976
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Prebiotic inulin as a treatment of obesity related nonalcoholic fatty liver disease through gut microbiota: a critical review

ORCID Icon, ORCID Icon, , , , , , , , & show all

References

  • Bäckhed, F., H. Ding, T. Wang, L. V. Hooper, G. Y. Koh, A. Nagy, C. F. Semenkovich, and J. I. Gordon. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America 101 (44):15718–23. doi: 10.1073/pnas.0407076101.
  • Baxter, N. T., A. W. Schmidt, A. Venkataraman, K. S. Kim, C. Waldron, T. M. Schmidt, and M. J. Blaser. 2019. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. Mbio 10 (1):e02566-18. doi: .:e10.1128/mBio.02566-18.
  • Bianchi, F., A. L. Rocha Faria Duque, S. M. Isay Saad, and K. Sivieri. 2019. Gut microbiome approaches to treat obesity in humans. Applied Microbiology and Biotechnology 103 (3):1081–1094. doi: 10.1007/s00253-018-9570-8.
  • Boger, M. C. L., A. L. van Bueren, and L. Dijkhuizen. 2018. Cross-feeding among probiotic bacterial strains on prebiotic inulin involves the extracellular exo-inulinase of Lactobacillus paracasei strain W20. Applied and Environmental Microbiology 84 (21):e01539-18. doi: 10.1128/AEM.01539-18.
  • Bolam, D. N., and J. L. Sonnenburg. 2011. Mechanistic insight into polysaccharide use within the intestinal microbiota. Gut Microbes 2 (2):86–90. doi: 10.4161/gmic.2.2.15232.
  • Bouhnik, Y., L. Raskine, G. Simoneau, E. Vicaut, C. Neut, B. Flourie, F. Brouns, and F. R. Bornet. 2004. The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: A double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. The American Journal of Clinical Nutrition 80 (6):1658–64. doi: 10.1134/S0036024409120073.
  • Brooks, L., A. Viardot, A. Tsakmaki, E. Stolarczyk, J. K. Howard, P. D. Cani, A. Everard, M. L. Sleeth, A. Psichas, J. Anastasovskaj, et al. 2017. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Molecular Metabolism 6 (1):48–60. doi: 10.1016/j.molmet.2016.10.011.
  • Brunt, E. M., V. W.-S. Wong, V. Nobili, C. P. Day, S. Sookoian, J. J. Maher, E. Bugianesi, C. B. Sirlin, B. A. Neuschwander-Tetri, and M. E. Rinella. 2015. Nonalcoholic fatty liver disease. Nature Reviews Disease Primers 1 (1):1–22. doi: 10.1038/nrdp.2015.80.
  • Buclaw, M. 2016. The use of inulin in poultry feeding: A review. Journal of Animal Physiology and Animal Nutrition 100 (6):1015–22. doi: 10.1111/jpn.12484.
  • Canfora, E. E., J. W. Jocken, and E. E. Blaak. 2015. Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews. Endocrinology 11 (10):577–91. doi: 10.1038/nrendo.2015.128.
  • Canfora, E. E., R. C. Meex, K. Venema, and E. E. Blaak. 2019. Gut microbial metabolites in obesity, NAFLD and T2DM. Nature Reviews. Endocrinology 15 (5):261–73. doi: 10.1038/s41574-019-0156-z.
  • Cani, P. D., M. Osto, L. Geurts, and A. Everard. 2012. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3 (4):279–88. doi: 10.4161/gmic.19625.
  • Cantu-Jungles, T., and B. Hamaker. 2020. New view on dietary fiber selection for predictable shifts in gut microbiota. Mbio 11 (1):e02179-19. doi: 10.1128/mBio.02179-19.
  • Carpino, G., M. Del Ben, D. Pastori, R. Carnevale, F. Baratta, D. Overi, H. Francis, V. Cardinale, P. Onori, S. Safarikia, et al. 2020. Increased liver localization of lipopolysaccharides in human and experimental non-alcoholic fatty liver disease. Hepatology 72 (2):470–85. doi: 10.1002/hep.31056.
  • Chambers, E. S., C. S. Byrne, A. Rugyendo, D. J. Morrison, T. Preston, C. Tedford, J. D. Bell, L. Thomas, A. N. Akbar, N. E. Riddell, et al. 2019. The effects of dietary supplementation with inulin and inulin-propionate ester on hepatic steatosis in adults with non-alcoholic fatty liver disease. Diabetes, Obesity & Metabolism 21 (2):372–6. doi: 10.1111/dom.13500.
  • Chambers, E. S., A. Viardot, A. Psichas, D. J. Morrison, K. G. Murphy, S. E. K. Zac-Varghese, K. MacDougall, T. Preston, C. Tedford, G. S. Finlayson, et al. 2015. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64 (11):1744–54. doi: 10.1136/gutjnl-2014-307913.
  • Chávez-Talavera, O., A. Tailleux, P. Lefebvre, and B. Staels. 2017. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152 (7):1679–94. e1673. doi: 10.1053/j.gastro.2017.01.055.
  • Chen, K., H. Chen, M. M. Faas, B. J. de Haan, J. Li, P. Xiao, H. Zhang, J. Diana, P. de Vos, and J. Sun. 2017. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis. Molecular Nutrition & Food Research 61 (8):1601006. doi: 10.1002/mnfr.201601006.
  • Chijiiwa, R., M. Hosokawa, M. Kogawa, Y. Nishikawa, K. Ide, C. Sakanashi, K. Takahashi, and H. Takeyama. 2020. Single-cell genomics of uncultured bacteria reveals dietary fiber responders in the mouse gut microbiota. Microbiome 8 (1):5. doi: 10.1186/s40168-019-0779-2.
  • Chopyk, D. M., and A. Grakoui. 2020. Contribution of the Intestinal Microbiome and Gut Barrier to Hepatic Disorders. Gastroenterology 159 (3):849–63. doi: 10.1053/j.gastro.2020.04.077.
  • Chung, W. S. F., A. W. Walker, P. Louis, J. Parkhill, J. Vermeiren, D. Bosscher, S. H. Duncan, and H. J. Flint. 2016. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biology 14 (1):3. doi: 10.1186/s12915-015-0224-3.
  • Cockburn, D. W., and N. M. Koropatkin. 2016. Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. Journal of Molecular Biology 428 (16):3230–52. doi: 10.1016/j.jmb.2016.06.021.
  • De Preter, V., H. M. Hamer, K. Windey, and K. Verbeke. 2011. The impact of pre- and/or probiotics on human colonic metabolism: Does it affect human health? Molecular Nutrition & Food Research 55 (1):46–57. doi: 10.1002/mnfr.201000451.
  • De Vuyst, L., and F. Leroy. 2011. Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. International Journal of Food Microbiology 149 (1):73–80. doi: 10.1016/j.ijfoodmicro.2011.03.003.
  • Dehghan, P., B. P. Gargari, M. A. Jafar-Abadi, and A. Aliasgharzadeh. 2014. Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: A randomized-controlled clinical trial. International Journal of Food Sciences and Nutrition 65 (1):117–23. doi: 10.3109/09637486.2013.836738.
  • Delzenne, N. M., C. Daubioul, A. Neyrinck, M. Lasa, and H. S. Taper. 2002. Inulin and oligofructose modulate lipid metabolism in animals: Review of biochemical events and future prospects. The British Journal of Nutrition 87 (Suppl 2):S255–S259. doi: 10.1079/BJNBJN/2002545.
  • den Besten, G., K. Lange, R. Havinga, T. H. van Dijk, A. Gerding, K. van Eunen, M. Müller, A. K. Groen, G. J. Hooiveld, B. M. Bakker, et al. 2013. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. American Journal of Physiology. Gastrointestinal and Liver Physiology 305 (12):G900–G910. doi: 0.1152/ajpgi.00265.2013. doi: 10.1152/ajpgi.00265.2013.
  • Druart, C., A. M. Neyrinck, E. M. Dewulf, F. C. De Backer, S. Possemiers, T. Van de Wiele, F. Moens, L. De Vuyst, P. D. Cani, Y. Larondelle, et al. 2013. Implication of fermentable carbohydrates targeting the gut microbiota on conjugated linoleic acid production in high-fat-fed mice. The British Journal of Nutrition 110 (6):998–1011. doi: 10.1017/s0007114513000123.
  • Du, H., A. Zhao, Q. Wang, X. Yang, and D. Ren. 2020. Supplementation of inulin with various degree of polymerization ameliorates liver injury and gut microbiota dysbiosis in high fat-fed obese mice. Journal of Agricultural and Food Chemistry 68 (3):779–87. doi: 10.1021/acs.jafc.9b06571.
  • Duranti, S., C. Ferrario, D. van Sinderen, M. Ventura, and F. Turroni. 2017. Obesity and microbiota: An example of an intricate relationship. Genes & Nutrition 12 (1):5–18. doi: 10.1186/s12263-017-0566-2.
  • Falony, G., T. Calmeyn, F. Leroy, and L. D. Vuyst. 2009a. Coculture fermentations of bifidobacterium species and bacteroides thetaiotaomicron reveal a mechanistic insight into the prebiotic effect of inulin-type fructans. Applied and Environmental Microbiology 75 (8):2312–9. doi: 10.1128/aem.02649-08.
  • Falony, G., A. Verschaeren, F. De Bruycker, V. De Preter, K. Verbeke, F. Leroy, and L. De Vuyst. 2009b. In vitro kinetics of prebiotic inulin-type fructan fermentation by butyrate-producing colon bacteria: implementation of online gas chromatography for quantitative analysis of carbon dioxide and hydrogen gas production. Applied and Environmental Microbiology 75 (18):5884–92. doi: 10.1128/aem.00876-09.
  • Ferreiro, A., N. Crook, A. J. Gasparrini, and G. Dantas. 2018. Multiscale evolutionary dynamics of host-associated microbiomes. Cell 172 (6):1216–27. doi: 10.1016/j.cell.2018.02.015.
  • Flint, H. J., K. P. Scott, S. H. Duncan, P. Louis, and E. Forano. 2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3 (4):289–306. doi: 10.4161/gmic.19897.
  • Garcia-Perez, I., J. M. Posma, R. Gibson, E. S. Chambers, T. H. Hansen, H. Vestergaard, T. Hansen, M. Beckmann, O. Pedersen, P. Elliott, et al. 2017. Objective assessment of dietary patterns by use of metabolic phenotyping: A randomised, controlled, crossover trial. The Lancet Diabetes & Endocrinology 5 (3):184–95. doi: 10.1016/S2213-8587(16)30419-3.
  • Gérard, P. 2013. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens (Basel, Switzerland) 3 (1):14–24. doi: 10.3390/pathogens3010014.
  • Gibson, G. R., R. Hutkins, M. E. Sanders, S. L. Prescott, R. A. Reimer, S. J. Salminen, K. Scott, C. Stanton, K. S. Swanson, P. D. Cani, et al. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews. Gastroenterology & Hepatology 14 (8):491–502. doi: 10.1038/s41575-020-0344-2.
  • Goodrich, J. K., S. C. Di Rienzi, A. C. Poole, O. Koren, W. A. Walters, J. G. Caporaso, R. Knight, and R. E. Ley. 2014. Conducting a microbiome study. Cell 158 (2):250–62. doi: 10.1016/j.cell.2014.06.037.
  • Gutiérrez, N., and D. Garrido. 2019. Species deletions from microbiome consortia reveal key metabolic interactions between gut microbes. Msystems 4 (4):e00185-19. doi: 10.1128/mSystems.00185-19.
  • Hamaker, B. R., and Y. E. Tuncil. 2014. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. Journal of Molecular Biology 426 (23):3838–50. doi: 10.1016/j.jmb.2014.07.028.
  • Han, K.-H., Y. Kobayashi, Y. Nakamura, K-i Shimada, T. Aritsuka, K. Ohba, T. Morita, and M. Fukushima. 2014. Comparison of the effects of longer chain inulins with different degrees of polymerization on colonic fermentation in a mixed culture of swine fecal bacteria. Journal of Nutritional Science and Vitaminology 60 (3):206–12. doi: 10.3177/jnsv.60.206.
  • He, Y., C. Wu, J. Li, H. Li, Z. Sun, H. Zhang, P. de Vos, L.-L. Pan, and J. Sun. 2017. Inulin-type fructans modulates pancreatic-gut innate immune responses and gut barrier integrity during experimental acute pancreatitis in a chain length-dependent manner. Frontiers in Immunology 8:1209 doi: 10.3389/fimmu.2017.01209.
  • Healey, G., L. Brough, C. Butts, R. Murphy, K. Whelan, and J. Coad. 2016. Influence of habitual dietary fibre intake on the responsiveness of the gut microbiota to a prebiotic: Protocol for a randomised, double-blind, placebo-controlled, cross-over, single-centre study. Bmj Open 6 (9):e012504. doi: 10.1136/bmjopen-2016-012504.
  • Healey, G., R. Murphy, C. Butts, L. Brough, K. Whelan, and J. Coad. 2018. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: A randomised, double-blind, placebo-controlled, cross-over, human intervention study. British Journal of Nutrition 119 (2):176–89. doi: 10.1136/bmjopen-2016-012504.
  • Hjorth, M. F., L. Christensen, T. M. Larsen, H. M. Roager, L. Krych, W. Kot, D. S. Nielsen, C. Ritz, and A. Astrup. 2020. Pretreatment prevotella-to-bacteroides ratio and salivary amylase gene copy number as prognostic markers for dietary weight loss. The American Journal of Clinical Nutrition 111 (5):1079–86. doi: 10.1093/ajcn/nqaa007.
  • Holmes, Z. C., J. D. Silverman, H. K. Dressman, Z. Wei, E. P. Dallow, S. C. Armstrong, P. C. Seed, J. F. Rawls, and L. A. David. 2020. Short-chain fatty acid production by gut microbiota from children with obesity differs according to prebiotic choice and bacterial community composition. Mbio 11 (4):e00914-20. doi: 10.1101/2020.04.10.035808.
  • Isken, F., S. Klaus, M. Osterhoff, A. F. Pfeiffer, and M. O. Weickert. 2010. Effects of long-term soluble vs. insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6J mice. Journal of Nutritional Biochemistry 21 (4):278–84. doi: 10.1016/j.jnutbio.2008.12.012.
  • Jia, W., G. Xie, and W. Jia. 2018. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nature Reviews. Gastroenterology & Hepatology 15 (2):111–28. doi: 10.1038/nrgastro.2017.119.
  • Jiao, N., S. S. Baker, A. Chapa-Rodriguez, W. Liu, C. A. Nugent, M. Tsompana, L. Mastrandrea, M. J. Buck, R. D. Baker, R. J. Genco, et al. 2018. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 67 (10):1881–91. doi: 10.1136/gutjnl-2017-314307.
  • Joglekar, P., E. D. Sonnenburg, S. K. Higginbottom, K. A. Earle, C. Morland, S. Shapiro-Ward, D. N. Bolam, and J. L. Sonnenburg. 2018. Genetic variation of the SusC/SusD homologs from a polysaccharide utilization locus underlies divergent fructan specificities and functional adaptation in Bacteroides thetaiotaomicron strains. Msphere 3 (3):e00185-18. doi: 10.1128/mSphereDirect.00185-18.
  • Jovel, J.,. J. Patterson, W. Wang, N. Hotte, S. O'Keefe, T. Mitchel, T. Perry, D. Kao, A. L. Mason, K. L. Madsen, et al. 2016. Characterization of the gut microbiome using 16S or shotgun metagenomics. Frontiers in Microbiology 7:459 doi: 10.3389/fmicb.2016.00459.
  • Kaden-Volynets, V.,. C. Günther, J. Zimmermann, J. Beisner, C. Becker, and S. C. Bischoff. 2019. Deletion of the Casp8 gene in mice results in ileocolitis, gut barrier dysfunction, and malassimilation, which can be partially attenuated by inulin or sodium butyrate. The American Journal of Physiology-Gastrointestinal and Liver Physiology 317 (4):G493–G507. doi: 10.1152/ajpgi.00297.2018.
  • Ke, X., A. Walker, S.-B. Haange, I. Lagkouvardos, Y. Liu, P. Schmitt-Kopplin, M. von Bergen, N. Jehmlich, X. He, T. Clavel, et al. 2019. Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice. Molecular Metabolism 22:96–109. doi: 10.1016/j.molmet.2019.01.012.
  • Kelly, G. 2008. Inulin-type prebiotics - A review: Part 1. Alternative Medicine Review : A Journal of Clinical Therapeutic 13 (4):315–29. doi: 10.1136/aim.2009.000596.
  • Kindt, A., G. Liebisch, T. Clavel, D. Haller, G. Hörmannsperger, H. Yoon, D. Kolmeder, A. Sigruener, S. Krautbauer, C. Seeliger, et al. 2018. The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nature Communications 9 (1):3760 doi: 10.1038/s41467-018-05767-4.
  • Kliewer, S. A., and D. J. Mangelsdorf. 2015. Bile acids as hormones: The FXR-FGF15/19 pathway. Digestive Diseases (Basel, Switzerland) 33 (3):327–31. doi: 10.1159/000371670.
  • Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. B?Ckhed. 2016. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165 (6):1332–45. doi: 10.1016/j.cell.2016.05.041.
  • Kolida, S., D. Meyer, and G. R. Gibson. 2007. A double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humans. European Journal of Clinical Nutrition 61 (10):1189–95. doi: 10.1038/sj.ejcn.1602636.
  • Kolida, S., K. Tuohy, and G. R. Gibson. 2002. Prebiotic effects of inulin and oligofructose. British Journal of Nutrition 87 (S2):S193–S197. doi: 10.1038/sj.ejcn.1602636.
  • Kolodziejczyk, A. A., D. Zheng, and E. Elinav. 2019. Diet–microbiota interactions and personalized nutrition. Nature Reviews. Microbiology 17 (12):742–12. doi: 10.1038/s41579-019-0256-8.
  • Koropatkin, N. M., E. A. Cameron, and E. C. Martens. 2012. How glycan metabolism shapes the human gut microbiota. Nature Reviews. Microbiology 10 (5):323–35. doi: 10.1038/nrmicro2746.
  • Kumar, M., R. Nagpal, R. Kumar, R. Hemalatha, V. Verma, A. Kumar, C. Chakraborty, B. Singh, F. Marotta, S. Jain, et al. 2012. Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Experimental Diabetes Research 2012:902917. doi: 10.1155/2012/902917.
  • Lambertz, J., S. Weiskirchen, S. Landert, and R. Weiskirchen. 2017. Fructose: A dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Frontiers in Immunology 8:1159 doi: 10.3389/fimmu.2017.01159.
  • Leylabadlo, H. E., R. Ghotaslou, H. S. Kafil, M. M. Feizabadi, S. Y. Moaddab, S. Farajnia, E. Sheykhsaran, S. Sanaie, D. Shanehbandi, and H. B. Baghi. 2020. Non-alcoholic fatty liver diseases: From role of gut microbiota to microbial-based therapies. European Journal of Clinical Microbiology & Infectious Diseases 39 (4):613–27. doi: 10.1007/s10096-019-03746-1.
  • Li, N., S. Huang, L. Jiang, Z. Dai, T. Li, D. Han, and J. Wang. 2019. Characterization of the early life microbiota development and predominant lactobacillus species at distinct gut segments of low- and normal-birth-weight piglets. Frontiers in Microbiology 10:797. doi: 10.3389/fmicb.2019.00797.
  • Long, S. L., C. G. Gahan, and S. A. Joyce. 2017. Interactions between gut bacteria and bile in health and disease. Molecular Aspects of Medicine 56:54–65. doi: 10.1016/j.mam.2017.06.002.
  • Loughman, A., and H. M. Staudacher. 2020. Treating the individual with diet: Is gut microbiome testing the answer? The Lancet Gastroenterology & Hepatology 5 (5):437. doi: 10.1016/S2468-1253(20)30023-6.
  • Louis, P., H. J. Flint, and C. Michel. 2016. How to manipulate the microbiota: Prebiotics. In Microbiota of the human body: Implications in health and disease, ed. A. Schwiertz, 119–42. doi: 10.1007/978-3-319-31248-4_9.
  • Macfarlane, G. T., and S. Macfarlane. 2011. Fermentation in the human large intestine its physiologic consequences and the potential contribution of prebiotics. Journal of Clinical Gastroenterology 45:S120–S127. doi: 10.1097/MCG.0b013e31822fecfe.
  • Makki, K., E. C. Deehan, J. Walter, and F. Bäckhed. 2018. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe 23 (6):705–15. doi: 10.1016/j.chom.2018.05.003.
  • Mendes-Soares, H., T. Raveh-Sadka, S. Azulay, K. Edens, Y. Ben-Shlomo, Y. Cohen, T. Ofek, D. Bachrach, J. Stevens, D. Colibaseanu, et al. 2019. Assessment of a personalized approach to predicting postprandial glycemic responses to food among individuals without diabetes. JAMA Network Open 2 (2):e188102 doi: 10.1001/jamanetworkopen.2018.8102.
  • Meng, X., G. Zhang, H. Cao, D. Yu, X. Fang, W. M. Vos, and H. Wu. 2020. Gut dysbacteriosis and intestinal disease: Mechanism and treatment. Journal of Applied Microbiology 129 (4):787–805. doi: 10.1111/jam.14661.
  • Molinaro, A., A. Wahlström, and H.-U. Marschall. 2018. Role of bile acids in metabolic control. Trends in Endocrinology & Metabolism 29 (1):31–41. doi: 10.1016/j.tem.2017.11.002.
  • Moreira, G., F. Azevedo, L. Ribeiro, A. Santos, D. Guadagnini, P. Gama, E. Liberti, M. Saad, and C. Carvalho. 2018. Liraglutide modulates gut microbiota and reduces NAFLD in obese mice. The Journal of Nutritional Biochemistry 62:143–54. doi: 10.1016/j.jnutbio.2018.07.009.
  • Mouzaki, M.,. A. Y. Wang, R. Bandsma, E. M. Comelli, B. M. Arendt, L. Zhang, S. Fung, S. E. Fischer, I. G. McGilvray, and J. P. Allard. 2016. Bile acids and dysbiosis in non-alcoholic fatty liver disease. PloS One 11 (5):e0151829. doi: 10.1371/journal.pone.0151829.
  • Murea, M.,. L. Ma, and B. I. Freedman. 2012. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. The Review of Diabetic Studies : RDS 9 (1):6–22. doi: 10.1900/RDS.2012.9.6.
  • Nicolucci, A. C., M. P. Hume, I. Martinez, S. Mayengbam, J. Walter, and R. A. Reimer. 2017. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology 153 (3):711–22. doi: 10.1053/j.gastro.2017.05.055.
  • Nicolucci, A., and R. Reimer. 2017. Prebiotics as a modulator of gut microbiota in paediatric obesity. Pediatric Obesity 12 (4):265–73. doi: 10.1111/ijpo.12140.
  • Noureddin, M., Zelber, S. ‐Sagi, L. R. Wilkens, J. Porcel, C. J. Boushey, L. L. Marchand, H. R. Rosen, and V. W. Setiawan. 2020. Diet associations with nonalcoholic fatty liver disease in an ethnically diverse population: The Multiethnic Cohort. Hepatology (Baltimore, Md.) 71 (6):1940–52. doi: 10.1002/hep.30967.
  • Nunes-Alves, C. 2016. Microbiome: Microbiota-based nutrition plans . Nature Reviews. Microbiology 14 (1):1 doi: 10.1038/nrmicro.2015.10.
  • Pachikian, B. D., A. Essaghir, J.-B. Demoulin, E. Catry, A. M. Neyrinck, E. M. Dewulf, F. M. Sohet, L. Portois, L.-A. Clerbaux, Y. A. Carpentier, et al. 2013. Prebiotic approach alleviates hepatic steatosis: Implication of fatty acid oxidative and cholesterol synthesis pathways. Molecular Nutrition & Food Research 57 (2):347–359. doi: 10.1002/mnfr.201200364.
  • Patnode, M. L., Z. W. Beller, N. D. Han, J. Cheng, S. L. Peters, N. Terrapon, B. Henrissat, S. Le Gall, L. Saulnier, D. K. Hayashi, et al. 2019. Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell 179 (1):59–73. e13. doi: 10.1016/j.cell.2019.08.011.
  • Pedersen, H. K., S. K. Forslund, V. Gudmundsdottir, A. Ø. Petersen, F. Hildebrand, T. Hyötyläinen, T. Nielsen, T. Hansen, P. Bork, S. D. Ehrlich, et al. 2018. A computational framework to integrate high-throughput '-omics' datasets for the identification of potential mechanistic links. Nat Protoc 13 (12):2781–2800. doi: 10.1038/s41596-018-0064-z.
  • Perry, R. J., L. Peng, N. A. Barry, G. W. Cline, D. Zhang, R. L. Cardone, K. F. Petersen, R. G. Kibbey, A. L. Goodman, and G. I. Shulman. 2016. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome . Nature 534 (7606):213–217. doi: 10.1038/nature18309.
  • Porras, D., E. Nistal, S. Martínez-Flórez, J. González-Gallego, M. V. García-Mediavilla, and S. Sánchez-Campos. 2018. Intestinal microbiota modulation in obesity-related non-alcoholic fatty liver disease. Frontiers in Physiology 9:1813. doi: 10.3389/fphys.2018.01813.
  • Rakoff-Nahoum, S., K. R. Foster, and L. E. Comstock. 2016. The evolution of cooperation within the gut microbiota. Nature 533 (7602):255–259. +. doi: 10.1038/nature17626.
  • Reichardt, N., M. Vollmer, G. Holtrop, F. M. Farquharson, D. Wefers, M. Bunzel, S. H. Duncan, J. E. Drew, L. M. Williams, G. Milligan, et al. 2018. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. The ISME Journal 12 (2):610–622. doi: 10.1038/ismej.2017.196.
  • Rios-Covian, D., S. Arboleya, A. M. Hernandez-Barranco, J. R. Alvarez-Buylla, P. Ruas-Madiedo, M. Gueimonde, and C. G. de los Reyes-Gavilan. 2013. Interactions between bifidobacterium and bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria. Applied and Environmental Microbiology 79 (23):7518–7524. doi: 10.1128/aem.02545-13.
  • Riviere, A., M. Selak, A. Geirnaert, P. Van den Abbeele, and L. D. Vuyst. 2018. Complementary mechanisms for degradation of inulin-type fructans and arabinoxylan oligosaccharides among bifidobacterial strains suggest bacterial cooperation. Applied and Environmental Microbiology, ed. J. Björkroth 84 (9):e02893-17. USA: American Society for Microbiology. doi: 10.1128/AEM.02893-17.
  • Rodgers, G. P., and F. S. Collins. 2020. Precision nutrition-the answer to “what to eat to stay healthy”. JAMA 324 (8):735–736. doi: 10.1001/jama.2020.13601.
  • Rodriguez, J., S. Hiel, A. M. Neyrinck, T. Le Roy, S. A. Pötgens, Q. Leyrolle, B. D. Pachikian, M. A. Gianfrancesco, P. D. Cani, N. Paquot, et al. 2020. Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut 69 (11):1975–1987. doi: 10.1136/gutjnl-2019-319726.
  • Salazar, N., E. M. Dewulf, A. M. Neyrinck, L. B. Bindels, P. D. Cani, J. Mahillon, W. M. de Vos, J.-P. Thissen, M. Gueimonde, C. G. de los Reyes-Gavilán, et al. 2015. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clinical Nutrition 34 (3):501–507. doi: 10.1016/j.clnu.2014.06.001.
  • Sanz, Y., A. Santacruz, and P. Gauffin. 2010. Gut microbiota in obesity and metabolic disorders. The Proceedings of the Nutrition Society 69 (3):434–441. doi: 10.1017/S0029665110001813.
  • Schnabl, B., and D. A. Brenner. 2014. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 146 (6):1513–1524. doi: 10.1053/j.gastro.2014.01.020.
  • Schubert, K., S. W. Olde Damink, M. von Bergen, and F. G. Schaap. 2017. Interactions between bile salts, gut microbiota, and hepatic innate immunity. Immunological Reviews 279 (1):23–35. doi: 10.1111/imr.12579.
  • Schwiertz, A., D. Taras, K. Schäfer, S. Beijer, N. A. Bos, C. Donus, and P. D. Hardt. 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring, Md.) 18 (1):190–195. doi: 10.1038/oby.2009.167.
  • Schwimmer, J. B., J. S. Johnson, J. E. Angeles, C. Behling, P. H. Belt, I. Borecki, C. Bross, J. Durelle, N. P. Goyal, G. Hamilton, et al. 2019. Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease. Gastroenterology 157 (4):1109–1122. doi: 10.1053/j.gastro.2019.06.028.
  • Scott, K. P., J. C. Martin, S. H. Duncan, and H. J. Flint. 2014. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiology Ecology 87 (1):30–40. doi: 10.1111/1574-6941.12186.
  • Seki, E., and B. Schnabl. 2012. Role of innate immunity and the microbiota in liver fibrosis: Crosstalk between the liver and gut. The Journal of Physiology 590 (3):447–458. doi: 10.1113/jphysiol.2011.219691.
  • Serino, M. 2019. SCFAs - the thin microbial metabolic line between good and bad. Nature Reviews. Endocrinology 15 (6):318–319. doi: 10.1038/s41574-019-0205-7.
  • Sharifnia, T., J. Antoun, T. G. C. Verriere, G. Suarez, J. Wattacheril, K. T. Wilson, R. M. Peek, N. N. Abumrad, and C. R. Flynn. 2015. Hepatic TLR4 signaling in obese NAFLD. American Journal of Physiology. Gastrointestinal and Liver Physiology 309 (4):G270–G278. doi: 10.1152/ajpgi.00304.2014.
  • Sharma, P., C. Bhandari, S. Kumar, B. Sharma, P. Bhadwal, and N. Agnihotri. 2018. Dietary fibers: A way to a healthy microbiome. In Diet, microbiome and health. Elsevier, 299–345. doi: 10.1016/B978-0-12-811440-7.00011-9.
  • Singh, V., B. San Yeoh, A. A. Abokor, R. M. Golonka, Y. Tian, A. D. Patterson, B. Joe, M. Heikenwalder, and M. Vijay-Kumar. 2020. Vancomycin prevents fermentable fiber-induced liver cancer in mice with dysbiotic gut microbiota. Gut Microbes 11 (4):1077–1091. doi: 10.1080/19490976.2020.1743492.
  • Singh, V., B. S. Yeoh, B. Chassaing, X. Xiao, P. Saha, R. Aguilera Olvera, J. D. Lapek, L. Zhang, W.-B. Wang, S. Hao, et al. 2018. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 175 (3):679–694. doi: 10.1016/j.cell.2018.09.004.
  • Slavin, J. 2013. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 5 (4):1417–1435. doi: 10.3390/nu5041417.
  • Slavin, J., and J. Feirtag. 2011. Chicory inulin does not increase stool weight or speed up intestinal transit time in healthy male subjects. Food & Function 2 (1):72–77. doi: 10.1039/c0fo00101e.
  • Soderborg, T. K., S. E. Clark, C. E. Mulligan, R. C. Janssen, L. Babcock, D. Ir, B. Young, N. Krebs, D. J. Lemas, L. K. Johnson, et al. 2018. The gut microbiota in infants of obese mothers increases inflammation and susceptibility to NAFLD. Nature Communications 9 (1):1–12. doi: 10.1038/s41467-018-06929-0.
  • Song, X., L. Zhong, N. Lyu, F. Liu, B. Li, Y. Hao, Y. Xue, J. Li, Y. Feng, Y. Ma, et al. 2019. Inulin can alleviate metabolism disorders in ob/ob mice by partially restoring leptin-related pathways mediated by gut microbiota. Genomics, Proteomics & Bioinformatics 17 (1):64–75. doi: CNKI:SUN:GPBI.0.2019-01-007. doi: 10.1016/j.gpb.2019.03.001.
  • Sonnenburg, E. D., H. Zheng, P. Joglekar, S. K. Higginbottom, S. J. Firbank, D. N. Bolam, and J. L. Sonnenburg. 2010. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 141 (7):1241–1252. doi: 10.1016/j.cell.2010.05.005.
  • Tajadadi-Ebrahimi, M., F. Bahmani, H. Shakeri, H. Hadaegh, M. Hijijafari, F. Abedi, and Z. Asemi. 2014. Effects of daily consumption of synbiotic bread on insulin metabolism and serum high-sensitivity C-reactive protein among diabetic patients: A double-blind, randomized, controlled clinical trial. Annals of Nutrition & Metabolism 65 (1):34–41. doi: 10.1159/000365153.
  • Tang, Z.-Z., G. Chen, Q. Hong, S. Huang, H. M. Smith, R. D. Shah, M. Scholz, and J. F. Ferguson. 2019. Multi-omic analysis of the microbiome and metabolome in healthy subjects reveals microbiome-dependent relationships between diet and metabolites. Frontiers in Genetics 10:454 doi: 10.3389/fgene.2019.00454.
  • Thaiss, C. A. 2018. Microbiome dynamics in obesity. Science (New York, N.Y.) 362 (6417):903–904. doi: 10.1126/science.aav6870.
  • Tilg, H., N. Zmora, T. E. Adolph, and E. Elinav. 2020. The intestinal microbiota fuelling metabolic inflammation. Nature Reviews. Immunology 20 (1):40–15. doi: 10.1038/s41577-019-0198-4.
  • Tirosh, A., E. S. Calay, G. Tuncman, K. C. Claiborn, K. E. Inouye, K. Eguchi, M. Alcala, M. Rathaus, K. S. Hollander, I. Ron, et al. 2019. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Science Translational Medicine 11 (489):eaav0120. doi: 10.1126/scitranslmed.aav0120.
  • Tremaroli, V., and F. Bäckhed. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489 (7415):242–249. doi: 10.1038/nature11552.
  • Turnbaugh, P. J., R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis, and J. I. Gordon. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 (7122):1027–1031. doi: 10.1038/nature05414.
  • Turroni, F., C. Milani, S. Duranti, J. Mahony, D. van Sinderen, and M. Ventura. 2018. Glycan utilization and cross-feeding activities by bifidobacteria. Trends in Microbiology 26 (4):339–350. doi: 10.1016/j.tim.2017.10.001.
  • Vallianou, N. G., T. Stratigou, and S. Tsagarakis. 2018. Microbiome and diabetes: Where are we now? Diabetes Research and Clinical Practice 146:111–118. doi: 10.1016/j.diabres.2018.10.008.
  • van de Wiele, T., N. Boon, S. Possemiers, H. Jacobs, and W. Verstraete. 2007. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. Journal of Applied Microbiology 102 (2):452–460. doi: 10.1111/j.1365-2672.2006.03084.x.
  • van der Beek, C. M., E. E. Canfora, A. M. Kip, S. H. M. Gorissen, S. W. M. O. Damink, H. M. van Eijk, J. J. Holst, E. E. Blaak, C. H. C. Dejong, and K. Lenaerts. 2018. The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metabolism 87:25–35. doi: 10.1016/j.metabol.2018.06.009.
  • Van Loo, J. 2004. The specificity of the interaction with intestinal bacterial fermentation by prebiotics determines their physiological efficacy. Nutrition Research Reviews 17 (1):89–98. doi: 10.1079/nrr200377.
  • Vijay-Kumar, M., J. D. Aitken, F. A. Carvalho, T. C. Cullender, S. Mwangi, S. Srinivasan, S. V. Sitaraman, R. Knight, R. E. Ley, and A. T. Gewirtz. 2010. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science (New York, N.Y.) 328 (5975):228–231. doi: 10.1126/science.1179721.
  • Wan, Y.-J Y., and P. K. Jena. 2019. Precision dietary supplementation based on personal gut microbiota. Nature Reviews. Gastroenterology & Hepatology 16 (4):204–206. doi: 10.1038/s41575-019-0108-z.
  • Wang, D., C.-D. Liu, M.-L. Tian, C.-Q. Tan, G. Shu, Q.-Y. Jiang, L. Zhang, and Y.-L. Yin. 2019a. Propionate promotes intestinal lipolysis and metabolic benefits via AMPK/LSD1 pathway in mice. Journal of Endocrinology 243 (3):187–197. doi: 10.1530/JOE-19-0188.
  • Wang, X., L. Shi, X. Wang, Y. Feng, and Y. Wang. 2019b. MDG-1, an Ophiopogon polysaccharide, restrains process of non-alcoholic fatty liver disease via modulating the gut-liver axis. International Journal of Biological Macromolecules 141:1013–1021. doi: 10.1016/j.ijbiomac.2019.09.007.
  • Weitkunat, K., S. Schumann, K. J. Petzke, M. Blaut, G. Loh, and S. Klaus. 2015. Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice. The Journal of Nutritional Biochemistry 26 (9):929–937. doi: 10.1016/j.jnutbio.2015.03.010.
  • Wiele, T., N. Boon, S. Possemiers, H. Jacobs, and W. Verstraete. 2007. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. Journal of Applied Microbiology 102 (2):452–460. doi: 10.1111/j.1365-2672.2006.03084.x.
  • Xiong, X.,. E. S. Bales, D. Ir, C. E. Robertson, J. L. McManaman, D. N. Frank, and J. Parkinson. 2017. Perilipin-2 modulates dietary fat-induced microbial global gene expression profiles in the mouse intestine. Microbiome 5 (1):1–16. doi: 10.1186/s40168-017-0327-x.
  • Yang, X., F. He, Y. Zhang, J. Xue, K. Li, X. Zhang, L. Zhu, Z. Wang, H. Wang, and S. Yang. 2019. Inulin Ameliorates Alcoholic Liver Disease via Suppressing LPS-TLR4-Mψ Axis and Modulating Gut Microbiota in Mice . Alcoholism, Clinical and Experimental Research 43 (3):411–424. doi: 10.1111/acer.13950.
  • Younossi, Z., F. Tacke, M. Arrese, B. Chander Sharma, I. Mostafa, E. Bugianesi, V. Wai-Sun Wong, Y. Yilmaz, J. George, J. Fan, et al. 2019. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology (Baltimore, Md.) 69 (6):2672–2682. doi: 10.1002/hep.30251.
  • Zeevi, D., T. Korem, N. Zmora, D. Israeli, D. Rothschild, A. Weinberger, O. Ben-Yacov, D. Lador, T. Avnit-Sagi, M. Lotan-Pompan, et al. 2015. Personalized nutrition by prediction of glycemic responses. Cell 163 (5):1079–1094. doi: 10.1016/j.cell.2015.11.001.
  • Zhang, Q., H. Yu, X. Xiao, L. Hu, F. Xin, and X. Yu. 2018. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats. PeerJ. 6:e4446. doi: 10.7717/peerj.4446.
  • Zhao, S., C. Jang, J. Liu, K. Uehara, M. Gilbert, L. Izzo, X. Zeng, S. Trefely, S. Fernandez, A. Carrer, et al. 2020. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 579 (7800):586–591. doi: 10.1038/s41586-020-2101-7.
  • Zhu, Z.,. Y. Huang, X. Luo, Q. Wu, J. He, S. Li, and F. J. Barba. 2019. Modulation of lipid metabolism and colonic microbial diversity of high-fat-diet C57BL/6 mice by inulin with different chain lengths. Food Research International (Ottawa, Ont.) 123:355–363. doi: 10.1016/j.foodres.2019.05.003.
  • Zhu, L., S. Qin, S. Zhai, Y. Gao, and L. Li. 2017. Inulin with different degrees of polymerization modulates composition of intestinal microbiota in mice. FEMS Microbiology Letters 364 (10):fnx075. doi: 10.1093/femsle/fnx075.
  • Zmora, N., J. Suez, and E. Elinav. 2019. You are what you eat: Diet, health and the gut microbiota. Nature Reviews. Gastroenterology & Hepatology 16 (1):35–56. doi: 10.1038/s41575-018-0061-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.