxynivalenol (vomitoxin) content of eastern Canadian wheats. Journal of Agricultural and Food Chemistry 32 (3):659–64. doi: 10.1021/jf00123a058.
  • Young, J. C., H. Zhu, and T. Zhou. 2006. Degradation of trichothecene mycotoxins by aqueous ozone. Food and Chemical Toxicology 44 (3):417–24. doi: 10.1016/j.fct.2005.08.015.
  • Young, J. C., B. A. Blackwell, and J. W. ApSimon. 1986. Alkaline degradation of the mycotoxin 4-deoxynivalenol. Tetrahedron Letters 27 (9):1019–22. doi: 10.1016/S0040-4039(86)80037-5.
  • Young, J. C., H. L. Trenholm, D. W. Friend, and D. B. Prelusky. 1987. Detoxification of deoxynivalenol with sodium bisulfite and evaluation of the effects when pure mycotoxin or contaminated corn was treated and given to pigs. Journal of Agricultural and Food Chemistry 35 (2):259–61. doi: 10.1021/jf00074a023.
  • Zhang, H., and B. Wang. 2015. Fates of deoxynivalenol and deoxynivalenol-3-glucoside during bread and noodle processing. Food Control 50:754–7. doi: 10.1016/j.foodcont.2014.10.009.
  • Zhang, J., X. Qin, Y. Guo, Q. Zhang, Q. Ma, C. Ji, and L. Zhao. 2020. Enzymatic degradation of deoxynivalenol by a novel bacterium, Pelagibacterium halotolerans ANSP101. Food and Chemical Toxicology 140:111276. doi: 10.1016/j.fct.2020.111276.
  • Zou, Z.-Y Z.-F., He, H.-J. Li, P.-F. Han, X. Meng, Y. Zhang, F. Zhou, K.-P. Ouyang, X.-Y. Chen, and J. Tang. 2012. In vitro removal of deoxynivalenol and T-2 toxin by lactic acid bacteria. Food Science and Biotechnology 21 (6):1677–83. doi: 10.1007/s10068-012-0223-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.