1,732
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Sources, purification, immobilization and industrial applications of microbial lipases: An overview

ORCID Icon, ORCID Icon &

References

  • Abdala, A. F., A. P. Gallardo, L. G. Olvera, and E. M. E. Silva. 2017. Hydrolysis of carotenoid esters from Tagetes erecta by the action of lipases from Yarrowia lipolytica. Bioresources and Bioprocessing 4 (1):5–12. doi: 10.1186/s40643-016-0131-7.
  • Abdelraheem, E. M., H. Busch, U. Hanefeld, and F. Tonin. 2019. Biocatalysis explained: From pharmaceutical to bulk chemical production. Reaction Chemistry & Engineering 4 (11):1878–94. doi: 10.1039/C9RE00301K.
  • Abramić, M., I. Leščić, T. Korica, L. Vitale, W. Saenger, and J. Pigac. 1999. Purification and properties of extracellular lipase from Streptomyces rimosus. Enzyme and Microbial Technology 25 (6):522–9. doi.org/ (99)00077-0 doi: 10.1016/S0141-0229.
  • Adachi, D., S. Hama, K. Nakashima, T. Bogaki, C. Ogino, and A. Kondo. 2013. Production of biodiesel from plant oil hydrolysates using an Aspergillus oryzae whole-cell biocatalyst highly expressing Candida antarctica lipase B. Bioresource Technology 135:410–6. doi: 10.1016/j.biortech.2012.06.092.
  • Adamczak, M., and W. Bednarski. 2004. Enhanced activity of intracellular lipases from Rhizomucor miehei and Yarrowia lipolytica by immobilization on biomass support particles. Process Biochemistry 39 (11):1347–61. doi: 10.1016/S0032-9592(03)00266-8.
  • Adlercreutz, P. 2013. Immobilisation and application of lipases in organic media. Chemical Society Reviews 42 (15):6406–36. doi: 10.1039/C3CS35446F.
  • Adrio, J. L., and A. L. Demain. 2014. Microbial enzymes: Tools for biotechnological processes. Biomolecules 4 (1):117–39. doi: 10.3390/biom4010117.
  • Aghdassi, A., J. Mayerle, M. Kraft, A. W. Sielenkämper, C.-D. Heidecke, and M. M. Lerch. 2008. Diagnosis and treatment of pancreatic pseudocysts in chronic pancreatitis. Pancreas 36 (2):105–12. doi: 10.1097/MPA.0b013e31815a8887.
  • Ahmad, M., H. Melanie, P. Harald, and S. Helmut. 2014. Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology 98 (12):5301–17. doi: 10.1007/s00253-014-5732-5.
  • Ahn, J. H., J. G. Pan, and J. S. Rhee. 1999. Identification of the tliDEF ABC transporter specific for lipase in Pseudomonas fluorescens SIK W1. Journal of Bacteriology 181 (6):1847–52. doi: 10.1128/JB.181.6.1847-1852.1999.
  • Akimoto, M., M. Izawa, K. Hoshino, K.-I. Abe, and H. Takahashi. 2003. Lipase-catalyzed interesterification of soybean oil with an ω-3 polyunsaturated fatty acid concentrate prepared from sardine oil. Applied Biochemistry and Biotechnology 104 (2):105–18. doi: 10.1385/ABAB:104:2:105.
  • Akinboyo, C. I., A. C. Sick-Samuels, E. Singeltary, J. Fackler, J. Ascenzi, K. C. Carroll, Y. Maldonado, R. B. Brooks, I. Benowitz, L. E. Wilson, et al. 2018. Multistate outbreak of an emerging Burkholderia cepacia complex strain associated with contaminated oral liquid docusate sodium. Infection Control and Hospital Epidemiology 39 (2):237–9. doi: 10.1017/ice.2017.265.
  • Albayati, S. H., M. Malihe, I. S. N. Hasmah, M. A. M. Shukuri bin, T. A. Leow, M. S. F. Binti, M. N N. D. Binti, and R. A. R. R. N. Zaliha. 2020. Main structural targets for engineering lipase substrate specificity. Catalysts 10 (7):747. doi: 10.3390/catal10070747.
  • Alcazar-Valle, M., A. Gschaedler, H. Gutierrez-Pulido, A. Arana-Sanchez, and M. Arellano-Plaza. 2019. Fermentative capabilities of native yeast strains grown on juices from different Agave species used for tequila and mezcal production. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology] 50 (2):379–88. doi: 10.1007/s42770-019-00049-7.
  • Alfaro-Chávez, A. L., J.-W. Liu, J. L. Porter, A. Goldman, and D. L. Ollis. 2019. Improving on nature’s shortcomings: evolving a lipase for increased lipolytic activity, expression and thermostability. Protein Engineering, Design & Selection: PEDS 32 (1):13–24. doi: 10.1093/protein/gzz024.
  • Alizadeh, A. M., M. Masoomian, M. Shakooie, M. Z. Khajavi, and M. Farhoodi. 2022. Trends and applications of intelligent packaging in dairy products: A review. Critical Reviews in Food Science and Nutrition 62 (2):383–97. doi: 10.1080/10408398.2020.1817847.
  • Alkasir, R. S. J., M. Ornatska, and S. Andreescu. 2012. Colorimetric paper bioassay for the detection of phenolic compounds. Analytical Chemistry 84 (22):9729–37. doi: 10.1021/ac301110d.
  • Alnoch, R. C., A. A. Stefanello, Viviane, P. Martini, J. L. Richter, C. Mateo, E. M. de Souza, D. A. Mitchell, M. Muller-Santos, and N. Krieger. 2018. Co-expression, purification and characterization of the lipase and foldase of Burkholderia contaminans LTEB11. International Journal of Biological Macromolecules 116:1222–31. doi: 10.1016/j.ijbiomac.2018.05.086.
  • Alu’datt, M. H., T. Rababah, M. N. Alhamad, K. Ereifej, S. Gammoh, S. Kubow, and D. Tawalbeh. 2017. Preparation of mayonnaise from extracted plant protein isolates of chickpea, broad bean and lupin flour: chemical, physiochemical, nutritional and therapeutic properties. Journal of Food Science and Technology 54 (6):1395–405. doi: 10.1007/s13197-017-2551-6.
  • Alvarez, J. F., and V. J. Stella. 1989. The role of calcium ions and bile salts on the pancreatic lipase-catalyzed hydrolysis of triglyceride emulsions stabilized with lecithin. Pharmaceutical Research 6 (6):449–57. doi: 10.1023/a:1015956104500.
  • Alves-Bezerra, M., and D. E. Cohen. 2017. Triglyceride metabolism in the liver. Comprehensive Physiology 8 (1):1–22. doi: 10.1002/cphy.c170012.
  • Amit, K. S., M. M. Uddin, R. Rahman, S. M. R. Islam, and M. S. Khan. 2017. A review on mechanisms and commercial aspects of food preservation and processing. Agriculture & Food Security 6 (1):1–22. doi: 10.1186/s40066-017-0130-8.
  • Andriianova, N. A., Y. N. Biglova, and A. G. Mustafin. 2020. Effect of structural factors on the physicochemical properties of functionalized polyanilines. RSC Advances 10 (13):7468–91. doi: 10.1039/C9RA08644G.
  • Andualema, B., and A. Gessesse. 2012. Microbial lipases and their industrial applications: Review. Biotechnology (Faisalabad) 11 (3):100–18. doi: 10.3923/biotech.2012.100.118.
  • Anobom, C. D., A. S. Pinheiro, R. A. De-Andrade, E. C. G. Aguieiras, G. C. Andrade, M. V. Moura, R. V. Almeida, D., and M. Freire. 2014. From structure to catalysis: Recent developments in the biotechnological applications of lipases. BioMed Research International 2014:684506. doi: 10.1155/2014/684506.
  • Ansari, A. S., and Q. Husain. 2012. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnology Advances 30 (3):512–23. doi: 10.1016/j.biotechadv.2011.09.005.
  • Ansorena, D., M. J. Zapelena, I. Astiasarán, and J. Bello. 1998. Addition of palatase M (lipase from Rhizomucor miehei) to dry fermented sausages: Effect over lipolysis and study of the further oxidation process by GC MS. Journal of Agricultural and Food Chemistry 46 (8):3244–8. doi: 10.1021/jf980103p.
  • Anton, M. 2013. Egg yolk: Structures, functionalities and processes. Journal of the Science of Food and Agriculture 93 (12):2871–80. doi: 10.1002/jsfa.6247.
  • Arana-Peña, S., D. Carballares, Á. Berenguer-Murcia, A. R. Alcántara, R. C. Rodrigues, and R. Fernandez-Lafuente. 2020. One-pot use of combilipases for full modification of oils and fats: Multifunctional and heterogeneous substrates. Catalysts 10 (6):605. doi: 10.3390/catal10060605.
  • Arbige, M. V., and W. H. Pitcher. 1989. Industrial enzymology: A look towards the future. Trends in Biotechnology 7 (12):330–5. doi: 10.1016/0167-7799(89)90032-2.
  • Armand, M., B. Pasquier, M. André, P. Borel, M. Senft, J. Peyrot, J. Salducci, H. Portugal, V. Jaussan, and D. Lairon. 1999. Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. The American Journal of Clinical Nutrition 70 (6):1096–106. doi: 10.1093/ajcn/70.6.1096.
  • Augustyniak, W., A. A. Brzezinska, T. Pijning, H. Wienk, R. Boelens, B. W. Dijkstra, and M. T. Reetz. 2012. Biophysical characterization of mutants of Bacillus subtilis lipase evolved for thermostability: Factors contributing to increased activity retention. Protein Science: A Publication of the Protein Society 21 (4):487–97. doi: 10.1002/pro.2031.
  • Ayinla, Z. A., A. N. Ademakinwa, R. A. Gross, and F. K. Agboola. 2021. Biochemical and biophysical characterization of a small purified lipase from Rhizopus oryzae ZAC3. Biocatalysis and Biotransformation 39 (1):1–14. India: Wiley. doi: 10.1080/10242422.2021.1883006.
  • Badellino, K. O., M. L. Wolfe, M. P. Reilly, and D. J. Rader. 2005. Endothelial lipase concentrations are increased in metabolic syndrome and associated with coronary atherosclerosis. PLoS Medicine 3 (2):e22. doi: 10.1371/journal.pmed.0030022.
  • Baek, H. J., M.-J. Han, S. H. Lee, and S. Y. Lee. 2010. Enhanced display of lipase on the Escherichia coli cell surface, based on transcriptome analysis. Applied and Environmental Microbiology 76 (3):971–3. doi: 10.1128/AEM.02463-09.
  • Bakir, Z. B., and K. Metin. 2016. Purification and characterization of an alkali-thermostable lipase from thermophilic Anoxybacillus flavithermus HBB 134. Journal of Microbiology and Biotechnology 26 (6):1087–97. doi: 10.4014/jmb.1512.12056.
  • Balcão, V. M., A. L. Paiva, and F. X. Malcata. 1996. Bioreactors with immobilized lipases: State of the art. Enzyme and Microbial Technology 18 (6):392–416. doi: 10.1016/0141-0229(95)00125-5.
  • Baloch, M. K., and G. Hameed. 2005. Emulsification of oil in water as affected by different parameters. Journal of Colloid and Interface Science 285 (2):804–13. doi: 10.1016/j.jcis.2004.11.070.
  • Ban, K., S. Hama, K. Nishizuka, M. Kaieda, T. Matsumoto, A. Kondo, H. Noda, and H. Fukuda. 2002. Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production. Journal of Molecular Catalysis B: Enzymatic 17 (3–5):157–65. doi: 10.1016/S1381-1177(02)00023-1.
  • Bancerz, R., G. Ginalska, J. Fiedurek, and A. Gromada. 2005. Cultivation conditions and properties of extracellular crude lipase from the psychrotrophic fungus Penicillium chrysogenum 9’. Journal of Industrial Microbiology & Biotechnology 32 (6):253–60. doi: 10.1007/s10295-005-0235-0.
  • Baneyx, F. 1999. Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology 10 (5):411–21. doi: 10.1016/S0958-1669(99)00003-8.
  • Barbosa, O., C. Ortiz, R. Torres, and R. Fernandez-Lafuente. 2011. Effect of the immobilization protocol on the properties of lipase B from Candida antarctica in organic media: Enantiospecifc production of atenolol acetate. Journal of Molecular Catalysis B: Enzymatic 71 (3–4):124–32. doi: 10.1016/j.molcatb.2011.04.008.
  • Barrett, D. M., J. C. Beaulieu, and R. Shewfelt. 2010. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory measurement, and the effects of processing. Critical Reviews in Food Science and Nutrition 50 (5):369–89. doi: 10.1080/10408391003626322.
  • Barros, M., L. F. Fleuri, and G. A. Macedo. 2010. Seed lipases: Sources, applications, and properties-a review. Brazilian Journal of Chemical Engineering 27 (1):15–29. doi: 10.1590/S0104-66322010000100002.
  • Basso, A., and S. Serban. 2019. Industrial applications of immobilized enzymes -A review. Molecular Catalysis 479 (2019):110607. doi: 10.1016/j.mcat.2019.110607.
  • Batumalaie, K., E. Khalili, N. A. Mahat, F. Z. Huyop, and R. A. Wahab. 2018. A statistical approach for optimizing the protocol for overexpressing lipase KV1 in Escherichia coli: Purification and characterization. Biotechnology & Biotechnological Equipment 32 (1):69–87. doi: 10.1080/13102818.2017.1407670.
  • Bayne, L., R. V. Ulijn, and P. J. Halling. 2013. Effect of pore size on the performance of immobilised enzymes. Chemical Society Reviews 42 (23):9000–10. doi: 10.1039/c3cs60270b.
  • Becker, P., I. Abu-Reesh, S. Markossian, G. Antranikian, and H. Märkl. 1997. Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. IHI-91 on olive oil. Applied Microbiology and Biotechnology 48 (2):184–90. doi: 10.1007/s002530051036.
  • Bedran-Russo, A. K., G. F. Pauli, S.-N. Chen, J. McAlpine, C. S. Castellan, R. S. Phansalkar, T. R. Aguiar, C. M. P. Vidal, J. G. Napotilano, J.-W. Nam, et al. 2014. Dentin biomodification: Strategies, renewable resources and clinical applications. Dental Materials: Official Publication of the Academy of Dental Materials 30 (1):62–76. doi: 10.1016/j.dental.2013.10.012.
  • Beisson, F., A. Tiss, C. Rivière, and R. Verger. 2000. Methods for lipase detection and assay: A critical review. European Journal of Lipid Science and Technology 102 (2):133–53. doi: 0931-5985/2000/0202-0133 $17.50+.50/0 doi: 10.1002/(SICI)1438-9312(200002)102:2<133::AID-EJLT133>3.0.CO;2-X.
  • Benzinger, W., A. Becker, and K. J. Hüttinger. 1996. Chemistry and kinetics of chemical vapor deposition of pyrocarbon: I. Fundamentals of kinetics and chemical reaction engineering. Carbon 34 (8):957–66. doi: 10.1016/0008-6223(96)00010-3.
  • Bezerra, C. S., C. M. G. D. F. Lemos, M. D. Sousa, and L. R. B. Goncalves. 2015. Enzyme immobilization onto renewable polymeric matrixes: Past, present, and future trends. Journal of Applied Polymer Science 132(26):1–15. doi:10.1002/app.42125.
  • Bezerra, R. M., D. M. A. Neto, W. S. Galvão, N. S. Rios, A. C. L. d M Carvalho, M. A. Correa, F Bohn, R Fernandez-Lafuente, P. B. Fechine, M. C. De Mattos, et al. 2017. Design of a lipase-nano particle biocatalysts and its use in the kinetic resolution of medicament precursors. Biochemical Engineering Journal 132(26):104–15. doi:10.1016/j.bej.2017.05.024.
  • Bilal, M., M. Asgher, H. Cheng, Y. Yan, Hafiz, and M. N. Iqbal. 2019. Multi-point enzyme immobilization, surface chemistry, and novel platforms: A paradigm shift in biocatalyst design. Critical Reviews in Biotechnology 39 (2):202–19. doi: 10.1080/07388551.2018.1531822.
  • Bilal, M., C. D. Fernandes, T. Mehmood, F. Nadeem, Q. Tabassam, and L. F. R. Ferreira. 2021. Immobilized lipases-based nano-biocatalytic systems - A versatile platform with incredible biotechnological potential. International Journal of Biological Macromolecules 175 (1):108–22. doi: 10.1016/j.ijbiomac.2021.02.010.
  • Bjurlin, M. A., S. Bloomer, and M. J. Haas. 2001. Composition and activity of commercial triacylglycerol acylhydrolase preparations. Journal of the American Oil Chemists’ Society 78 (2):153–60. doi: 10.1007/s11746-001-0236-9.
  • Blank, K., J. Morfill, H. Gumpp, and H. E. Gaub. 2006. Functional expression of Candida antarctica lipase B in Eschericha coli. Journal of Biotechnology 125 (4):474–83. doi: 10.1016/j.jbiotec.2006.04.004.
  • Bloomer, S., P. Adlercreutz, and B. Mattiasson. 1990. Triglyceride interesterification by lipases. 1. Cocoa butter equivalents from a fraction of palm oil. Journal of the American Oil Chemists’ Society 67 (8):519–24. 519-524. doi: 10.1007/BF02540759.
  • Bocchetta, P. 2020. Ionotropic gelation of chitosan for next-generation composite proton. Conducting. Flat structures. Molecules 25 (7):1632. doi: 10.3390/molecules25071632.
  • Bockelmann, W. 2000. Secondary cheese starter cultures. Technology of Cheesemaking: ed. B. A. Law, A. Y. Tamime, 193–230. USA: Blackwell Publishing Ltd. doi: 10.1002/9781444323740.
  • Boel, E., B. Huge-Jensen, M. Christensen, L. Thim, and N. P. Fiil. 1988. Rhizomucor miehei triglyceride lipase is synthesized as a precursor. Lipids 23 (7):701–6. doi: 10.1007/BF02535672.
  • Boller, T., C. Meier, and S. Menzler. 2002. Eupergit oxirane acrylic beads: How to make enzymes fit for biocatalysis. Organic Process Research & Development 6 (4):509–19. doi: 10.1021/op015506w.
  • Bora, L., D. Gohain, and R. Das. 2013. Recent advances in production and biotechnological applications of thermostable and alkaline bacterial lipases. Journal of Chemical Technology & Biotechnology 88 (11):n/a–1970. doi: 10.1002/jctb.4170.
  • Borkar, P. S., R. G. Bodade, S. R. Rao, and C. N. Khobragade. 2009. Purification and characterization of extracellular lipase from a new strain: Pseudomonas aeruginosa SRT 9. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology] 40 (2):358–66. doi: 10.1590/S1517-83822009000200028.
  • Borrelli, G. M., and D. Trono. 2015. Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. International Journal of Molecular Sciences 16 (9):20774–840. doi: 10.3390/ijms160920774.
  • Bovara, R., G. Carrea, G. Ottolina, and S. Riva. 1993. Water activity does not influence the enantioselectivity of lipase PS and lipoprotein lipase in organic solvents. Biotechnology Letters 15 (2):169–74. doi: 10.1007/BF00133018.
  • Bracco, U. 1994. Effect of triglyceride structure on fat absorption. The American Journal of Clinical Nutrition 60 (6 Suppl):1002S–9S. doi: 10.1093/ajcn/60.6.1002S.
  • Brena, B., P. González-Pombo, and F. Batista-Viera. 2013. Immobilization of enzymes: A literature survey. In Immobilization of enzymes and cells. Methods in molecular biology (methods and protocols), ed. J. Guisan, vol 1051. Totowa, NJ: Humana Press. doi: 10.1007/978-1-62703-550-7_2.
  • Brennan, N. M., T. M. Cogan, M. Loessner, and S. Scherer. 2004. Bacterial surface-ripened cheeses. Cheese: chemistry, Physics and Microbiology 2:199–225. doi: 10.1016/S1874-558X.(04)80045-9
  • Brindley, D. N. 1991. Metabolism of triacylglycerols. In New comprehensive biochemistry, ed. D. E. Vance, J. E. Vance. vol. 20:171–203. London: Elsevier. doi: 10.1016/S0167-7306(08)60334-8.
  • Brocca, S., F. Secundo, M. Ossola, L. Alberghina, G. Carrea, and M. Lotti. 2003. Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes. Protein Science: A Publication of the Protein Society 12 (10):2312–9. doi: 10.1110/ps.0304003.
  • Budhwani, A. A., Aziz, A. Maqbool, T. Hussain, and M. N. Syed. 2019. Production of biodiesel by enzymatic transesterification of non-edible Salvadora persica (Pilu) oil and crude coconut oil in a solvent-free system. Bioresources and Bioprocessing 6 (1):1–9. doi: 10.1186/s40643-019-0275-3.
  • Bueso, F., L. Moreno, M. Cedeño, and K. Manzanarez. 2015. Lipase-catalyzed biodiesel production and quality with Jatropha curcas oil: Exploring its potential for Central America. Journal of Biological Engineering 9 (1):1–7. doi: 10.1186/s13036-015-0009-9.
  • Califano, V., and A. Costantini. 2020. Immobilization of cellulolytic enzymes in mesostructured silica materials. Catalysts 10 (6):706. doi: 10.3390/catal10060706.
  • Carneiro, E., A. K. P. Araújo, Bastos, U. M. F. de Oliveira, L. J. B. L. de Matos, W. S. Adriano, R. R. d. C. Monteiro, J. C. S. d. Santos, and L. R. B. Gonçalves. 2020. Improving the catalytic features of the lipase from Rhizomucor miehei immobilized on chitosan-based hybrid matrices by altering the chemical activation conditions. Química Nova 43 (9):1234–9. doi: 10.21577/0100-4042.20170615.
  • Carrie, A. T., P. J. Delaquis, and G. Mazza. 1999. Detection and measurement of microbial lipase activity: A review. Critical Reviews in Food Science and Nutrition 39 (2):165–87. doi: 10.1080/10408399908500492.
  • Carvalho, N. B., J. M. P. Barbosa, M. V. S. Oliveira, A. T. Fricks, Á. S. Lima, and C. M. F. Soares. 2013. Biochemical properties of Bacillus sp. ITP-001 lipase immobilized with a sol gel process. Química Nova 36 (1):52–8. doi: 10.1590/S0100-40422013000100010.
  • Carvalho, P. d. O., F. J. Contesini, R. Bizaco, S. Calafatti, and G. A. Macedo. 2006. Optimization of enantioselective resolution of racemic ibuprofen by native lipase from Aspergillus niger. Journal of Industrial Microbiology & Biotechnology 33 (8):713–8. doi: 10.1007/s10295-006-0138-8.
  • Casas-Godoy, L., S. Duquesne, F. Bordes, G. Sandoval, and A. Marty. 2012. Lipase: An overview. Lipases and phospholipases SE-1. Methods in Molecular Biology (Methods and Protocols), ed. G. Sandoval, vol. 861, pp. 3–30. New York, NY: Humana Press. doi: 10.1007/978-1-61779-600-5_1
  • Chaffin, W. L. 2008. Candida albicans cell wall proteins. Microbiology and Molecular Biology Reviews: MMBR 72 (3):495–544. doi: 10.1128/MMBR.00032-07.
  • Chahinian, H., and L. Sarda. 2009. Distinction between esterases and lipases: Comparative biochemical properties of sequence-related carboxylesterases. Protein and Peptide Letters 16 (10):1149–61. doi: 10.2174/092986609789071333.
  • Chamorro, S., J. M. Sanchez-Montero, A. R. Alcantara, and J. V. Sinisterra. 1998. Treatment of Candida rugosa lipase with short-chain polar organic solvents enhances its hydrolytic and synthetic activities. Biotechnology Letters 20 (5):499–505. doi: 10.1023/A:1005448431237.
  • Chandra, P., Enespa, and D. P. Singh. 2020a. Microplastic degradation by bacteria in the aquatic ecosystem. In Microorganisms for sustainable environment and health, 431–467. India: Elsevier. doi.10.1016/B978-0-12-819001-2.00022-X
  • Chandra, P., Enespa, R. Singh, and P. K. Arora. 2020b. Microbial lipases and their industrial applications: A comprehensive review. Microbial Cell Factories 19 (1):1–42. doi: 10.1186/s12934-020-01428-8.
  • Chandra, P., and D. P. Singh. 2014. Removal of Cr (VI) by a halotolerant bacterium Halomonas sp. CSB 5 isolated from sāmbhar salt Lake Rajasthan (India). Cell Molecular Biology 60 (5):64–72. PMID: 25535715.
  • Chang, H.-J., and J.-H. Lee. 2021. Regiospecific positioning of palmitic acid in triacylglycerol structure of enzymatically modified lipids affects physicochemical and in vitro digestion properties. Molecules 26 (13):4015. doi: 10.3390/molecules26134015.
  • Chapman, J., A. E. Ismail, and C. Z. Dinu. 2018. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 8 (6):238. doi: 10.3390/catal8060238.
  • Chen, F., J. Sun, Z. Han, X. Yang, J. Xian, A. Lv, X. Hu, and H. Shi. 2019. Isolation, identification and characteristics of Aeromonas veronii from diseased crucian carp (Carassius auratus gibelio). Frontiers in Microbiology 10:2742. doi: 10.3389/fmicb.2019.02742.
  • Cheng, Y., B. Ma, C.-P. Tan, O.-M. Lai, W. Panpipat, L.-Z. Cheong, and C. Shen. 2020. Hierarchical macro-microporous ZIF-8 nanostructures as efficient nano-lipase carriers for rapid and direct electrochemical detection of nitrogenous diphenyl ether pesticides. Sensors and Actuators B: Chemical 321 (128477):128477. doi: 10.1016/j.snb.2020.128477.
  • Chin, V. K., T. Y. Lee, B. Rusliza, and P. P. Chong. 2016. Dissecting Candida albicans infection from the perspective of C. albicans virulence and omics approaches on host-pathogen interaction: A review. International Journal of Molecular Sciences 17 (10):1643. doi: 10.3390/ijms17101643.
  • Cho, Y. K., and J. E. Bailey. 1977. Enzyme immobilization on activated carbon: Alleviation of enzyme deactivation by hydrogen peroxide. Biotechnology and Bioengineering 19 (5):769–75. doi: 10.1002/bit.260190514.
  • Choi, J. H., and S. Y. Lee. 2004. Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied Microbiology and Biotechnology 64 (5):625–35. doi: 10.1007/s00253-004-1559-9.
  • Coelho, A. L., Silva, and R. C. Orlandelli. 2021. Immobilized microbial lipases in the food industry: A systematic literature review. Critical Reviews in Food Science and Nutrition 61 (10):1689–703. doi: 10.1080/10408398.2020.1764489.
  • Colón-Ramos, U., R. Monge-Rojas, and H. Campos. 2014. Impact of WHO recommendations to eliminate industrial trans-fatty acids from the food supply in Latin America and the Caribbean. Health Policy and Planning 29 (5):529–41. doi: 10.1093/heapol/czt034.
  • Contesini, F. J., M. G. Davanço, G. P. Borin, K. G. Vanegas, J. P. Gonçalves Cirino, R. R. de Melo, U. H. Mortensen, K. Hildén, D. R. Campos, P. de, et al. 2020. Advances in recombinant lipases: Production, engineering, immobilization, and application in the pharmaceutical industry. Catalysts 10 (9):1032. doi: 10.3390/catal10091032.
  • Contesini, F. J., D. B. Lopes, G. A. Macedo, M. da, G. Nascimento, P. de, and O. Carvalho. 2010. Aspergillus sp. lipase: Potential ­biocatalyst for industrial use. Journal of Molecular Catalysis B: Enzymatic 67 (3–4):163–71. doi: 10.1016/j.molcatb.2010.07.021.
  • Cooney, M. J. 2017. Kinetic measurements for enzyme immobilization. In Enzyme stabilization and immobilization. Methods in molecular biology (methods and protocols), ed. S. Minteer, vol. 679. Totowa, NJ: Humana Press. doi: 10.1007/978-1-60761-895-9_17.
  • Corrêa, R. C. G., R. M. Peralta, A. Bracht, Isabel, and C. F. R. Ferreira. 2017. The emerging use of mycosterols in the food industry along with the current trend of extended use of bioactive phytosterols. Trends in Food Science & Technology 67:19–35. doi: 10.1016/j.tifs.2017.06.012.
  • Cregg, J. M., J. L. Cereghino, J. Shi, and D. R. Higgins. 2000. Recombinant protein expression in Pichia pastoris. Molecular Biotechnology 16 (1):23–52. doi: 10.1385/MB:16:1:23.
  • Crielly, E. M., N. A. Logan, and A. Anderton. 1994. Studies on the Bacillus flora of milk and milk products. The Journal of Applied Bacteriology 77 (3):256–63. doi: 10.1111/j.1365-2672.1994.tb03072.x.
  • da Silva, V. C., Fernandes, F. J. Contesini, and P. d O. Carvalho. 2009. Enantioselective behavior of lipases from Aspergillus niger immobilized in different supports. Journal of Industrial Microbiology & Biotechnology 36 (7):949–54. doi: 10.1007/s10295-009-0573-4.
  • Dalgleish, D. G. 1993. The enzymatic coagulation of milk. In Cheese: Chemistry, physics, and microbiology, ed. P. F. Fox, 69–100. Boston, MA: Springer. doi: 10.1007/978-1-4615-2650-6_3.
  • Dandavate, V., H. Keharia, and D. Madamwar. 2011. Ester synthesis using Candida rugosa lipase immobilized on magnetic nanoparticles. Biocatalysis and Biotransformation 29 (1):37–45. doi: 10.3109/10242422.2010.550044.
  • Darvishi, F. 2012. Expression of native and mutant extracellular lipases fromYarrowia lipolytica in Saccharomyces cerevisiae. Microbial Biotechnology 5 (5):634–41. doi: 10.1111/j.1751-7915.2012.00354.x.
  • Datta, S., L. R. Christena, and Y. R. S. Rajaram. 2013. Enzyme immobilization: An overview on techniques and support materials. 3 Biotech 3 (1):1–9. doi: 10.1007/s13205-012-0071-7.
  • Davis, B. A., A. Nagarajan, L. R. Forrest, and S. K. Singh. 2016. Mechanism of paroxetine (paxil) inhibition of the serotonin transporter. Scientific Reports 6 (1):23789–13. doi: 10.1038/srep23789.
  • De Jong, E. D., W. J. H V. A. N. Berkel, R. P. V. A. N D. E. R. Zwan, and J. A. M D. E. Bont. 1992. Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum. A novel aromatic alcohol oxidase containing covalently bound FAD. European Journal of Biochemistry 208 (3):651–7. doi: 10.1111/j.1432-1033.1992.tb17231.x.
  • de Marco, A. 2009. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microbial Cell Factories 8 (26):26–14. doi: 10.1186/1475-2859-8-26.
  • De Maria, L., J. Vind, K. M. Oxenbøll, A. Svendsen, and S. Patkar. 2007. Phospholipases and their industrial applications. Applied Microbiology and Biotechnology 74 (2):290–300. doi: 10.1007/s00253-006-0775-x.
  • de Moura Barboza, A., A. B. d. Silva, E. M. d. Silva, W. P. d. Souza, M. A. Soares, L. G. d. Vasconcelos, A. J. Terezo, and M. Castilho. 2019. A biosensor based on microbial lipase immobilized on lamellar zinc hydroxide-decorated gold nanoparticles for carbendazim determination. Analytical Methods 11 (42):5388–97. doi: 10.1039/C9AY01600G.
  • de Souza, S. P., R. A. D d. Almeida, G. G. Garcia, R. A. C. Leão, J. Bassut, R. O. M. A d. Souza, and I. Itabaiana. Jr. 2018. Immobilization of lipase B from Candida antarctica on epoxy‐functionalized silica: Characterization and improving biocatalytic parameters. Journal of Chemical Technology & Biotechnology 93 (1):105–11. doi: 10.1002/jctb.5327.
  • de Souza, T. C., T. d S. Fonseca, J. de Sousa Silva, P. J. M. Lima, C. A. C. G. Neto, R. R. C. Monteiro, M. V. P. Rocha, M. C. de Mattos, J. C. S. Dos Santos, and L. R. B. Gonçalves. 2020. Modulation of lipase B from Candida antarctica properties via covalent immobilization on eco-friendly support for enzymatic kinetic resolution of rac-indanyl acetate. Bioprocess and Biosystems Engineering 43 (12):2253–68. doi: 10.1007/s00449-020-02411-8.
  • Delorme, V., R. Dhouib, S. Canaan, F. Fotiadu, F. Carrière, and J. F. Cavalier. 2011. Effects of surfactants on lipase structure, activity, and inhibition. Pharmaceutical Research 28 (8):1831–42. doi: 10.1007/s11095-010-0362-9.
  • Demuner, B. J., Nei, P. Junior, and A. Antunes. 2011. Technology prospecting on enzymes for the pulp and paper industry. Journal of Technology Management & Innovation 6 (3):148–58. doi: 10.4067/S0718-27242011000300011.
  • DiCosimo, R., J. McAuliffe, A. J. Poulose, and G. Bohlmann. 2013. Industrial use of immobilized enzymes. Chemical Society Reviews 42 (15):6437–74. doi: 10.1039/c3cs35506c.
  • Dinanta, U., Q. Azis Boing Sitanggang, D. R. Adawiyah, and P. Hariyadi. 2019. Lipase-catalyzed interesterification for the synthesis of medium-long-medium (MLM) structured Lipids - A Review. Food Technology and Biotechnology 57 (3):305–18. doi: 10.17113/ftb.57.03.19.6025.
  • Dobreva, V., B. Zhekova, and G. Dobrev. 2019. Use of aqueous two-phase and three-phase partitioning systems for purification of lipase obtained in solid-state fermentation by Rhizopus arrhizus. 2019. The Open Biotechnology Journal 13 (1):27–36. doi: 10.2174/1874070701913010027.
  • Doolittle, M. H., and M. Péterfy. 2010. Mechanisms of lipase maturation. Clinical Lipidology 5 (1):117–30. doi: 10.2217/clp.09.84.
  • Dugat-Bony, E., C. Straub, A. Teissandier, D. Onésime, V. Loux, C. Monnet, F. Irlinger, S. Landaud, M.-N. Leclercq-Perlat, P. Bento, et al. 2015. Overview of a surface-ripened cheese community functioning by meta-omics analyses. PloS One 10 (4):e0124360. doi.org./101371journal pone 0124360 doi: 10.1371/journal.pone.0124360.
  • Dugourd, D., C. Martin, C. R. Rioux, M. Jacques, and J. Harel. 1999. Characterization of a periplasmic ATP-binding cassette iron import system of Brachyspira (Serpulina) hyodysenteriae. Journal of Bacteriology 181 (22):6948–57. doi: 10.1128/JB.181.22.6948-6957.1999.
  • Edwards, F. L., and P. B. Tchounwou. 2005. Environmental toxicology and health effects associated with methyl parathion exposure-a scientific review. International Journal of Environmental Research and Public Health 2 (3–4):430–41. doi: 10.3390/ijerph2005030007.
  • Eggert, T., C. Leggewie, M. Puls, W. Streit, G. Van Pouderoyen, B. W. Dijkstra, and K.-E. Jaeger. 2004. Novel biocatalysts by identification and design. Biocatalysis and Biotransformation 22 (2):141–6. doi: 10.1080/10242420410001710056.
  • Eissa, S., C. Tlili, L. L’Hocine, and M. Zourob. 2012. Electrochemical immunosensor for the milk allergen β-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes. Biosensors & Bioelectronics 38 (1):308–13. doi: 10. 1016/j.bios.2012.06.008.
  • El Khattabi, M., P. V. Gelder, W. Bitter, and J. Tommassen. 2003. Role of the calcium ion and the disulfide bond in the Burkholderia glumae lipase. Journal of Molecular Catalysis B: Enzymatic 22 (5–6):329–38. doi: 10.1016/S1381-1177(03)00047-X.
  • El Seoud, O. A., W. J. Baader, and E. L. Bastos. 2016. Practical chemical kinetics in solution. Encyclopedia of Physical Organic Chemistry American Cancer Society, eds. Z. Wang, U. Wille, E. Juaristi, 1–68. Hoboken, New Jersey: John Wiley & Sons. doi: 10.1002/9781118468586.epoc1012.
  • Ene-Obong, H. N., and E. Carnovale. 1992. Nigerian soup condiments: Traditional processing and potential as dietary fiber sources. Food Chemistry 43 (1):29–34. doi: 10.1016/0308-8146(92)90237-V.
  • Engasser, J.-M., and C. S. A. B. A. Horvath. 1975. Electrostatic effects on the kinetics of bound enzymes. The Biochemical Journal 145 (3):431–5. doi: 10.1042/bj1450431.
  • Eom, G., J. Tae, K. Song, J. H. Ahn, Y. S. Seo, and J. S. Rhee. 2005. Enhancement of the efficiency of secretion of heterologous lipase in Escherichia coli by directed evolution of the ABC transporter system. Applied and Environmental Microbiology 71 (7):3468–74. doi: 10.1128/AEM.71.7.3468-3474.2005.
  • Ewens, H., L. Metilli, and E. Simone. 2021. Analysis of the effect of recent reformulation strategies on the crystallization behaviour of cocoa butter and the structural properties of chocolate. Current Research in Food Science 4:105–14. doi: 10.1016/j.crfs.2021.02.009.
  • Facin, B. R., M. S. Melchiors, A. Valério, J. V. Oliveira, and D. d. Oliveira. 2019. Driving immobilized lipases as biocatalysts: 10 years state of the art and future prospects. Industrial & Engineering Chemistry Research 58 (14):5358–78. doi: 10.1021/acs.iecr.9b00448.
  • Falcocchio, S., C. Ruiz, F. I J. Pastor, L. Saso, and P. Diaz. 2006. Propionibacterium acnes GehA lipase, an enzyme involved in acne development, can be successfully inhibited by defined natural substances. Journal of Molecular Catalysis B: Enzymatic 40 (3–4):132–7. doi: 10.1016/j.molcatb.2006.02.011.
  • Farag, A. M., and M. A. Hassan. 2004. Purification, characterization, and immobilization of a keratinase from Aspergillus oryzae. Enzyme and Microbial Technology 34 (2):85–93. doi: 10.1016/j.enzmictec.2003.09.002.
  • Faraldos, J. A., J.-L. Giner, D. H. Smith, M. Wilson, K. Ronhovde, E. Wilson, David Clevette, A. E. Holmes, and K. Rouhier. 2011. Enzymatic resolution of 1-phenylethanol and formation of a diastereomer: An undergraduate H NMR experiment to introduce chiral chemistry. Journal of Chemical Education 88 (3):334–6. doi: 10.1021/ed100325p.
  • Farfán, M., A. Álvarez, A. Gárate, and P. Bouchon. 2015. Comparison of chemical and enzymatic interesterification of fully hydrogenated soybean oil and walnut oil to produce a fat base with adequate nutritional and physical characteristics. Food Technology and Biotechnology 53 (3):361–6. doi: 10.17113/ftb.53.03.15.3854.
  • Farrokh, P., B. Yakhchali, and A. A. Karkhane. 2014. Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology] 45 (2):677–87. doi: 10.1590/s1517-83822014000200042.
  • Fernandez, I., and N. Khiar. 2003. Recent developments in the synthesis and utilization of chiral sulfoxides. Chemical Reviews 103 (9):3651–706. doi: 10.1021/cr990372u.
  • Fernandez-Lafuente, R. 2009. Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation. Enzyme and Microbial Technology 45 (6–7):405–18. doi: 10.1016/j.enzmictec.2009.08.009.
  • Fernandez-Lorente, G., J. Rocha-Martín, and J. M. Guisan. 2020. Immobilization of lipases by adsorption on hydrophobic supports: Modulation of enzyme properties in biotransformations in anhydrous media. In Immobilization of enzymes and cells, 143–58. New York, NY: Humana. doi: 10.1007/978-1-0716-0215-7_9.
  • Ferreira-Dias, S., G. Sandoval, F. Plou, and F. Valero. 2013. The potential use of lipases in the production of fatty acid derivatives for the food and nutraceutical industries. Electronic Journal of Biotechnology 16 (3):12. doi: 10.2225/vol16-issue3-full.text-5
  • Fickers, P., J. Destain, and P. Thonart. 2009. Improvement of Yarrowia lipolytica lipase production by fed-batch fermentation. Journal of Basic Microbiology 49 (2):212–5. doi: 10.1002/jobm.200800186.
  • Foegeding, E. A., P. J. Luck, and J. P. Davis. 2006. Factors determining the physical properties of protein foams. Food Hydrocolloids 20 (2–3):284–92. doi: 10.1016/j.foodhyd.2005.03.014.
  • Forde, A., and G. F. Fitzgerald. 2000. Biotechnological approaches to the understanding and improvement of mature cheese flavor. Current Opinion in Biotechnology 11 (5):484–9. doi: 10.1016/S0958-1669.(00)00130-0
  • Fourie, R., O. O. Kuloyo, B. M. Mochochoko, J. Albertyn, and C. H. Pohl. 2018. Iron at the Centre of Candida albicans Interactions. Frontiers in Cellular and Infection Microbiology 8 (2018):185. doi: 10.3389/fcimb.2018.00185.
  • Fox, P. F. 1993. Exogenous enzymes in dairy technology—a review 1. Journal of Food Biochemistry 17 (3):173–99. doi: 10.1111/j.1745-4514.1993.tb00466.x.
  • Frayn, K. N., F. Karpe, B. A. Fielding, I. A. Macdonald, and S. W. Coppack. 2003. Integrative physiology of human adipose tissue. International Journal of Obesity 27 (8):875–88. doi:10.1038/sj.ijo.0802326.
  • Fuglsang, C., Crone, C. Johansen, S. Christgau, and J. Adler-Nissen. 1995. Antimicrobial enzymes: Applications and future potential in the food industry. Trends in Food Science & Technology 6 (12):390–6. doi: 10.1016/S0924-2244(00)89217-1.
  • Fukunaga, K., N. Maruoka, Y. Sugimura, K. Nakao, and T. Shimizu. 1998. Preparation of the gemini detergent-lipase complexes and their high enzymatic activities in the transesterifications in homogeneous organic solvents. Biotechnology Letters 20 (12):1161–5. doi: 10.1023/A:1005336705912.
  • Gácser, A., F. Stehr, C. Kröger, L. Kredics, W. Schäfer, and J. D. Nosanchuk. 2007. Lipase 8 affects the pathogenesis of Candida albicans. Infection and Immunity 75 (10):4710–8. doi: 10.1128/IAI.00372-07.
  • Galvão, W. S., B. B. Pinheiro, L. R. B. Golçalves, M. C. de Mattos, T. S. Fonseca, T. Regis, D. Zampieri, J. C. S. dos Santos, L. S. Costa, M. A. Correa, et al. 2018. Novel nanohybrid biocatalyst: Application in the kinetic resolution of secondary alcohols. Journal of Materials Science 53 (20):14121–37. doi: 10.1007/s10853-018-2641-5.
  • García, C., P. Hoyos, and M. J. Hernáiz. 2018. Enzymatic synthesis of carbohydrates and glycoconjugates using lipases and glycosidases in green solvents. Biocatalysis and Biotransformation 36 (2):131–40. doi: 10.1080/10242422.2017.1349760.
  • Garcia-Galan, C., Á. Berenguer-Murcia, R. Fernandez-Lafuente, and R. C. Rodrigues. 2011. Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis & Catalysis 353 (16):2885–904. doi: 10.1002/adsc.201100534.
  • Gargova, S., M. Sariyska, A. Angelov, and I. Stoilova. 2006. Aspergillus niger pH 2.1 optimum acid phosphatase with high affinity for phytate. Folia Microbiologica 51 (6):541–5. doi: 10.1007/BF02931618.
  • Gasmi, N., A. Ayed, N. Jean-Marc, and H. Kallel. 2011. Design of an efficient medium for heterologous protein production in Yarrowia lipolytica: case of human interferon alpha 2b. Microbial Cell Factories 10 (1):38–13. doi: 10.1186/1475-2859-10-38.
  • Gawas, S. D., S. V. Jadhav, and V. K. Rathod. 2016. Solvent free lipase catalysed synthesis of ethyl laurate: Optimization and kinetic studies . Applied Biochemistry and Biotechnology 180 (7):1428–45. doi: 10.1007/s12010-016-2177-6.
  • Gerits, L. R., B. Pareyt, K. Decamps, and J. A. Delcour. 2014. Lipases and their functionality in the production of wheat‐based food systems. Comprehensive Reviews in Food Science and Food Safety 13 (5):978–89. doi: 10.1111/1541-4337.12085.
  • Ghosh, M., S. Avery, D. K. Bhattacharyya, and M. Ghosh. 2016. Preparation of human milk fat analogue by enzymatic interesterification reaction using palm stearin and fish oil. Journal of Food Science and Technology 53 (4):2017–24. doi: 10.1007/s13197-016-2180-5.
  • Gibbons, S. 2012. ‘Legal highs’-novel and emerging psychoactive drugs: a chemical overview for the toxicologist. Clinical Toxicology (Philadelphia, PA) 50 (1):15–24. doi: 10.3109/15563650.2011.645952.
  • Gilbert, E. J., A. Cornish, and C. W. Jones. 1991. Purification and properties of extracellular lipase from Pseudomonas aeruginosa EF2. Journal of General Microbiology 137 (9):2223–9. doi: 10.1099/00221287-137-9-2223.
  • Golding, M., T. J. Wooster, L. Day, M. Xu, L. Lundin, J. Keogh, and P. Clifton. 2011. Impact of gastric structuring on the lipolysis of emulsified lipids. Soft Matter 7 (7):3513–23. doi: 10.1039/c0sm01227k.
  • Gonçalves, F. D., A. G. Silva, and C. Z. Guidini. 2019. Lipases: Sources, immobilization methods, and industrial applications. Applied Microbiology and Biotechnology 103 (18):7399–423. doi: 10.1007/s00253-019-10027-6.
  • González, T., H. N. M’Barek, A. E. Gomaa, H. Hajjaj, C. Zhen, and L. Dehua. 2019. Molecular cloning and expression of Candida antarctica lipase B in Corynebacterium genus. Microbiology and Biotechnology Letters 47 (4):546–54. doi: 10.4014/mbl.1905.05003.
  • Gonzalez-Baró, M. R., T. M. Lewin, and R. A. Coleman. 2007. Regulation of triglyceride metabolism II. Function of mitochondrial GPAT1 in the regulation of triacylglycerol biosynthesis and insulin action. American Journal of Physiology. Gastrointestinal and Liver Physiology 292 (5):G1195–G1199. doi: 10.1152/ajpgi.00553.2006.
  • Goodson, A., H. Robin, W. Summerfield, and I. Cooper. 2004. Migration of bisphenol A from can coatings-effects of damage, storage conditions and heating. Food Additives and Contaminants 21 (10):1015–26. doi: 10.1080/02652030400011387.
  • Gopinath, S. C. B., A. Hilda, T. Lakshmi Priya, G. Annadurai, and P. Anbu. 2003. Purification of lipase from Geotrichum candidum: Conditions optimized for enzyme production using Box–Behnken design. World Journal of Microbiology and Biotechnology 19 (7):681–9. doi: 10.1023/A:1025119222925.
  • Grönke, S., A. Mildner, S. Fellert, N. Tennagels, S. Petry, G. Müller, H. Jäckle, and R. P. Kühnlein. 2005. Brummer lipase is an ­evolutionary conserved fat storage regulator in Drosophila. Cell Metabolism 1 (5):323–30. doi: 10.1016/j.cmet.2005.04.003.]
  • Guerrand, D. 2017. Lipase’s industrial applications: Focus on food and agroindustries. OCL 24 (4):D403. doi: 10.1051/ocl/2017031.
  • Guncheva, M., and D. Zhiryakova. 2011. Catalytic properties and potential applications of Bacillus lipases. Journal of Molecular Catalysis B: Enzymatic 68 (1):1–21. doi: 10.1016/j.molcatb.2010.09.002.
  • Gupta, R., N. Gupta, and P. Rathi. 2004. Bacterial lipases: An overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology 64 (6):763–81. doi: 10.1007/s00253-004-1568-8.
  • Gutiérrez, A., J. C. d. Río, and A. T. Martínez. 2009. Microbial and enzymatic control of pitch in the pulp and paper industry. Applied Microbiology and Biotechnology 82 (6):1005–18. doi: 10.1007/s00253-009-1905-z.
  • Guzik, U., K. Hupert-Kocurek, and D. Wojcieszyńska. 2014. Immobilization as a strategy for improving enzyme properties-application to oxidoreductases. Molecules (Basel, Switzerland) 19 (7):8995–9018. doi: 10.3390/molecules19078995.
  • Handayani, N., D. Wahyuningrum, M. A. Zulfikar, S. Nurbaiti, and C. L. Radiman. 2016. The synthesis of biodiesel catalyzed by Mucor miehei lipase immobilized onto aminated polyethersulfone membranes. Bioresources and Bioprocessing 3 (1):1–11. doi: 10.1186/s40643-016-0098-4.
  • Haraldsson, G. G., P. A. Höskuldsson, S. T. Sigurdsson, F. Thorsteinsson, and S. Gudbjarnason. 1989. The preparation of triglycerides highly enriched with ω-3 polyunsaturated fatty acids via lipase-catalyzed interesterification. Tetrahedron Letters 30 (13):1671–4. doi.org/ (00)99550-9 doi: 10.1016/S0040-4039.
  • Harini, T., J. Muddagoni, G. Sheelu, H. B. Rode, and T. Kumaraguru. 2021. Polymer supported cross-linked enzyme aggregates (CLEAs) of lipase B from Candida antarctica: An efficient and recyclable biocatalyst for reactions in both aqueous and organic media. Biocatalysis and Biotransformation 39 (1): 1–13. doi: 10.1080/10242422.2021.1885381.
  • Hartmann, M., and X. Kostrov. 2013. Immobilization of enzymes on porous silicas-benefits and challenges. Chemical Society Reviews 42 (15):6277–89. doi: 10.1039/c3cs60021a.
  • Hasan, F., A. A. Shah, and A. Hameed. 2006. Industrial applications of microbial lipases. Enzyme and Microbial Technology 39 (2):235–51. doi: 10.1016/j.enzmictec.2005.10.016.
  • Hasan, F., A. A. Shah, and A. Hameed. 2009. Methods for detection and characterization of lipases: A comprehensive review. Biotechnology Advances 27 (6):782–98. doi: 10.1016/j.biotechadv.2009.06.001.
  • Hazem, Z. M. 2009. Acute biliary pancreatitis: Diagnosis and treatment. Saudi Journal of Gastroenterology: Official Journal of the Saudi Gastroenterology Association 15 (3):147–55. doi: 10.4103/1319-3767.54740.
  • He, W.-S., H. Zhu, and Z.-Y. Chen. 2018. Plant sterols: Chemical and enzymatic structural modifications and effects on their cholesterol-lowering activity. Journal of Agricultural and Food Chemistry 66 (12):3047–62. doi: 10.1021/acs.jafc.8b00059.
  • Hellwig, S., J. Drossard, R. M. Twyman, and R. Fischer. 2004. Plant cell cultures for the production of recombinant proteins. Nature Biotechnology 22 (11):1415–22. doi: 10.1038/nbt1027.
  • Hemlata, B., Z. Uzma, and K. Tukaram. 2016. Substrate kinetics of thiol activated hyperthermostable alkaline lipase of Bacillus sonorensis 4R and its application in the bio-detergent formulation. Biocatalysis and Agricultural Biotechnology 8:104–11. doi: 10.1016/j.bcab.2016.08.008.
  • Henry, J. 2009. Processing, manufacturing, uses and labelling of fats in the food supply. Annals of Nutrition & Metabolism 55 (1–3):273–300. https://www.jstor.org/stable/48514102. doi: 10.1159/000229006.
  • Hernández-Martín, E., and C. Otero. 2008. Different enzyme requirements for the synthesis of biodiesel: Novozym 435 and Lipozyme TL IM. Bioresource Technology 99 (2):277–86. doi: 10.1016/j.biortech.2006.12.024.
  • Hiol, A., Marie, D. Jonzo, N. Rugani, D. Druet, L. Sarda, and L. C. Comeau. 2000. Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enzyme and Microbial Technology 26 (5–6):421–30. doi.org/ (99)00:421–30. 8 doi: 10.1016/S0141-0229.
  • Horchani, H., I. Aissa, S. Ouertani, Z. Zarai, Y. Gargouri, and A. Sayari. 2012. Staphylococcal lipases: Biotechnological applications. Journal of Molecular Catalysis B: Enzymatic 76:125–32. doi:10.1016/j.molcatb.2011.11.018.
  • Horchani, H., N. B. Salem, Z. Zarai, A. Sayari, Y. Gargouri, and M. Chaâbouni. 2010. Enzymatic synthesis of eugenol benzoate by immobilized Staphylococcus aureus lipase: Optimization using response surface methodology and determination of antioxidant activity. Bioresource Technology 101 (8):2809–17. doi: 10.1016/j.biortech.2009.10.082.
  • Hotta, Y., S. Ezaki, H. Atomi, and T. Imanaka. 2002. Extremely stable and versatile carboxylesterase from a hyperthermophilic archaeon. Applied and Environmental Microbiology 68 (8):3925–31. doi: 10.1128/AEM.68.8.3925-3931.2002.
  • Houde, A., A. Kademi, and D. Leblanc. 2004. Lipases and their industrial applications: an overview. Applied Biochemistry and Biotechnology 118 (1–3):155–70. doi: 10.1385/ABAB:118:1-3:155.
  • Hu, J., W. Cai, C. Wang, X. Du, J. Lin, and J. Cai. 2018. Purification and characterization of alkaline lipase production by Pseudomonas aeruginosa HFE733 and application for biodegradation in food wastewater treatment. Biotechnology & Biotechnological Equipment 32 (3):583–90. doi: 10.1080/13102818.2018.1446764.
  • Huang, Z., L. Stipkovits, H. Zheng, L. Serventi, and C. S. Brennan. 2019. Bovine milk fats and their replacers in baked goods: A review. Foods 8 (9):383. doi: 10.3390/foods8090383.
  • Husain, Q., S. A. Ansari, F. Alam, and A. Azam. 2011. Immobilization of Aspergillus oryzae β galactosidase on zinc oxide nanoparticles via simple adsorption mechanism. International Journal of Biological Macromolecules 49 (1):37–43. doi: 10.1016/j.ijbiomac.2011.03.011.
  • Hwang, S., J. Ahn, S. Lee, T. G. Lee, S. Haam, K. Lee, I.-S. Ahn, and J. Jung. 2004. Evaluation of cellulose-binding domain fused to a lipase for the lipase immobilization. Biotechnology Letters 26 (7):603–5. doi: 10.1023/B:BILE.0000021964.69500.6f.
  • Hwang, H. T., F. Qi, C. Yuan, X. Zhao, D. Ramkrishna, D. Liu, and A. Varma. 2014. Lipase-catalyzed process for biodiesel production: protein engineering and lipase production . Biotechnology and Bioengineering 111 (4):639–53. doi: 10.1002/bit.25162.
  • Ianni, A., F. Bennato, C. Martino, L. Grotta, and G. Martino. 2020. Volatile flavor compounds in cheese as affected by ruminant diet. Molecules 25 (3):461. doi: 10.3390/molecules25030461.
  • Ingenbosch, K. N., A. Rousek, D. S. Wunschik, and K. Hoffmann-Jacobsen. 2019. A fluorescence-based activity assay for immobilized lipases in non-native media. Analytical Biochemistry 569:22–7. doi: 10.1016/j.ab.2019.01.005.
  • Ishak, S. N. H., M. Masomian, N. H. A. Kamarudin, M. S. M. Ali, T. C. Leow, and R. N. Z. R. Abd Rahman. 2019. Changes of thermostability, organic solvent, and pH stability in Geobacillus zalihae HT1 and its mutant by calcium ion. International Journal of Molecular Sciences 20 (10):2561. doi: 10.3390/ijms20102561.
  • Ishchenko, A., L. Peng, E. Zinovev, A. Vlasov, S. C. Lee, A. Kuklin, A. Mishin, V. Borshchevskiy, Q. Zhang, and V. Cherezov. 2017. Chemically stable lipids for membrane protein crystallization. Crystal Growth & Design 17 (6):3502–11. doi: 10.1021/acs.cgd.7b00458.
  • Ismail, A. R., and K.-H. Baek. 2020. Lipase immobilization with support materials, preparation techniques, and applications: Present and future aspects. International Journal of Biological Macromolecules 163:1624–39. doi: 10.1016/j.ijbiomac.2020.09.021.
  • Isobe, K., K. Nokihara, S. Yamaguchi, T. Mase, and R. D. Schmid. 1992. Crystallization and characterization of monoacylglycerol and diacylglycerol lipase from Penicillium camembertii. European Journal of Biochemistry 203 (1–2):233–7. doi: 10.1111/j.1432-1033.1992.tb19851.x.
  • Ittrat, P., T. Chacho, J. Pholprayoon, N. Suttiwarayanon, and J. Charoenpanich. 2014. Application of agriculture waste as a support for lipase immobilization. Biocatalysis and Agricultural Biotechnology 3 (3):77–82. doi: 10.1016/j.bcab.2014.02.002.
  • Iyer, P. V., and L. Ananthanarayan. 2008. Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochemistry 43 (10):1019–32. doi: 10.1016/j.procbio.2008.06.004.
  • Jaeger, K.-E., and M. T. Reetz. 1998. Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology 16 (9):396–403. doi: 10.1016/S0167-7799. (98)01195-0
  • Jaenicke, R., and G. Böhm. 1998. The stability of proteins in extreme environments. Current Opinion in Structural Biology 8 (6):738–48. doi: 10.1016/S0959-440X(98)80094-8.
  • Jancsik, V., Z. Beleznai, and T. Keleti. 1982. Enzyme immobilization by poly (vinyl alcohol) gel entrapment. Journal of Molecular Catalysis 14 (3):297–306. doi.org/ (82)80090-4 doi: 10.1016/0304-5102.
  • Javed, S., F. Azeem, S. Hussain, I. Rasul, M. H. Siddique, M. Riaz, M. Afzal, A. Kouser, and H. Nadeem. 2018. Bacterial lipases: A review on purification and characterization. Progress in Biophysics and Molecular Biology 132:23–34. doi: 10.1016/j.pbiomolbio.2017.07.014.
  • Jayathilakan, K., K. Sultana, K. Radhakrishna, and A. S. Bawa. 2012. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. Journal of Food Science and Technology 49 (3):278–93. doi: 10.1007/s13197-011-0290-7.
  • Jiao, L., Q. Zhou, Z. Su, L. Xu, and Y. Yan. 2018. High-level extracellular production of Rhizopus oryzae lipase in Pichia pastoris via a strategy combining optimization of gene-copy number with co-expression of ERAD-related proteins. Protein Expression and Purification 147:1–12. doi: 10.1016/j.pep.2018.02.005.
  • Johnson, P. A., H. J. Park, and A. J. Driscoll. 2011. Enzyme nanoparticle fabrication: Magnetic nanoparticle synthesis and enzyme immobilization. In Enzyme stabilization and immobilization. Methods in molecular biology (methods and protocols), S. Minteer, vol 679. Totowa, NJ: Humana Press. doi: 10.1007/978-1-60761-895-9_15.
  • Jun, L. Y., L. S. Yon, N. M. Mubarak, C. H. Bing, S. Pan, M. K. Danquah, E. C. Abdullah, and M. Khalid. 2019. An overview of immobilized enzyme technologies for dye and phenolic removal from wastewater. Journal of Environmental Chemical Engineering 7 (2):102961. doi: 10.1016/j.jece.2019.102961.
  • Kahveci, D., and X. Xu. 2011. Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil. Biotechnology Letters 33 (10):2065–71. doi: 10.1007/s10529-011-0671-z.
  • Kambourova, M., N. Kirilova, R. Mandeva, and A. Derekova. 2003. Purification and properties of thermostable lipase from a thermophilic Bacillus stearothermophilus MC 7. Journal of Molecular Catalysis B: Enzymatic 22 (5–6):307–13. doi: 10.1016/S1381-1177(03)00045-6.
  • Kang, J.-H., and F. Kondo. 2003. Determination of bisphenol A in milk and dairy products by high-performance liquid chromatography with fluorescence detection. Journal of Food Protection 66 (8):1439–43. doi: 10.4315/0362-028x-66.8.1439.
  • Kanimozhi, S., and K. Perinbam. 2015. Optimization of media components and growth conditions to enhance lipase production by Pseudomonas sp. Lp1. Biomedical and Pharmacology Journal 3 (2):329–38. http://biomedpharmajournal.org/?p=1562.
  • Kanmani, P., J. Aravind, and K. Kumaresan. 2015. An insight into microbial lipases and their environmental facet. International Journal of Environmental Science and Technology 12 (3):1147–62. doi: 10.1007/s13762-014-0605-0.
  • Kanmani, P., K. Kumaresan, and J. Aravind. 2015. Gene cloning, expression, and characterization of the Bacillus amyloliquefaciens PS35 lipase. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology] 46 (4):1235–43. doi: 10.1590/S1517-838246420141068.
  • Karbalaei, M., S. A. Rezaee, and H. Farsiani. 2020. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. Journal of Cellular Physiology 235 (9):5867–81. doi: 10.1002/jcp.29583.
  • Kartal, F., Ç. Ali Kilin, and S. Timur. 2007. Lipase biosensor for tributyrin and pesticide detection. International Journal of Environmental Analytical Chemistry 87 (10–11):715–22. doi: 10.1080/03067310701327741.
  • Katchalski-Katzir, E., and D. M. Kraemer. 2000. Eupergit® C, a carrier for immobilization of enzymes of industrial potential. Journal of Molecular Catalysis B: Enzymatic 10 (1–3):157–76. doi: 10.1016/S1381-1177(00)00124-7.
  • Kato, M., J. Fuchimoto, T. Tanino, A. Kondo, H. Fukuda, and M. Ueda. 2007. Preparation of a whole-cell biocatalyst of mutated Candida antarctica lipase B (mCALB) by a yeast molecular display system and its practical properties. Applied Microbiology and Biotechnology 75 (3):549–55. doi: 10.1007/s00253-006-0835-2.
  • Kauffmann, I., and C. Schmidt-Dannert. 2001. Conversion of Bacillus thermocatenulatus lipase into an efficient phospholipase with increased activity towards long-chain fatty acyl substrates by directed evolution and rational design. Protein Engineering 14 (11):919–28. doi: 10.1093/protein/14.11.919.
  • Khan, M. T., A. C. Kaushik, Q. u a. Rana, S. I. Malik, A. S. Khan, D.-Q. Wei, W. S. S. Ahmad, S. Ali, and M. Irfan. 2020. Characterization and synthetic biology of lipase from Bacillus amyloliquefaciens strain. Archives of Microbiology 202 (6):1497–506. doi: 10.1007/s00203-020-01869-0.
  • Kilara, A., Khem, M. Shahani, Triveni, and P. Shukla. 1979. The use of immobilized enzymes in the food industry: A review. CRC Critical Reviews in Food Science and Nutrition 12 (2):161–98. doi: 10.1080/10408397909527276.
  • Kilcawley, K. N., Martin, G. Wilkinson, and P. F. Fox. 1998. Enzyme-modified cheese. International Dairy Journal 8 (1):1–10. doi: 10.1016/S0958-6946(98)00010-7.
  • Kilcawley, K. N., M. G. Wilkinson, and P. F. Fox. 2001. A survey of lipolytic and glycolytic end-products in commercial Cheddar enzyme-modified cheese. Journal of Dairy Science 84 (1):66–73. doi: 10.3168/jds.S0022-0302. (01)74453-0
  • Kim, D., and A. E. Herr. 2013. Protein immobilization techniques for microfluidic assays. Biomicrofluidics 7 (4):41501. doi: 10.1063/1.4816934.
  • Kimiyasu, I., T. Akiba, and S. Yamaguchi. 1988. Crystallization and characterization of lipase from Penicillium cyclopium. Agricultural and Biological Chemistry 52 (1):41–7. doi: 10.1271/bbb1961.52.41.
  • Kivanc, M., M. Yilmaz, and F. Demir. 2011. The occurrence of Aeromonas in drinking water, tap water and the porsuk river. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology] 42 (1):126–31. doi: 10.1590/S1517-83822011000100016.
  • Klein, R. R., G. King, R. A. Moreau, and M. J. Haas. 1997. Altered acyl chain length specificity of Rhizopus delemar lipase through mutagenesis and molecular modeling. Lipids 32 (2):123–30. doi: 10.1007/s11745-997-0016-1.
  • Klibanov, A. M. 1983. Immobilized enzymes and cells as practical catalysts. Science (New York, NY) 219 (4585):722–7. doi: 10.1126/science.219.4585.722.
  • Klonoff, D. C. 2007. Replacements for trans fats-will there be an oil shortage? Journal of Diabetes Science and Technology 1 (3):415–22. doi: 10.1177/193229680700100316.
  • Kluger, R., and A. Alagic. 2004. Chemical cross-linking and protein-protein interactions-a review with illustrative protocols. Bioorganic Chemistry 32 (6):451–72. doi: 10.1016/j.bioorg.2004.08.002.
  • Kobayashi, T. 2011. Lipase-catalyzed syntheses of sugar esters in non-aqueous media. Biotechnology Letters 33 (10):1911–9. doi: 10.1007/s10529-011-0663-z.
  • Kojima, Y., and S. Shimizu. 2003. Purification and characterization of the lipase from Pseudomonas fluorescens HU380. Journal of Bioscience and Bioengineering 96 (3): 219–226. doi: 10.1016/S1389-1723(03)80185-8.
  • Kovacic, F., B. Nikolina, K. Ulrich, and K. Jaeger. 2019. Classification of lipolytic enzymes from bacteria. Aerobic utilization of hydrocarbons, oils, and lipids. In Handbook of hydrocarbon and lipid microbiology, vol. 24, 255–89. Cham: Springer. doi: 10.1007/978-3-319-50418-6.
  • Krajewska, B. 2004. Application of chitin-and chitosan-based materials for enzyme immobilizations: A review. Enzyme and Microbial Technology 35 (2–3):126–39. doi: 10.1016/j.enzmictec.2003.12.013.
  • Krebs, J. E., P. Vaishampayan, A. J. Probst, L. M. Tom, V. T. Marteinsson, G. L. Andersen, and K. Venkateswaran. 2014. Microbial community structures of novel Icelandic hot spring systems revealed by PhyloChip G3 analysis. Astrobiology 14 (3):229–40. doi: 10.1089/ast.2013.1008.
  • Krieger, N., M. Angela Taipa, M. Raquel Aires-Barros, E. H. M. Melo, J. L. Lima-Filho, and J. M. S. Cabral. 1997. Purification of the Penicillium citrinum lipase using AOT reversed micelles. Journal of Chemical Technology & Biotechnology 69 (1):77–85. doi: 10.1002/(SICI)1097-4660(199705)69:1 < 77::AID-JCTB666 > 3.0.CO;2-V.
  • Krystallis, C., G. S. Masterton, P. C. Hayes, and J. N. Plevris. 2012. Update of endoscopy in liver disease: More than just treating varices. World Journal of Gastroenterology 18 (5):401–11. doi: 10.3748/wjg.v18.i5.401.
  • Krzeslak, J., G. Gerritse, R. V. Merkerk, R. H. Cool, and W. J. Quax. 2008. Lipase expression in Pseudomonas alcaligenes is under the control of a two-component regulatory system. Applied and Environmental Microbiology 74 (5):1402–11. doi: 10.1128/AEM.01632-07.
  • Kujawa, J., M. Głodek, I. Koter, B. Ośmiałowski, K. Knozowska, S. Al-Gharabli, L. F. Dumée, and W. Kujawski. 2021. Molecular decoration of ceramic supports for highly effective enzyme immobilization—Material approach. Materials 14 (1):201. doi: 10.3390/ma14010201.
  • Kuksis, A., and J. M. R. Beveridge. 1960. Preparation and certain physical properties of some plant steryl esters. The Journal of Organic Chemistry 25 (7):1209–19. doi: 10.1021/jo01077a035.
  • Kundys, A., E. B. Florjańczyk, A. Fabiszewska, and J. Małajowicz. 2018. Candida antarctica lipase B as a catalyst for cyclic esters synthesis, their polymerization, and degradation of aliphatic polyesters. Journal of Polymers and the Environment 26 (1):396–407. doi: 10.1007/s10924-017-0945-1.
  • Kurtovic, I., S. N. Marshall, X. Zhao, and B. K. Simpson. 2009. Lipases from mammals and fishes. Reviews in Fisheries Science 17 (1):18–40. doi: 10.1080/10641260802031322.
  • Lan, D., M. Qu, B. Yang, and Y. Wang. 2016. Enhancing production of lipase MAS1 from marine Streptomyces sp. strain in Pichia pastoris by chaperones co-expression. Electronic Journal of Biotechnology 22 (2016):62–7. doi: 10.1016/j.ejbt.2016.06.003.
  • Larios, A., H. S. García, R. M. Oliart, and G. Valerio-Alfaro. 2004. Synthesis of flavor and fragrance esters using Candida antarctica lipase. Applied Microbiology and Biotechnology 65 (4):373–6. doi: 10.1007/s00253-004-1602-x.
  • Lee, B.-M., J.-H. Choi, S. I. Hong, S. W. Yoon, B. H. Kim, C.-T. Kim, C.-J. Kim, Y. Kim, and I.-H. Kim. 2011. Enrichment of pinolenic acid from pine nut oil via lipase-catalyzed ethanolysis with an immobilized Candida antarctica lipase. Biocatalysis and Biotransformation 29 (4):155–60. doi: 10.3109/10242422.2011.590983.
  • Lee, B. H., K. N. Kilcawley, J. A. Hannon, S. Y. Park, M. G. Wilkinson, and T. P. Beresford. 2007. The use of viable and heat-shocked Lactobacillus helveticus DPC 4571 in enzyme-modified cheese production. Food Biotechnology 21 (2):129–43. doi: 10.1080/08905430701410530.
  • Lee, D.-W., H.-W. Kim, K.-W. Lee, B.-C. Kim, E.-A. Choe, H.-S. Lee, D.-S. Kim, and Y.-R. Pyun. 2001. Purification and characterization of two distinct thermostable lipases from the gram-positive thermophilic bacterium Bacillus thermoleovorans ID-1. Enzyme and Microbial Technology 29 (6–7):363–71. doi.org/ (01)00:363–71. 2 doi: 10.1016/S0141-0229.
  • Lee, C.-H., T. Lin, and C.-Y. Mou. 2009. Mesoporous materials for encapsulating enzymes. Nano Today 4 (2):165–79. doi: 10.1016/j.nantod.2009.02.001.
  • Lee, E. Y., and M. L. Shuler. 2007. Molecular engineering of epoxide hydrolase and its application to asymmetric and enantioconvergent hydrolysis. Biotechnology and Bioengineering 98 (2):318–27. doi: 10.1002/bit.21444.
  • Lemieux, L., and R. E. Simard. 1991. Bitter flavor in dairy products. I. A review of the factors likely to influence its development, mainly in cheese manufacture. Le Lait 71 (6):599–636. doi: 10.1051/lait:1991647.
  • Lennen, R. M., and B. F. Pfleger. 2012. Engineering Escherichia coli to synthesize free fatty acids. Trends in Biotechnology 30 (12):659–67. doi: 10.1016/j.tibtech.2012.09.006.
  • Levisson, M., J. v d. Oost, and S. W. M. Kengen. 2009. Carboxylic ester hydrolases from hyperthermophiles. Extremophiles: Life under Extreme Conditions 13 (4):567–81. doi: 10.1007/s00792-009-0260-4.
  • Lewis, J., Y. C. Lin, L. K. Royston, and R. C. Thompson. 1965. 1194. The chemistry of polynuclear compounds. Part III. Magnetic properties of some carboxylic acid derivatives of copper(II). Journal of the Chemical Society (Resumed) 1965:6464. doi:10.1039/jr9650006464.
  • Liang, S., X.-L. Wu, J. Xiong, M.-H. Zong, and W.-Y. Lou. 2020. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An updated review. Coordination Chemistry Reviews 406 (213149):213149. doi: 10.1016/j.ccr.2019.213149.
  • Liebeton, K., A. Zacharias, and K. E. Jaeger. 2001. Disulfide bond in Pseudomonas aeruginosa lipase stabilizes the structure but is not required for interaction with its foldase. Journal of Bacteriology 183 (2):597–603. doi: 10.1128/JB.183.2.597-603.2001.
  • Li, Z., W. Leung, A. Yon, J. Nguyen, V. C. Perez, J. Vu, W. Giang, L. T. Luong, T. Phan, K. A. Salazar, et al. 2010. Secretion and proteolysis of heterologous proteins fused to the Escherichia coli maltose binding protein in Pichia pastoris . Protein Expression and Purification 72 (1):113–24. doi: 10.1016/j.pep.2010.03.004.
  • Li, H.-C., and S.-Y. Lo. 2015. Hepatitis C virus: Virology, diagnosis and treatment. World Journal of Hepatology 7 (10):1377–89. doi: 10.4254/wjh.v7.i10.1377.
  • Lima, G. V., M. R. da Silva, T. de Sousa Fonseca, L. B. de Lima, M. d C. F. de Oliveira, T. L. G. de Lemos, D. Zampieri, J. C. S. dos Santos, N. S. Rios, L. R. B. Gonçalves, et al. 2017. Chemoenzymatic synthesis of (S)-Pindolol using lipases. Applied Catalysis A: General 546:7–14. doi: 10.1016/j.apcata.2017.08.003.
  • Lim, D. S., S. J. Kwack, K.-B. Kim, H. S. Kim, and B. M. Lee. 2009. Potential risk of bisphenol A migration from polycarbonate containers after heating, boiling, and microwaving. Journal of Toxicology and Environmental Health. Part A 72 (21–22):1285–91. doi: 10.1080/15287390903212329.
  • Lim, H. J., and J. H. Lee. 2012. New diagnostic methods for tuberculosis. Korean Journal of Medicine 82 (3):263–8. doi: 10.1109/5.771073.
  • Li, Y., and D. J. McClements. 2011. Inhibition of lipase-catalyzed hydrolysis of emulsified triglyceride oils by low-molecular weight surfactants under simulated gastrointestinal conditions. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 79 (2):423–31. doi: 10.1016/j.ejpb.2011.03.019.
  • Lin, X.-S., K.-H. Zhao, Q.-L. Zhou, K.-Q. Xie, P. J. Halling, and Z. Yang. 2016. Aspergillus oryzae lipase-catalyzed synthesis of glucose laurate with excellent productivity. Bioresources and Bioprocessing 3 (1):1–7. doi: 10.1186/s40643-015-0080-6.
  • Liu, X., X. Chen, Y. Li, X. Wang, X. Peng, and W. Zhu. 2012. Preparation of superparamagnetic Fe3O4@alginate/chitosan nanospheres for Candida rugosa lipase immobilization and utilization of layer-by-layer assembly to enhance the stability of immobilized lipase. ACS Applied Materials & Interfaces 4 (10):5169–78. doi: 10.1021/am301104c.
  • Liu, W., B. Jia, H. Zhao, L. Xu, and Y. Yan. 2010. Preparation of a whole-cell biocatalyst of Aspergillus niger lipase and its practical properties. Journal of Agricultural and Food Chemistry 58 (19):10426–30. doi: 10.1021/jf1008555.
  • Liu, D., R. D. Schmid, and M. Rusnak. 2006. Functional expression of Candida antarctica lipase B in the Escherichia coli cytoplasm-a screening system for a frequently used biocatalyst. Applied Microbiology and Biotechnology 72 (5):1024–32. doi: 10.1007/s00253-006-0369-7.
  • Liu, L., H. Yang, H.-d. Shin, R. R. Chen, J. Li, G. Du, and J. Chen. 2013. How to achieve high-level expression of microbial enzymes: Strategies and perspectives. Bioengineered 4 (4):212–23. doi: 10.4161/bioe.24761.
  • Li, W., and J. Zhang. 2016. Recent developments in the synthesis and utilization of chiral β-aminophosphine derivatives as catalysts or ligands. Chemical Society Reviews 45 (6):1657–77. doi: 10.1039/c5cs00469a.
  • Li, P.-Y., Y.-Q. Zhang, Y. Zhang, W.-X. Jiang, Y.-J. Wang, Y.-S. Zhang, Z.-Z. Sun, C.-Y. Li, Y.-Z. Zhang, M. Shi, et al. 2020. Study on a novel cold-active and halotolerant monoacylglycerol lipase widespread in marine bacteria reveals a new group of bacterial monoacylglycerol lipases containing unusual C(A/S)HSMG catalytic motifs. Frontiers in Microbiology 11:9. doi: 10.3389/fmicb.2020.00009.
  • Li, N., and M.-H. Zong. 2010. Lipases from the genus Penicillium: Production, purification, characterization, and applications. Journal of Molecular Catalysis B: Enzymatic 66 (1–2):43–54. doi: 10.1016/j.molcatb.2010.05.004.
  • Löbs, A.-K., C. Schwartz, and I. Wheeldon. 2017. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications. Synthetic and Systems Biotechnology 2 (3):198–207. doi: 10.1016/j.synbio.2017.08.002.
  • Lobstein, J., C. A. Emrich, C. Jeans, M. Faulkner, P. Riggs, and M. Berkmen. 2012. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microbial Cell Factories 11 (1):56–16. doi: 10.1186/1475-2859-11-56.
  • Longo, M. A., and D. Combes. 1997. Influence of surface hydrophilic/hydrophobic balance on enzyme properties. Journal of Biotechnology 58 (1):21–32. doi: 10.1016/s0168-1656(97)00120-x.
  • Lopes, D. B., L. P. Fraga, L. F. Fleuri, and G. A. Macedo. 2011. Lipase and esterase: To what extent can this classification be applied accurately?. Ciência e Tecnologia de Alimentos 31 (3):603–13. doi: 10.1590/S0101-20612011000300009.
  • López-Serrano, P., L. Cao, F. V. Rantwijk, and R. A. Sheldon. 2002. Cross-linked enzyme aggregates with enhanced activity: Application to lipases. Biotechnology Letters 24 (16):1379–83. doi: 10.1023/A:1019863314646.
  • Lu, J., C. J. Brigham, C. Rha, and A. J. Sinskey. 2013. Characterization of an extracellular lipase and its chaperone from Ralstonia eutropha H16. Applied Microbiology and Biotechnology 97 (6):2443–54. doi: 10.1007/s00253-012-4115-z.
  • Lund, T., and P. E. Granum. 1996. Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak . FEMS Microbiology Letters 141 (2–3):151–6. doi: 10.1111/j.1574-6968.1996.tb08377.x.
  • Ma, B., L. Cheong, X. Weng, C.-P. Tan, and C. Shen. 2018. Lipase@ ZIF-8 nanoparticles-based biosensor for direct and sensitive detection of methyl parathion. Electrochimica Acta 283:509–16. doi: 10.1016/j.electacta.2018.06.176.
  • Machado, S. G., F. Baglinière, S. Marchand, E. V. Coillie, M. C. D. Vanetti, J. D. Block, and M. Heyndrickx. 2017. The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Frontiers in Microbiology 8:302. doi: 10.3389/fmicb.2017.00302.
  • Macrae, A. R. 1983. Lipase‐catalyzed interesterification of oils and fats. Journal of the American Oil Chemists’ Society 60 (2Part1):291–4. doi: 10.1007/BF02543502.
  • Macrae, A. R., and R. C. Hammond. 1985. Present and future applications of lipases. Biotechnology and Genetic Engineering Reviews 3 (1):193–218. doi: 10.1080/02648725.1985.10647813.
  • Madzak, C., C. Gaillardin, and J. Beckerich. 2004. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: A review. Journal of Biotechnology 109 (1–2):63–81. doi: 10.1016/j.jbiotec.2003.10.027.
  • Mallardi, A., V. Angarano, M. Magliulo, L. Torsi, and G. Palazzo. 2015. General approach to the immobilization of glycoenzyme chains inside calcium alginate beads for bioassay. Analytical Chemistry 87 (22):11337–44. doi: 10.1021/acs.analchem.5b02636.
  • Maruyama, T., M. Nakajima, S. Uchikawa, H. Nabetani, S. Furusaki, and M. Seki. 2000. Oil-water interfacial activation of lipase for interesterification of triglyceride and fatty acid. Journal of the American Oil Chemists’ Society 77 (11):1121. doi: 10.1007/s11746-000-0176-4.
  • Mateo, C., J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, and R. Fernandez-Lafuente. 2007. Improvement of enzyme activity, stability, and selectivity via immobilization techniques. Enzyme and Microbial Technology 40 (6):1451–63. doi: 10.1016/j.enzmictec.2007.01.018.
  • Matsumoto, M., and K. Ohashi. 2003. Effect of immobilization on the thermostability of lipase from Candida rugosa. Biochemical Engineering Journal 14 (1):75–7. doi.org/ (02)00:75–7. 9 doi: 10.1016/S1369-703X.
  • Matull, W. R., S. P. Pereira, and J. W. O’Donohue. 2006. Biochemical markers of acute pancreatitis. Journal of Clinical Pathology 59 (4):340–4. doi: 10.1136/jcp.2002.002923.
  • Mayer, F. L., D. Wilson, and B. Hube. 2013. Candida albicans pathogenicity mechanisms. Virulence 4 (2):119–28. doi: 10.4161/viru.22913.
  • McCutcheon, A. D. 2000. Neurological damage and duodenopancreatic reflux in the pathogenesis of alcoholic pancreatitis. Archives of Surgery (Chicago, IL: 1960) 135 (3):278–85. doi: 10.1001/archsurg.135.3.278.
  • McMahon, D. J., R. J. Brown, and C. A. Ernstrom. 1984. Enzymic coagulation of casein micelles: A review. Journal of Dairy Science 67 (4):745–8. doi: 10.3168/jds.S0022-0302(84)81390-9.
  • McMenamin, J. D., T. M. Zaccone, T. Coenye, P. Vandamme, and J. J. LiPuma. 2000. Misidentification of Burkholderia cepacia in US cystic fibrosis treatment centers: an analysis of 1,051 recent sputum isolates. Chest 117 (6):1661–5. doi: 10.1378/chest.117.6.1661.
  • McSweeney, P. L. H. 2004. Biochemistry of cheese ripening. International Journal of Dairy Technology 57 (2–3):127–44. doi: 10.1111/j.1471-0307.2004.00147.x.
  • Mead, J. R., S. A. Irvine, and D. P. Ramji. 2002. Lipoprotein lipase: Structure, function, regulation, and role in disease. Journal of Molecular Medicine (Berlin, Germany) 80 (12):753–69. doi: 10.1007/s00109-002-0384-9.
  • Meadows, C. W., A. Kang, and T. S. Lee. 2018. Metabolic engineering for advanced biofuels production and recent advances toward commercialization. Biotechnology Journal 13 (1):1600433. doi: 10.1002/biot.201600433.
  • Mehta, A., U. Bodh, and R. Gupta. 2018. Isolation of a novel lipase producing fungal isolate Aspergillus fumigatus and production optimization of the enzyme. Biocatalysis and Biotransformation 36 (6):450–7. doi: 10.1080/10242422.2018.1447565.
  • Meunchan, M., S. Michely, H. Devillers, J.-M. Nicaud, A. Marty, and C. Neuvéglise. 2015. Comprehensive analysis of a yeast lipase family in the Yarrowia clade. PloS One 10 (11):e0143096. doi: 10.1371/journal.pone.0143096.
  • Meunier, S. M., and R. L. Legge. 2013. Study of support materials for sol-gel immobilized lipase. Biocatalysis and Biotransformation 31 (4):190–6. doi: 10.3109/10242422.2013.815744.
  • Mine, Y. 1998. Adsorption behavior of egg yolk low-density lipoproteins in oil-in-water emulsions. Journal of Agricultural and Food Chemistry 46 (1):36–41. doi: 10.1021/jf970306y.
  • Miranda, J. M., X. Anton, C. Redondo-Valbuena, P. Roca-Saavedra, J. A. Rodriguez, A. Lamas, C. M. Franco, and A. Cepeda. 2015. Egg and egg-derived foods: Effects on human health and use as functional foods. Nutrients 7 (1):706–29. doi: 10.3390/nu7010706.
  • Misson, M., H. Zhang, and B. Jin. 2015. Nanobiocatalyst advancements and bioprocessing applications. Journal of the Royal Society, Interface 12 (102):20140891. doi: 10.1098/rsif.2014.0891.
  • Moatsou, G., E. Zoidou, E. Choundala, K. Koutsaris, O. Kopsia, K. Thergiaki, and L. Sakkas. 2019. Development of reduced-fat, reduced-sodium semi-hard sheep milk cheese. Foods 8 (6):204. doi: 10.3390/foods8060204.
  • Mobarak-Qamsari, E., R. Kasra-Kermanshahi, and Z. Moosavi-Nejad. 2011. Isolation and identification of a novel, lipase-producing bacterium, Pseudomonas aeruginosa KM110. Iranian Journal of Microbiology 3 (2):92–8. PMID: 22347589.
  • Mohamed, S. S., H. M. Ahmed, M. A. El-Bendary, M. E. Moharam, and H. A. Amin. 2021. Response surface methodology for optimization of Rhizopus stolonifer 1aNRC11 mutant F whole-cell lipase production as a biocatalyst for methanolysis of waste frying oil. Biocatalysis and Biotransformation 39 (3):232–40. doi: 10.1080/10242422.2020.1869218.
  • Mohebbi, M., J. Barouei, M. R. Akbarzadeh-T, A. R. Rowhanimanesh, M. B. Habibi-Najafi, and M. Yavarmanesh. 2008. Modeling and optimization of viscosity in enzyme-modified cheese by fuzzy logic and genetic algorithm. Computers and Electronics in Agriculture 62 (2):260–5. doi: 10.1016/j.compag.2008.01.010.
  • Mokhtar, N. F., R. N. Z. R. Abd. Rahman, N. D. Muhd Noor, F. Mohd Shariff, and M. S. Mohamad Ali. 2020. The immobilization of lipases on porous support by adsorption and hydrophobic interaction method. Catalysts 10 (7):744. doi: 10.3390/catal10070744.
  • Moradali, M. F., S. Ghods, and B. H. A. Rehm. 2017. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology 7:39. doi: 10.3389/fcimb.2017.00039.
  • Moreno-Pérez, S., J. M. Guisan, and G. Fernandez‐Lorente. 2014. Selective ethanolysis of fish oil catalyzed by immobilized lipases. Journal of the American Oil Chemists’ Society 91 (1):63–9. doi: 10.1007/s11746-013-2348-3.
  • Muhamad, O. A.-L., K. M. Khleifat, K. Y. Alsharafa, H. N. Qaralleh, and S. A. Alrawashdeh. 2019. Purification and characterization of a mesophilic organic solvent tolerant lipase produced by Acinetobacter sp. K5b4. Biocatalysis and Biotransformation 37 (2):139–51. doi: 10.1080/10242422.2018.1506445.
  • Muniandy, M., O. Lasekan, H. M. Ghazali, and M. Rahman. 2019. Lipase-catalyzed formation of pentyl nonanoate using screened immobilized lipase from Rhizomucor meihei. Brazilian Journal of Chemical Engineering 36 (3):1089–97. doi: 10.1590/0104-6632.20190363s20180419.
  • Muralidhar, R. V., R. R. Chirumamilla, R. Marchant, V. N. Ramachandran, O. P. Ward, and P. Nigam. 2002. Understanding lipase stereoselectivity. World Journal of Microbiology and Biotechnology 18 (2):81–97. doi: 10.1023/A:1014417223956.
  • Murty, V. R., J. Bhat, and P. K. A. Muniswaran. 2002. Hydrolysis of oils by using immobilized lipase enzyme: A review. Biotechnology and Bioprocess Engineering 7 (2):57–66. doi: 10.1007/BF02935881.
  • Nagaoka, K., and Y. Yamada. 1973. Purification of Mucor lipases and their properties. Agricultural and Biological Chemistry 37 (12):2791–6. doi: 10.1080/00021369.1973.10861078.
  • Nagaroor, V., and S. N. Gummadi. 2020. Biochemical characterization of an esterase from Clostridium acetobutylicum with novel GYSMG pentapeptide motif at the catalytic domain. Journal of Industrial Microbiology & Biotechnology 47 (2):169–81. doi: 10.1007/s10295-019-02253-8.
  • Naglik, J. R., J. P. Richardson, and D. L. Moyes. 2014. Candida albicans pathogenicity and epithelial immunity. PLoS Pathogens 10 (8):e1004257. doi: 10.1371/journal.ppat.1004257.
  • Nakai, S., W. A. Blair, A. Helmersen, and B. A. Eagles. 1968. Desalting milk and whey by ion retardation and gel filtration. Journal of Dairy Science 51 (12):1909–11. doi.org/ (68)87310-2 doi: 10.3168/jds.S0022-0302.
  • Narayanan, N., M. Khan, and C. P. Chou. 2010. Enhancing functional expression of heterologous lipase B in Escherichia coli by extracellular secretion. Journal of Industrial Microbiology & Biotechnology 37 (4):349–61. doi: 10.1007/s10295-009-0680-2.
  • Nascimento, K. S., A. I. Cunha, K. S. Nascimento, B. S. Cavada, A. M. Azevedo, and M. R. Aires, Barros. 2012. An overview of lectins purification strategies. Journal of Molecular Recognition: JMR 25 (11):527–41. doi: 10.1002/jmr.2200.
  • Navarre, W. W., and O. Schneewind. 1999. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiology and Molecular Biology Reviews: MMBR 63 (1):174–229. doi: 10.1128/MMBR.63.1.174-229.1999.
  • Ndaw, S., M. Bergaentzle, D. Aoudé-Werner, and C. Hasselmann. 2002. Enzymatic extraction procedure for the liquid chromatographic determination of niacin in foodstuffs. Food Chemistry 78 (1):129–34. doi.org/ (02)00:129–34. 4 doi: 10.1016/S0308-8146.
  • Neira, H. D., and A. E. Herr. 2017. Kinetic analysis of enzymes immobilized in porous film arrays. Analytical Chemistry 89 (19):10311–20. doi: 10.1021/acs.analchem.7b02075.
  • Nematian, T., A. Shakeri, Z. Salehi, and A. A. Saboury. 2020. Lipase immobilized on functionalized superparamagnetic few-layer graphene oxide as an efficient nanobiocatalyst for biodiesel production from Chlorella vulgaris bio-oil. Biotechnology for Biofuels 13 (1):1–15. doi: 10.1186/s13068-020-01688-x.
  • Nerurkar, M., M. Joshi, S. Pariti, and R. Adivarekar. 2013. Application of lipase from marine bacteria Bacillus sonorensis as an additive in detergent formulation. Journal of Surfactants and Detergents 16 (3):435–43. doi: 10.1007/s11743-012-1434-0.
  • Nguyen, H. H., and M. Kim. 2017. An overview of techniques in enzyme immobilization. Applied Science and Convergence Technology 26 (6):157–63. doi: 10.5757/ASCT.2017.26.6.157.
  • Nicholson, R. A., and A. G. Marangoni. 2021. Lipase-catalyzed glycerolysis extended to the conversion of a variety of edible oils into structural fats. Current Research in Food Science 4:163–74. doi: 10.1016/j.crfs.2021.03.005.
  • Nishio, T., M. Kamimura, M. Murata, Y. Terao, and K. Achiwa. 1989. Production of optically active esters and alcohols from racemic alcohols by lipase-catalyzed stereoselective transesterification in non-aqueous reaction system. Journal of Biochemistry 105 (4):510–2. doi: 10.1093/oxfordjournals.jbchem.a122697.
  • Niu, J.-F., G. Wang, and C. Tseng. 2006. Method for large-scale isolation and purification of R-phycoerythrin from red alga Polysiphonia urceolata Grev. Protein Expression and Purification 49 (1):23–31. doi: 10.1016/j.pep.2006.02.001.
  • Nordwald, E. M., G. S. Armstrong, and J. L. Kaar. 2014. NMR-guided rational engineering of an ionic-liquid-tolerant lipase. ACS Catalysis 4 (11):4057–64. doi: 10.1021/cs500978x.
  • Nowak, P., K. Kucharska, and M. Kamiński. 2019. Ecological and health effects of lubricant oils emitted into the environment. International Journal of Environmental Research and Public Health 16 (16):3002. doi: 10.3390/ijerph16163002.
  • Numan, M. T., and N. B. Bhosle. 2006. α Alpha-L-arabinofuranosidases: the potential applications in biotechnology. Journal of Industrial Microbiology & Biotechnology 33 (4):247–60. doi: 10.1007/s10295-005-0072-1.
  • Nyendak, M. R., D. A. Lewinsohn, and D. M. Lewinsohn. 2009. New diagnostic methods for tuberculosis. Current Opinion in Infectious Diseases 22 (2):3889480–174. PMCID: PMC:3889480–174.
  • Ohgiya, S., T. Hoshino, H. Okuyama, S. Tanaka, and K. Ishizaki. 1999. Biotechnology of enzymes from cold-adapted microorganisms. In Biotechnological applications of cold-adapted organisms, ed. R. Margesin, and F. Schinner, 17–34. Berlin, Heidelberg: Springer. doiorg/ doi: 10.1007/978-3-642-58607-1_2.
  • Okino-Delgado, C. H., D. Z. d. Prado, R. Facanali, M. M. O. Marques, A. S. Nascimento, C. J. d C. Fernandes, W. F. Zambuzzi, and L. F. Fleuri. 2017. Bioremediation of cooking oil waste using lipases from wastes. PloS One 12 (10):e0186246. doi: 10.1371/journal.pone.0186246.
  • Oliveira de Medeiros, F., C. A. V. Burkert, and S. J. Kalil. 2012. Purification of β‐galactosidase by ion exchange chromatography: Elution optimization using an experimental design. Chemical Engineering & Technology 35 (5):911–8. doi: 10.1002/ceat.201100571.
  • Olusesan, A. T., L. K. Azura, F. Abubakar, N. S. A. Hamid, S. Radu, and N. Saari. 2009. Phenotypic and molecular identification of a novel thermophilic Anoxybacillus species: A lipase-producing bacterium isolated from a Malaysian hotspring. World Journal of Microbiology and Biotechnology 25 (11):1981–8. doi: 10.1007/s11274-009-0097-0.
  • Ong, A. L., A. H. Kamaruddin, and S. Bhatia. 2005. Current technologies for the production of (S)-ketoprofen: Process perspective. Process Biochemistry 40 (11):3526–35. doi: 10.1016/j.procbio.2005.03.054.
  • Ota, Y., T. Sawamoto, and M. Hasuo. 2000. Tributyrin specifically induces a lipase with a preference for the sn-2 position of triglyceride in Geotrichum sp. FO401B. Bioscience, Biotechnology, and Biochemistry 64 (11):2497–9. doi: 10.1271/bbb.64.2497.
  • Ota, Y., and K. Yamada. 1966. Lipase from Candida paralipolytica: Part I. Anionic surfactants as the essential activator in the systems emulsified by polyvinyl alcohol. Agricultural and Biological Chemistry 30 (4):351–8. doi: 10.1080/00021369.1966.10858605.
  • Owusu-Ansah, Y. J. 1994. Enzymes in lipid technology and cocoa butter substitutes. In Technological advances in improved and alternative sources of lipids, ed. B. S. Kamel, and Y. Kakuda. Boston, MA: Springer. doi: 10.1007/978-1-4615-2109-9_12.
  • Ozturkoglu-Budak, S., A. Wiebenga, P. A. Bron, and R. P. d. Vries. 2016. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe’s milk cheese. International Journal of Food Microbiology 237:17–27. doi: 10.1016/j.ijfoodmicro.2016.08.007.
  • Palekar, A. A., P. T. Vasudevan, and S. Yan. 2000. Purification of lipase: A review. Biocatalysis and Biotransformation 18 (3):177–200. doi: 10.3109/10242420009015244.
  • Palissa, H., H. von Döhren, H. Kleinkauf, H. H. Ting, and J. E. Baldwin. 1989. Beta-lactam biosynthesis in a gram-negative eubacterium: Purification and characterization of isopenicillin N synthase from Flavobacterium sp. strain SC 12.154. Journal of Bacteriology 171 (10):5720–8. doi: 10.1128/jb.171.10.5720-5728.1989.
  • Palomo, J. M., C. Ortiz, M. Fuentes, G. Fernandez-Lorente, J. M. Guisan, and R. Fernandez-Lafuente. 2004. Use of immobilized lipases for lipase purification via specific lipase-lipase interactions. Journal of Chromatography. A 1038 (1–2):267–73. doi: 10.1016/j.chroma.2004.03.058.
  • Paluzar, H., D. Tuncay, and H. Aydogdu. 2021. Production and characterization of lipase from Penicillium aurantiogriseum under solid-state fermentation using sunflower pulp. Biocatalysis and Biotransformation 39 (4):333–42. doi.org/:333–42. doi: 10.1080/10242422.2021.1901888.
  • Paraskevopoulou, V., and F. H. Falcone. 2018. Polyionic tags as enhancers of protein solubility in recombinant protein expression. Microorganisms 6 (2):47. doi: 10.3390/microorganisms6020047.
  • Park, M., E. Do, and W. H. Jung. 2013. Lipolytic enzymes involved in the virulence of human pathogenic fungi. Mycobiology 41 (2):67–72. doi: 10.5941/MYCO.2013.41.2.67.
  • Park, S. H., and H. K. Kim. 2020. Antibacterial activity of emulsions containing unsaturated fatty acid ergosterol esters synthesized by lipase-mediated transesterification. Enzyme and Microbial Technology 139:109581. doi: 10.1016/j.enzmictec.2020.109581.
  • Park, Y.-K., M. Vandermies, P. Soudier, S. Telek, S. Thomas, J.-M. Nicaud, and P. Fickers. 2019. Efficient expression vectors and host strain for the production of recombinant proteins by Yarrowia lipolytica in process conditions. Microbial Cell Factories 18 (1):1–12. doi: 10.1186/s12934-019-1218-6.
  • Passolunghi, S., S. Brocca, L. Cannizzaro, D. Porro, and M. Lotti. 2003. Monitoring the transport of recombinant Candida rugosa lipase by a green fluorescent protein-lipase fusion. Biotechnology Letters 25 (22):1945–8. doi: 10.1023/B:BILE.0000003991.71854.09.
  • Patel, N., D. Rai, S. Shahane, and U. Mishra. 2019. Lipases: Sources, production, purification, and applications. Recent Patents on Biotechnology 13 (1):45–56. doi: 10.2174/1872208312666181029093333.
  • Pathak, V. M., and Navneet. 2017. Review on the current status of polymer degradation: A microbial approach. Bioresources and Bioprocessing 4 (1):1–31. doi: 10.1186/s40643-017-0145-9.
  • Pereira, E. B., H. F. D. Castro, F. F. D. Moraes, and G. M. Zanin. 2001. Kinetic studies of lipase from Candida rugosa. In Twenty-second symposium on biotechnology for fuels and chemicals, 739–52. Totowa, NJ: Humana Press. doi: 10.1007/978-1-4612-0217-2_62.
  • Pereira, M. G., A. C. Vici, F. D. A. Facchini, A. P. Tristao, J. R. Cursino-Santos, P. R. Sanches, J. A. Jorge, M. de Lourdes, and T. d M. Polizeli. 2014. Screening of filamentous fungi for lipase production: Hypocrea pseudokoningii a new producer with a high biotechnological potential. Biocatalysis and Biotransformation 32 (1):74–83. doi: 10.3109/10242422.2013.873417.
  • Pichot, R., R. L. Watson, and I. T. Norton. 2013. Phospholipids at the interface: Current trends and challenges. International Journal of Molecular Sciences 14 (6):11767–94. doi: 10.3390/ijms140611767.
  • Pillay, V., C. M. Dangor, T. Govender, K. R. Moopanar, and N. Hurbans. 1998. Ionotropic gelation: Encapsulation of indomethacin in calcium alginate gel discs. Journal of Microencapsulation 15 (2):215–26. doi: 10.3109/02652049809006851.
  • Pinheiro, B. B., N. S. Rios, E. R. Aguado, R. Fernandez-Lafuente, T. M. Freire, P. B. A. Fechine, J. C. S. Dos Santos, and L. R. B. Goncalves. 2019. Chitosan activated with divinyl sulfone: A new heterofunctional support for enzyme immobilization. Application in the immobilization of lipase B from Candida antarctica. International Journal of Biological Macromolecules 130:798–809. doi: 10.1016/j.ijbiomac.2019.02.145.
  • Pinheiro, M. P., N. S. Rios, T. d. S. Fonseca, F. d. A. Bezerra, E. Rodríguez-Castellón, R. Fernandez-Lafuente, M. C. de Mattos, J. C. S. Dos Santos, and L. R. B. Gonçalves. 2018. Kinetic resolution of drug intermediates catalyzed by lipase B from Candida antarctica immobilized on immobead-350. Biotechnology Progress 34 (4):878–89. doi: 10.1002/btpr.2630.
  • Pulido, I. Y., E. Prieto, G. P. Pieffet, L. Méndez, and C. A. Jiménez-Junca. 2020. Functional heterologous expression of mature lipase LipA from Pseudomonas aeruginosa PSA01 in Escherichia coli SHuffle and BL21 (DE3): Effect of the expression host on thermal stability and solvent tolerance of the enzyme produced. International Journal of Molecular Sciences 21 (11):3925. doi: 10.3390/ijms21113925.
  • Putra, L., G. H. Natadiputri, A. Meryandini, and A. Suwanto. 2019. Isolation, cloning and co-expression of lipase and foldase genes of burkholderia territorii GP3 from Mount Papandayan soil. Journal of Microbiology and Biotechnology 29 (6):944–51. doi: 10.4014/jmb.1812.12013.
  • Qin, L.-N., F.-R. Cai, X.-R. Dong, Z.-B. Huang, Y. Tao, J.-Z. Huang, and Z.-Y. Dong. 2012. Improved production of heterologous lipase in Trichoderma reesei by RNAi mediated gene silencing of an endogenic highly expressed gene. Bioresource Technology 109:116–22. doi: 10.1016/j.biortech.2012.01.013.
  • Qin, L., X. Jiang, Z. Dong, J. Huang, and X. Chen. 2018. Identification of two integration sites in favor of transgene expression in Trichoderma reesei. Biotechnology for Biofuels 11 (1):1–15. doi: 10.1186/s13068-018-1139-3.
  • Raclot, T., C. Holm, and D. Langin. 2001. Fatty acid specificity of hormone-sensitive lipase: Implication in the selective hydrolysis of triacylglycerols. Journal of Lipid Research 42 (12):2049–57. doi: 10.1016/S0022-2275. (20)31534-0
  • Rafiee, F., and M. Rezaee. 2021. Different strategies for the lipase immobilization on the chitosan based supports and their applications . International Journal of Biological Macromolecules 179:170–95. doi: 10.1016/j.ijbiomac.2021.02.198.
  • Raftari, M., S. Ghafourian, N. Sadeghifard, F. Abu Bakar, N. Saari, and Z. Sekawi. 2012. Overexpression of recombinant lipase from Burkholderia cepacia in Escherichia coli. European Journal of Inflammation 10 (3):365–9. doi: 10.1177/1721727X1201000312.
  • Rajendran, A., A. Palanisamy, and V. Thangavelu. 2009. Lipase catalyzed ester synthesis for food processing industries. Brazilian Archives of Biology and Technology 52 (1):207–19. doi: 10.1590/S1516-89132009000100026.
  • Rani, S., and S. Jagtap. 2019. Acceleration of Swiss cheese ripening by microbial lipase without affecting its quality characteristics. Journal of Food Science and Technology 56 (1):497–506. doi: 10.1007/s13197-018-3482-6.
  • Ranjan, M. T., A. R. Byreddy, M. Puri, C. Barrow, and N. M. Rao. 2016. Selective enrichment of omega-3 fatty acids in oils by phospholipase A1. PloS One 11 (3):e0151370. doi: 10.1371/journal.pone.0151370.
  • Rantasalo, A., M. Vitikainen, T. Paasikallio, J. Jäntti, C. P. Landowski, and D. Mojzita. 2019. Novel genetic tools that enable highly pure protein production in Trichoderma reesei. Scientific Reports 9 (1):1–12. doi: 10.1038/s41598-019-41573-8.
  • Rasamiravaka, T., Q. Labtani, P. Duez, and M. E. Jaziri. 2015. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. BioMed Research International 2015:1–17. Article ID 759348 | :1–17. doi: 10.1155/2015/759348.
  • Rasmussen-Ivey, C. R., M. J. Figueras, D. McGarey, and M. R. Liles. 2016. Virulence factors of Aeromonas hydrophila: In the wake of reclassification. Frontiers in Microbiology 7:1337. doi: 10.3389/fmicb.2016.01337.
  • Raveendran, S., B. Parameswaran, S. B. Ummalyma, A. Abraham, A. K. Mathew, A. Madhavan, S. Rebello, and A. Pandey. 2018. Applications of microbial enzymes in food industry. Food Technology and Biotechnology 56 (1):16–30. doi: 10.17113/ftb.56.01.18.5491.
  • Reetz, M. T. 2002. Lipases as practical biocatalysts. Current Opinion in Chemical Biology 6 (2):145–50. doi: 10.1016/S1367-5931(02)00297-1.
  • Rengachari, S., G. A. Bezerra, L. Riegler-Berket, C. C. Gruber, C. Sturm, U. Taschler, A. Boeszoermenyi, I. Dreveny, R. Zimmermann, K. Gruber, et al. 2012. The structure of monoacylglycerol lipase from Bacillus sp. H257 reveals unexpected conservation of the cap architecture between bacterial and human enzymes. Biochimica et Biophysica Acta 1821 (7):1012–21. doi: 10.1016/j.bbalip.2012.04.006.
  • Resina, D., O. Cos, P. Ferrer, and F. Valero. 2005. Developing high cell density fed-batch cultivation strategies for heterologous protein production in Pichia pastoris using the nitrogen source-regulated FLD1 Promoter. Biotechnology and Bioengineering 91 (6):760–7. doi: 10.1002/bit.20545.
  • Ribeiro, W. F., T. M. G. Selva, I. C. Lopes, E. C. S. Coelho, S. G. Lemos, F. C. d. Abreu, V. B. d. Nascimento, and M. C. U. d. Araújo. 2011. Electroanalytical determination of carbendazim by square wave adsorptive stripping voltammetry with multiwalled carbon nanotubes modified electrode. Analytical Methods 3 (5):1202–6. doi: 10.1039/c0ay00723d.
  • Richmond, J. A., T. L. Dunning, and P. V. Desmond. 2007. Health professionals’ attitudes toward caring for people with hepatitis C. Journal of Viral Hepatitis 14 (9):624–32. doi: 10.1111/j.1365-2893.2007.00849.x.
  • Robert, J. M., M. O. Betancur, A. C. O. Machado, A. Arruda, V. C. B. Reis, R. V. Almeida, F. A. G. Torres, P. F. Alegre, F. Valero, and D. M. G. Freire. 2019. Increase of Candida antarctica lipase B production under PGK promoter in Pichia pastoris: Effect of multicopies. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology] 50 (2):405–13. doi: 10.1007/s42770-019-00056-8.
  • Robinson, P. K. 2015. Correction: Enzymes: Principles and biotechnological applications. Essays in Biochemistry 59:1–75. doi: 10.1042/bse0590001.
  • Robles-Medina, A., P. A. González-Moreno, L. Esteban-Cerdán, and E. Molina-Grima. 2009. Biocatalysis: Towards ever greener biodiesel production. Biotechnology Advances 27 (4):398–408. doi: 10.1016/j.biotechadv.2008.10.008.
  • Rodrigues, R. C., and M. A. Z. Ayub. 2011. Effects of the combined use of Thermomyces lanuginosus and Rhizomucor miehei lipases for the transesterification and hydrolysis of soybean oil. Process Biochemistry 46 (3):682–8. doi: 10.1016/j.procbio.2010.11.013.
  • Rodriguez-Abetxuko, A., D. Sánchez-deAlcázar, P. Muñumer, and A. Beloqui. 2020. Tunable polymeric scaffolds for enzyme immobilization. Frontiers in Bioengineering and Biotechnology 8:830. doi: 10.3389/fbioe.2020.00830.
  • Rogalska, E., C. Cudrey, F. Ferrato, and R. Verger. 1993. Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality 5 (1):24–30. doi: 10.1002/chir.530050106.
  • Rosano, G. L., and E. A. Ceccarelli. 2014. Recombinant protein expression in Escherichia coli: Advances and challenges. Frontiers in Microbiology 5:172. doi: 10.3389/fmicb.2014.00172.
  • Rosenthal, K., and S. Lütz. 2018. Recent developments and challenges of biocatalytic processes in the pharmaceutical industry. Current Opinion in Green and Sustainable Chemistry 11:58–64. doi: 10.1016/j.cogsc.2018.03.015.
  • Royter, M., M. Schmidt, C. Elend, H. Höbenreich, T. Schäfer, U. T. Bornscheuer, and G. Antranikian. 2009. Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis. Extremophiles: Life under Extreme Conditions 13 (5):769–83. doi: 10.1007/s00792-009-0265-z.
  • Rubio, R., A. Jofré, B. Martín, T. Aymerich, and M. Garriga. 2014. Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages. Food Microbiology 38 (2014):303–11. doi: 10.1016/j.fm.2013.07.015.
  • Saeui, C. T., E. Urias, L. Liu, M. P. Mathew, and K. J. Yarema. 2015. Metabolic glycoengineering bacteria for therapeutic, recombinant protein, and metabolite production applications. Glycoconjugate Journal 32 (7):425–41. doi: 10.1007/s10719-015-9583-9.
  • Sağiroğlu, A., A. Kilinç, and A. Elefoncu. 2004. Preparation and properties of lipases immobilized on different supports. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology 32 (4):625–36. doi: 10.1081/bio-200039656.
  • Sahin, N., C. C. Akoh, and A. Karaali. 2005. Lipase-catalyzed acidolysis of tripalmitin with hazelnut oil fatty acids and stearic acid to produce human milk fat substitutes. Journal of Agricultural and Food Chemistry 53 (14):5779–83. doi: 10.1021/jf050465e.
  • Sakai, S., Y. Liu, T. Yamaguchi, R. Watanabe, M. Kawabe, and K. Kawakami. 2010. Immobilization of Pseudomonas cepacia lipase onto electrospun polyacrylonitrile fibers through physical adsorption and application to transesterification in nonaqueous solvent. Biotechnology Letters 32 (8):1059–62. doi: 10.1007/s10529-010-0279-8.
  • Sales, J. C. S., A. M. d. Castro, B. D. Ribeiro, and M. A. Z. Coelho. 2020. Supplementation of watermelon peels as an enhancer of lipase and esterase production by Yarrowia lipolytica in solid-state fermentation and their potential use as biocatalysts in poly (ethylene terephthalate) (PET) depolymerization reactions. Biocatalysis and Biotransformation 38 (6):457–68. doi: 10.1080/10242422.2020.1782387.
  • Salihu, A., and M. Zahangir Alam. 2015. Solvent tolerant lipases: A review. Process Biochemistry 50 (1):86–96. doi: 10.1016/j.procbio.2014.10.019.
  • Salleh, A. B., Siti, M. Baharuddin, Raja, N. Z. R. A. Rahman, T. C. Leow, M. Basri, and S. N. Oslan. 2020. A host-vector system for the expression of a thermostable bacterial lipase in a locally isolated Meyerozyma guilliermondii SMB. Microorganisms 8 (11):1738. doi: 10.3390/microorganisms8111738.
  • Salvi, H. M., M. P. Kamble, and G. D. Yadav. 2018. Synthesis of geraniol esters in a continuous-flow packed-bed reactor of immobilized lipase: Optimization of process parameters and kinetic modeling. Applied Biochemistry and Biotechnology 184 (2):630–43. doi: 10.1007/s12010-017-2572-7.
  • Salwoom, L., R. N. Z. R. Abd Rahman, A. B. Salleh, P. Convey, D. Pearce, and M. S. M. Ali. 2019. Isolation, characterization, and lipase production of a cold-adapted bacterial strain Pseudomonas sp. LSK25 isolated from Signy Island, Antarctica. Molecules 24 (4):715. doi: 10.3390/molecules24040715.
  • Samiey, B., C.-H. Cheng, and J. Wu. 2014. Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: A review. Materials (Basel, Switzerland) 7 (2):673–726. doi: 10.3390/ma7020673.
  • Samuel, P., A. K. P. Vadhana, R. Kamatchi, A. Antony, and S. Meenakshisundaram. 2013. Effect of molecular chaperones on the expression of Candida antarctica lipase B in Pichia pastoris. Microbiological Research 168 (10):615–20. doi: 10.1016/j.micres.2013.06.007.
  • Sanchez, S., and A. L. Demain. 2011. Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Organic Process Research & Development 15 (1):224–30. doi: 10.1021/op100302x.
  • Sánchez-Hernández, S., A. Esteban-Muñoz, R. Giménez-Martínez, M. J. Aguilar-Cordero, B. Miralles-Buraglia, and M. Olalla-Herrera. 2019. A comparison of changes in the fatty acid profile of human milk of Spanish lactating women during the first month of lactation using gas chromatography-mass spectrometry. A comparison with infant formulas. Nutrients 11 (12):3055. doi: 10.3390/nu11123055.
  • Sankaran, R., P. L. Show, and J.-S. Chang. 2016. Biodiesel production using immobilized lipase: Feasibility and challenges. Biofuels, Bioproducts and Biorefining 10 (6):896–916. doi: 10.1002/bbb.1719.
  • Santilli, A. A., A. C. Scotese, R. F. Bauer, and S. C. Bell. 1987. 2-Oxo-1,8-naphthyridine-3-carboxylic acid derivatives with potent gastric antisecretory properties. Journal of Medicinal Chemistry 30 (12):2270–7. doi: 10.1021/jm00395a015.
  • Sarkar, P., S. Yamasaki, S. Basak, A. Bera, and P. K. Bag. 2012. Purification and characterization of a new alkali-thermostable lipase from Staphylococcus aureus isolated from Arachis hypogaea rhizosphere. Process Biochemistry 47 (5):858–66. doi: 10.1016/j.procbio.2012.02.023.
  • Sarmah, N., D. Revathi, G. Sheelu, K. Y. Rani, S. Sridhar, V. Mehtab, and C. Sumana. 2018. Recent advances on sources and industrial applications of lipases. Biotechnology Progress 34 (1):5–28. doi: 10.1002/btpr.2581.
  • Sato, H., T. Watanabe, Y. Murata, A. Ohtake, M. Nakamura, C. Aizawa, H. Saito, and N. Maehara. 1999. New exfoliative toxin produced by a plasmid-carrying strain of Staphylococcus hyicus. Infection and Immunity 67 (8):4014–8. doi: 10.1128/IAI.67.8.4014-4018.1999.
  • Saxena, R. K., A. Sheoran, B. Giri, and W. S. Davidson. 2003. Purification strategies for microbial lipases. Journal of Microbiological Methods 52 (1):1–18. doi: 10.1016/S0167-7012(02)00161-6.
  • Schirone, M., R. Tofalo, P. Visciano, A. Corsetti, and G. Suzzi. 2012. Biogenic amines in Italian Pecorino cheese. Frontiers in Microbiology 3:171. doi: 10.3389/fmicb.2012.00171.
  • Schmid, R. D., and R. Verger. 1998. Lipases: Interfacial enzymes with attractive applications. Angewandte Chemie International Edition 37 (12):1608–33. doi: 10.1002/(SICI)1521-3773(19980703)37:12 < 1608::AID-ANIE1608 > 3.0.CO;2-V.
  • Schoemaker, H. E., D. Mink, and M. G. Wubbolts. 2003. Dispelling the myths-biocatalysis in industrial synthesis. Science (New York, NY) 299 (5613):1694–7. doi: 10.1126/science.1079237.
  • Schoffelen, S., and J. C. M V. Hest. 2013. Chemical approaches for the construction of multi-enzyme reaction systems. Current Opinion in Structural Biology 23 (4):613–21. doi: 10.1016/j.sbi.2013.06.010.
  • Schomburg, I., A. Chang, and D. Schomburg. 2014. Standardization in enzymology—Data integration in the world’ s enzyme information system BRENDA. Perspectives in Science 1 (1–6):15–23. doi: 10.1016/j.pisc.2014.02.002.
  • Seitz, E. W. 1974. Industrial application of microbial lipases: A review. Journal of the American Oil Chemists’ Society 51 (2):12–6. doi: 10.1007/BF02545206.
  • Sen, K., and M. Rodgers. 2004. Distribution of six virulence factors in Aeromonas species isolated from US drinking water utilities: A PCR identification. Journal of Applied Microbiology 97 (5):1077–86. doi: 10.1111/j.1365-2672.2004.02398.x.
  • Senbua, W., J. Mearnchu, and J. Wichitwechkarn. 2020. Easy-to-use and reliable absorbance-based MPH-GST biosensor for the detection of methyl parathion pesticides. Biotechnology Reports (Amsterdam, Netherlands) 27:e00495. doi: 10.1016/j.btre.2020.e00495.
  • Sha, C., X.-W. Yu, N.-X. Lin, M. Zhang, and Y. Xu. 2013. Enhancement of lipase r27RCL production in Pichia pastoris by regulating gene dosage and co-expression with chaperone protein disulfide isomerase. Enzyme and Microbial Technology 53 (6–7):438–43. doi: 10.1016/j.enzmictec.2013.09.009.
  • Shao, H., X. Hu, L. Sun, and W. Zhou. 2019. Gene cloning, expression in E. coli, and in vitro refolding of a lipase from Proteus sp. NH 2-2 and its application for biodiesel production. Biotechnology Letters 41 (1):159–69. doi: 10.1007/s10529-018-2625-1.
  • Sharma, R., Y. Chisti, and U. C. Banerjee. 2001. Production, purification, characterization, and applications of lipases. Biotechnology Advances 19 (8):627–62. doi: 10.1016/S0734-9750(01)00086-6.
  • Sharma, A., K. S. Thatai, T. Kuthiala, G. Singh, and S. K. Arya. 2021. Employment of polysaccharides in enzyme immobilization. Reactive and Functional Polymers 167 (2021):105005. doi: 10.1016/j.reactfunctpolym.2021.105005.
  • Sheldon, R. A. 2007. Cross-linked enzyme aggregates (CLEA®s): stable and recyclable biocatalysts. Biochemical Society Transactions 35 (6):1583–7. doi:10.1042/BST0351583.
  • Sheldon, R. A., and S. van Pelt. 2013. Enzyme immobilisation in biocatalysis: why, what and how. Chemical Society Reviews 42 (15):6223–35. doi: 10.1039/C3CS60075K.
  • Shockey, J., D. Chapital, S. Gidda, C. Mason, G. Davis, K. T. Klasson, H. Cao, R. Mullen, and J. Dyer. 2011. Expression of a lipid-inducible, self-regulating form of Yarrowia lipolytica lipase LIP2 in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 92 (6):1207–17. doi: 10.1007/s00253-011-3505-y.
  • Siebenhaller, S., J. Gentes, A. Infantes, C. Muhle-Goll, F. Kirschhöfer, G. Brenner-Weiß, O. Katrin, and S. Christoph. 2018. Lipase-catalyzed synthesis of sugar esters in honey and agave syrup. Frontiers in Chemistry 6 (2018):24. doi: 10.3389/fchem.2018.00024.
  • Siebenhaller, S., T. Hajek, C. Muhle-Goll, M. Himmelsbach, B. Luy, F. Kirschhöfer, G. Brenner-Weiß, T. Hahn, S. Zibek, and C. Syldatk. 2017. Beechwood carbohydrates for enzymatic synthesis of sustainable glycolipids. Bioresources and Bioprocessing 4 (1):1–9. doi: 10.1186/s40643-017-0155-7.
  • Sigurdardóttir, S. B., J. Lehmann, S. Ovtar, J. Grivel, M. D. Negra, A. Kaiser, and M. Pinelo. 2018. Enzyme immobilization on inorganic surfaces for membrane reactor applications: Mass transfer challenges, enzyme leakage and reuse of materials. Advanced Synthesis & Catalysis 360 (14):2578–607. doi: 10.1002/adsc.201800307.
  • Silva, J. E. S., and P. C. Jesus. 2003. Evaluation of the catalytic activity of lipases immobilized on chrysotile for esterification. Anais da Academia Brasileira de Ciencias 75 (2):157–62. 75: 157-162. doi: 10.1590/s0001-37652003000200003.
  • Singh, A. K., and M. Mukhopadhyay. 2012. Overview of fungal lipase: A review. Applied Biochemistry and Biotechnology 166 (2):486–520. doi: 10.1007/s12010-011-9444-3.
  • Singh, R., A. K. Upadhyay, P. Chandra, and D. P. Singh. 2018. Sodium chloride incites reactive oxygen species in green algae Chlorococcum humicola and Chlorella vulgaris: Implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresource Technology 270:489–97. doi: 10.1016/j.biortech.2018.09.065.
  • Sirisha, V. L., A. Jain, and A. Jain. 2016. Enzyme immobilization: An overview on methods, support material, and applications of immobilized enzymes. Advances in Food and Nutrition Research 79:179–211. doi: 10.1016/bs.afnr.2016.07.004.
  • Soares, C. M. F., H. F. D. Castro, F. F. De Moraes, and G. M. Zanin. 1999. Characterization and utilization of Candida rugosa lipase immobilized on controlled pore silica. In Twentieth symposium on biotechnology for fuels and chemicals. Applied biochemistry and biotechnology, ed. B. H. Davison and M. Finkelstein. Totowa, NJ: Humana Press. doi: 10.1007/978-1-4612-1604-9_68.
  • Sobczak, A. I. S., C. A. Blindauer, and A. J. Stewart. 2019. Changes in plasma-free fatty acids associated with type-2 diabetes. Nutrients 11 (9):2022. doi: 10.3390/nu11092022.
  • Soleymani, S., H. Alizadeh, H. Mohammadian, E. Rabbani, F. Moazen, H. MirMohammad Sadeghi, Z. S. Shariat, Z. Etemadifar, and M. Rabbani. 2017. Efficient media for high lipase production: One variable at a time approach. Avicenna Journal of medical biotechnology 9 (2):82. PMCID: PMC5410133
  • Son, M., Y. Moon, M. J. Oh, S. B. Han, K. H. Park, J.-G. Kim, and J. H. Ahn. 2012. Lipase and protease double-deletion mutant of Pseudomonas fluorescens suitable for extracellular protein production. Applied and Environmental Microbiology 78 (23):8454–62. doi: 10.1128/AEM.02476-12.
  • Song, J., J. Park, J. Jung, C. Lee, S. Y. Gim, H. Ka, B. Yi, M.-J. Kim, C-i. Kim, and J. Lee. 2015. Analysis of trans fat in edible oils with the cooking process. Toxicological Research 31 (3):307–12. doi: 10.5487/TR.2015.31.3.307.
  • Soumanou, M. M., M. Pérignon, and P. Villeneuve. 2013. Lipase‐catalyzed interesterification reactions for human milk fat substitute’s production: A review. European Journal of Lipid Science and Technology 115 (3):270–85. doi: 10.1002/ejlt.201200084.
  • Spahn, C., and S. D. Minteer. 2008. Enzyme immobilization in biotechnology. Recent Patents on Engineering 2 (3):195–200. doi: 10.2174/187221208786306333.
  • Stadler, P., A. Kovac, L. Haalck, F. Spener, and F. Paltauf. 1995. Stereoselectivity of Microbial lipases. The substitution at position sn-2 of triacylglycerol analogs influences the stereoselectivity of different microbial lipases. European Journal of Biochemistry 227 (1–2):335–43. doi: 10.1111/j.1432-1033.1995.tb20394.x.
  • Stanhope, K. L. 2012. Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Annual Review of Medicine 63:329–43. doi: 10.1146/annurev-med-042010-113026.
  • Stauch, B., S. J. Fisher, and M. Cianci. 2015. Open and closed states of Candida antarctica lipase B: Protonation and the mechanism of interfacial activation1. Journal of Lipid Research 56 (12):2348–58. doi: 10.1194/jlr.M063388.
  • Stefanovic, E., K. N. Kilcawley, C. Roces, M. C. Rea, M. O’Sullivan, J. J. Sheehan, and O. McAuliffe. 2018. Evaluation of the potential of Lactobacillus paracasei adjuncts for flavor compounds development and diversification in short-aged cheddar cheese. Frontiers in Microbiology 9 (2018):1506. doi: 10.3389/fmicb.2018.01506.
  • Stehr, F., A. Felk, A. Gácser, M. Kretschmar, B. Mähnss, K. Neuber, B. Hube, and W. Schäfer. 2004. Expression analysis of the Candida albicans lipase gene family during experimental infections and in patient samples. FEMS Yeast Research 4 (4–5):401–8. doi: 10.1016/S1567-1356(03)00205-8.
  • Stehr, F., M. Kretschmar, C. Kröger, B. Hube, and W. Schäfer. 2003. Microbial lipases as virulence factors. Journal of Molecular Catalysis B: Enzymatic 22 (5–6):347–55. doi: 10.1016/S1381-1177(03)00049-3.
  • Stephanopoulos, G. 2007. Challenges in engineering microbes for biofuels production. Science (New York, NY) 315 (5813):801–4. doi: 10.1126/science.1139612.
  • Sugahara, V. H., and G. d S. Varéa. 2014. Immobilization of Beauveria bassiana lipase on silica gel by physical adsorption. Brazilian Archives of Biology and Technology 57 (6):842–50. doi: 10.1590/S1516-8913201401358.
  • Sugo, K., and T. Okuyama. 2018. Hydroxyapatite chromatographic procedures for phospholipids. Separation Science and Technology 53 (2):389–96. doi: 10.1080/01496395.2017.1380047.
  • Sulaiman, S., M. N. Mokhtar, M. N. Naim, A. S. Baharuddin, and A. Sulaiman. 2015. A review: Potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Applied Biochemistry and Biotechnology 175 (4):1817–42. doi: 10.1007/s12010-014-1417-x.
  • Sultan, A., and P. M. Sokolove. 2001. Free fatty acid effects on mitochondrial permeability: An overview. Archives of Biochemistry and Biophysics 386 (1):52–61. doi: 10.1006/abbi.2000.2195.
  • Sunitha, S., S. Kanjilal, P. S. Reddy, and R. B. N. Prasad. 2007. Ionic liquids as a reaction medium for lipase-catalyzed methanolysis of sunflower oil. Biotechnology Letters 29 (12):1881–5. doi: 10.1007/s10529-007-9471-x.
  • Svendsen, A., I. G. Clausen, S. A. Patkar, K. Borch, and M. Thellersen. 1997. Protein engineering of microbial lipases of industrial interest. Methods in Enzymology 284 (1997):317–40. doi: 10.1016/S0076-6879.(97)84021-9
  • Tahoun, M. K., and H. A. Ali. 1986. Specificity and glyceride synthesis by mycelial lipases of Rhizopus delemar. Enzyme and Microbial Technology 8 (7):429–32. doi.org/ (86)90152-3 doi: 10.1016/0141-0229.
  • Taipa, M. A., M. R. Aires-Barros, and J. M. S. Cabral. 1992. Purification of lipases. Journal of Biotechnology 26 (2–3):111–42. doi: 10.1016/0168-1656(92)90001-P.
  • Tamalampudi, S., S. Hama, T. Tanino, M. R. Talukder, A. Kondo, and H. Fukuda. 2007. Immobilized recombinant Aspergillus oryzae expressing heterologous lipase: An efficient whole-cell biocatalyst for enantioselective transesterification in non-aqueous medium. Journal of Molecular Catalysis B: Enzymatic 48 (1–2):33–7. doi: 10.1016/j.molcatb.2007.05.007.
  • Tavares, M., M. Kozak, A. Balola, and I. Sá-Correia. 2020. Burkholderia cepacia complex bacteria: A feared contamination risk in water-based pharmaceutical products. Clinical Microbiology Reviews 33 (3):e00139-19. doi: 10.1128/CMR.00139-19.
  • Theil, F., and F. Björkling. 1993. Specificity of Candida antarctica lipase B (SP 435) in the presence of lipase A in a double enantioselective transesterification. Biotechnology Letters 15 (6):605–8. doi: 10.1007/BF00138549.
  • Theron, C. W., M. Vandermies, S. Telek, S. Steels, and P. Fickers. 2020. Comprehensive comparison of Yarrowia lipolytica and Pichia pastoris for production of Candida antarctica lipase B. Scientific Reports 10 (1):1–9. doi: 10.1038/s41598-020-58683-3.
  • Tischer, W., and F. Wedekind. 1999. Immobilized enzymes: Methods and applications. In Biocatalysis - From discovery to application. Topics in current chemistry, ed. W. D. Fessner, vol 200. Berlin, Heidelberg: Springer. doi: 10.1007/3-540-68116-7_4.
  • Tokmakov, A. A., A. Kurotani, T. Takagi, M. Toyama, M. Shirouzu, Y. Fukami, and S. Yokoyama. 2012. Multiple post-translational modifications affect heterologous protein synthesis. The Journal of Biological Chemistry 287 (32):27106–16. doi: 10.1074/jbc.M112.366351.
  • Toldrá, F., L. Mora, and M. Reig. 2016. New insights into meat by-product utilization. Meat Science 120 (2016):54–9. doi: 10.1016/j.meatsci.2016.04.021.
  • Torbeck, L., D. Raccasi, D. E. Guilfoyle, R. L. Friedman, and D. Hussong. 2011. Burkholderia cepacia: This decision is overdue. PDA Journal of Pharmaceutical Science and Technology 65 (5):535–43. doi: 10.5731/pdajpst.2011.00793.
  • Toth, R., A. Toth, C. Vagvolgyi, and A. Gacser. 2017. Candida parapsilosis secreted lipase as an important virulence factor. Current Protein & Peptide Science 18 (10):1043–9. doi: 10.2174/1389203717666160813163054.
  • Trassaert, M., M. Vandermies, F. Carly, O. Denies, S. Thomas, P. Fickers, and J. Nicaud. 2017. New inducible promoter for gene expression and synthetic biology in Yarrowia lipolytica. Microbial Cell Factories 16 (1):1–17. doi: 10.1186/s12934-017-0755-0.
  • Treacy, J., A. Williams, R. Bais, K. Willson, C. Worthley, J. Reece, J. Bessell, and D. Thomas. 2001. Evaluation of amylase and lipase in the diagnosis of acute pancreatitis. ANZ Journal of Surgery 71 (10):577–82. doi: 10.1046/j.1445-2197.2001.02220.x.
  • Trivedi, U. B., D. Lakshminarayana, I. L. Kothari, N. G. Patel, H. N. Kapse, K. K. Makhija, P. B. Patel, and C. J. Panchal. 2009. Potentiometric biosensor for urea determination in milk. Sensors and Actuators B: Chemical 140 (1):260–6. doi: 10.1016/j.snb.2009.04.022.
  • Turan, H., and İ. Erkoyuncu. 2012. Salting technology in fish processing. Progress in Food Preservation, ed. R. Bhat, Abd. K. Alias, G. Paliyath, 297–313. doi: 10.1002/9781119962045.ch14.
  • Tyburczy, C., M. M. Mossoba, and J. I. Rader. 2013. Determination of trans fat in edible oils: Current official methods and overview of recent developments. Analytical and Bioanalytical Chemistry 405 (17):5759–72. doi: 10.1007/s00216-013-7005-z.
  • Ueland, P. M., H. Refsum, S. P. Stabler, M. R. Malinow, A. Andersson, and R. H. Allen. 1993. Total homocysteine in plasma or serum: Methods and clinical applications. Clinical Chemistry 39 (9):1764–79. doi: 10.1093/clinchem/39.9.1764.
  • Ugur, A., and R. Boran. 2014. Production and characterization of a cold-active and n-hexane activated lipase from a newly isolated Serratia grimesii RB06-22. Biocatalysis and Biotransformation 32 (4):222–30. doi: 10.3109/10242422.2014.934684.
  • Ujiie, A., H. Nakano, and Y. Iwasaki. 2016. Extracellular production of Pseudozyma (Candida) antarctica lipase B with genuine primary sequence in recombinant Escherichia coli. Journal of Bioscience and Bioengineering 121 (3):303–9. doi: 10.1016/j.jbiosc.2015.07.001.
  • Unni, K. N., P. Priji, S. Sajith, P. A. Faisal, and S. Benjamin. 2016. Pseudomonas aeruginosa strain BUP2, a novel bacterium inhabiting the rumen of Malabari goat, produces an efficient lipase. Biologia 71 (4):378–87. doi: 10.1515/biolog-2016-0057.
  • Urban, A., M. Leipelt, T. Eggert, and K. Jaeger. 2001. DsbA and DsbC affect extracellular enzyme formation in Pseudomonas aeruginosa. Journal of Bacteriology 183 (2):587–96. doi: 10.1128/JB.183.2.587-596.2001.
  • Uthoff, S., D. Bröker, and A. Steinbüchel. 2009. Current state and perspectives of producing biodiesel-like compounds by biotechnology. Microbial Biotechnology 2 (5):551–65. doi: 10.1111/j.1751-7915.2009.00139.x.
  • Vale, W., J. Rivier, J. Vaughan, R. McClintock, A. Corrigan, W. Woo, D. Karr, and J. Spiess. 1986. Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature 321 (6072):776–9. doi: 10.1038/321776a0.
  • Valero, F. 2012. Heterologous expression systems for lipases: A review. In Lipases and phospholipases. Methods in molecular biology (methods and protocols), ed. G. Sandoval, vol 861. New York: Humana Press. doi: 10.1007/978-1-61779-600-5_11.
  • Van Geest, M., and J. S. Lolkema. 2000. Membrane topology and insertion of membrane proteins: Search for topogenic signals. Microbiology and Molecular Biology Reviews: MMBR 64 (1):13–33. doi: 10.1128/MMBR.64.1.13-33.2000.
  • van Hoogevest, P., and A. Wendel. 2014. The use of natural and synthetic phospholipids as pharmaceutical excipients. European Journal of Lipid Science and Technology: EJLST 116 (9):1088–107. doi: 10.1002/ejlt.201400219.
  • Vasil, M. L. 1986. Pseudomonas aeruginosa: Biology, mechanisms of virulence, epidemiology. The Journal of Pediatrics 108 (5 Pt 2):800–5. doi: 10.1016/S0022-3476(86)80748-X.
  • Ventura, S. P. M., and J. A. P. Coutinho. 2016. Lipase production and purification from fermentation broth using ionic liquids. In Ionic liquids in lipid processing and analysis, 59–97. USA: Academic Press and AOCS Press. doi: 10.1016/B978-1-63067-047-4.00003-9.
  • Vieira Gomes, A. M., T. S. Carmo, L. S. Carvalho, F. M. Bahia, and N. S. Parachin. 2018. Comparison of yeasts as hosts for recombinant protein production. Microorganisms 6 (2):38. doi: 10.3390/microorganisms6020038.
  • Villarino, C. B. J., V. Jayasena, R. Coorey, S. Chakrabarti-Bell, and S. K. Johnson. 2016. Nutritional, health, and technological functionality of lupin flour addition to bread and other baked products: Benefits and challenges. Critical Reviews in Food Science and Nutrition 56 (5):835–57. doi: 10.1080/10408398.2013.814044.
  • Wang, Y., C. Li, Y. Zhao, L. Li, X. Yang, Y. Wu, S. Chen, J. Cen, S. Yang, and D. Yang. 2020. Novel insight into the formation mechanism of volatile flavor in Chinese fish sauce (Yu-lu) based on molecular sensory and metagenomics analyses. Food Chemistry 323:126839. doi: 10.1016/j.foodchem.2020.126839.
  • Wang, F., T. T. Nie, L. L. Shao, and Z. Cui. 2014. Comparison of physical and covalent immobilization of lipase from Candida antarctica on polyamine microspheres of alkylamine matrix. Biocatalysis and Biotransformation 32 (5–6):314–26. doi: 10.3109/10242422.2014.977266.
  • Wang, Z.-G., L.-S. Wan, Z.-M. Liu, X.-J. Huang, and Z.-K. Xu. 2009. Enzyme immobilization on electrospun polymer nanofibers: An overview. Journal of Molecular Catalysis B: Enzymatic 56 (4):189–95. doi: 10.1016/j.molcatb.2008.05.005.
  • Wang, J., Z. Wu, T. Zhang, Y. Wang, and B. Yang. 2019. High-level expression of Thermomyces dupontii thermophilic lipase in Pichia pastoris via combined strategies. 3 Biotech 9 (2):62. doi: 10.1007/s13205-019-1597-8.
  • Wang, F., H. Zhang, Z. Zhao, R. Wei, B. Yang, and Y. Wang. 2017. Recombinant lipase from Gibberella zeae exhibits broad substrate specificity: A comparative study on emulsified and monomolecular substrate. International Journal of Molecular Sciences 18 (7):1535. doi: 10.3390/ijms18071535.
  • Ward, O. P. 2012. Production of recombinant proteins by filamentous fungi. Biotechnology Advances 30 (5):1119–1139. doi: 10.1016/j.biotechadv.2011.09.012.
  • Weinhold, F. 2012. Natural bond orbital analysis: A critical overview of relationships to alternative bonding perspectives. Journal of Computational Chemistry 33 (30):2363–79. doi: 10.1002/jcc.23060.
  • Weissfloch, A. N. E., and R. J. Kazlauskas. 1995. Enantiopreference of lipase from Pseudomonas cepacia toward primary alcohols. The Journal of Organic Chemistry 60 (21):6959–69. doi: 10.1021/jo00126a056.
  • Whitaker, J. R. 1963. Determination of molecular weights of proteins by gel filtration of sephadex. Analytical Chemistry 35 (12):1950–3. doi: 10.1021/ac60205a048.
  • White, J. M., S. E. Delos, M. Brecher, and K. Schornberg. 2008. Structures and mechanisms of viral membrane fusion proteins: Multiple variations on a common theme. Critical Reviews in Biochemistry and Molecular Biology 43 (3):189–219. doi: 10.1080/10409230802058320.
  • Wilhelm, S., J. Tommassen, and K. Jaeger. 1999. A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa. Journal of Bacteriology 181 (22):6977–86. doi: 10.1128/JB.181.22.6977-6986.1999.
  • Wilkes, R. A., and L. Aristilde. 2017. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: Capabilities and challenges. Journal of Applied Microbiology 123 (3):582–93. doi: 10.1111/jam.13472.
  • Willems, N., M. Lelimousin, H. Koldsø, and M. S. P. Sansom. 2017. Interfacial activation of M37 lipase: A multi-scale simulation study. Biochimica et Biophysica Acta. Biomembranes 1859 (3):340–9. doi: 10.1016/j.bbamem.2016.12.012.
  • Williams, A. G., S. H. Beattie, and J. M. Banks. 2004. Enzymes involved in flavor formation by bacteria isolated from the smear population of surface‐ripened cheese. International Journal of Dairy Technology 57 (1):7–13. doi: 10.1111/j.1471-0307.2004.00115.x.
  • Winkler, U. K., and M. Stuckmann. 1979. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journal of Bacteriology 138 (3):663–70. doi: 10.1128/jb.138.3.663-670.1979.
  • Wongwatanapaiboon, J., W. Malilas, C. Ruangchainikom, G. Thummadetsak, S. Chulalaksananukul, A. Marty, and W. Chulalaksananukul. 2016. Overexpression of Fusarium solani lipase in Pichia pastoris and its application in lipid degradation. Biotechnology & Biotechnological Equipment 30 (5):885–93. doi: 10.1080/13102818.2016.1202779.
  • Woodcock, L. L., C. Wiles, G. M. Greenway, P. Watts, A. Wells, and S. Eyley. 2008. Enzymatic synthesis of a series of alkyl esters using Novozymes 435 in a packed-bed, miniaturized, continuous flow reactor. Biocatalysis and Biotransformation 26 (6):466–72. doi: 10.1080/10242420802456571.
  • Woods, D. E., and J. U. Que. 1987. Purification of Pseudomonas aeruginosa exoenzyme S. Infection and Immunity 55 (3):579–86. doi: 10.1128/iai.55.3.579-586.1987.
  • Wu, X., C. Yang, and J. Ge. 2017. Green synthesis of enzyme/metal-organic framework composites with high stability in protein denaturing solvents. Bioresources and Bioprocessing 4 (1):1–8. doi: 10.1186/s40643-017-0154-8.
  • Xavier Malcata, F., H. R. Reyes, H. S. Garcia, C. G. Hill, Jr, and A. H. Clyde. 1990. Immobilized lipase reactors for modification of fats and oils—a review. Journal of the American Oil Chemists’ Society 67 (12):890–910. doi: 10.1007/BF02541845.
  • Xu, X. 2000. Production of specific‐structured triacylglycerols by lipase‐catalyzed reactions: A review. European Journal of Lipid Science and Technology 102 (4):287–303. doi: 10.1002/(SICI)1438-9312(200004)102:4 < 287::AID-EJLT287 > 3.0.CO;2-Q.
  • Xu, Z., and S. Y. Lee. 1999. Display of polyhistidine peptides on the Escherichia coli cell surface by using outer membrane protein C as an anchoring motif. Applied and Environmental Microbiology 65 (11):5142–7. doi: 10.1128/AEM.65.11.5142-5147.1999.
  • Xu, Y., D. Lewis, and C. P. Chou. 2008. Effect of folding factors in rescuing unstable heterologous lipase B to enhance its overexpression in the periplasm of Escherichia coli. Applied Microbiology and Biotechnology 79 (6):1035–44. doi: 10.1007/s00253-008-1514-2.
  • Yaacob, N., N. H. A. Kamarudin, A. T. C. Leow, A. B. Salleh, R. N. Z. R. Abd Rahman, and M. S. Mohamad Ali. 2019. Effects of lid 1 mutagenesis on lid displacement, catalytic performances and thermostability of cold-active pseudomonas AMS8 lipase in toluene . Computational and Structural Biotechnology Journal 17:215–28. doi: 10.1016/j.csbj.2019.01.005.
  • Yadav, G. D., and S. Devendran. 2012. Lipase catalyzed synthesis of cinnamyl acetate via transesterification in a non-aqueous medium. Process Biochemistry 47 (3):496–502. doi: 10.1016/j.procbio.2011.12.008.
  • Yan, J., S. Liu, J. Hu, X. Gui, G. Wang, and Y. Yan. 2011. Enzymatic enrichment of polyunsaturated fatty acids using novel lipase preparations modified by combination of immobilization and fish oil treatment. Bioresource Technology 102 (14):7154–8. doi: 10.1016/j.biortech.2011.04.065.
  • Yang, T., X. Xu, C. He, and L. Li. 2003. Lipase-catalyzed modification of lard to produce human milk fat substitutes. Food Chemistry 80 (4):473–81. doi.org/ (02)00:473–81. 1 doi: 10.1016/S0308-8146.
  • Yeo, S.-H., T. Nihira, and Y. Yamada. 1998. Screening and identification of a novel lipase from Burkholderia sp. YY62 which hydrolyzes t-butyl esters effectively. The Journal of General and Applied Microbiology 44 (2):147–52. doi: 10.2323/jgam.44.147.
  • Yoshida, K., K. Konishi, A. Magana-Mora, A. Rougny, Y. Yasutake, S. Muramatsu, S. Murata, T. Kumagai, S. Aburatani, S.-I. Sakasegawa, et al. 2019. Production of recombinant extracellular cholesterol esterase using consistently active promoters in Burkholderia stabilis. Bioscience, Biotechnology, and Biochemistry 83 (10):1974–84. doi: 10.1080/09168451.2019.1630256.
  • Yu, M., S. Wen, and T. Tan. 2010. Enhancing production of Yarrowia lipolytica lipase Lip2 in Pichia pastoris. Engineering in Life Sciences 10 (5):458–64. doi: 10.1002/elsc.200900102.
  • Zaitsev, S., Yu, A. A. Savina, and I. S. Zaitsev. 2019. Biochemical aspects of lipase immobilization at polysaccharides for biotechnology. Advances in Colloid and Interface Science 272 (2019):102016. doi: 10.1016/j.cis.2019.102016.
  • Zalacain, I., M. J. Zapelena, M. P. De Peña, I. Astiasarán, and J. Bello. 1997. Use of lipase from Rhizomucor miehei in dry fermented sausages elaboration: Microbial, chemical and sensory analysis. Meat Science 45 (1):99–105. doi: 10.1016/S0309-1740(96)00049-6.
  • Zanger, U. M., and M. Schwab. 2013. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & Therapeutics 138 (1):103–41. doi: 10.1016/j.pharmthera.2012.12.007.
  • Zdarta, J., A. S. Meyer, T. Jesionowski, and M. Pinelo. 2018. A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 8 (2):92. doi: 10.3390/catal8020092.
  • Zehani, N., R. Kherrat, S. V. Dzyadevych, and N. Jaffrezic-Renault. 2015. A microconductometric biosensor based on lipase extracted from Candida rugosa for direct and rapid detection of organophosphate pesticides. International Journal of Environmental Analytical Chemistry 95 (5):466–79. doi: 10.1080/03067319.2015.1036864.
  • Zhang, Y., A. N. A. Aryee, and B. K. Simpson. 2020. Current role of in silico approaches for food enzymes. Current Opinion in Food Science 31:63–70. doi: 10.1016/j.cofs.2019.11.003.
  • Zhangde, L., X. Jianhe, and P. Jiang. 2007. Immobilization of Serratia marcescens lipase and catalytic resolution of trans-3-(4′-methoxyphenyl) glycidic acid methyl ester. Chinese Journal of Catalysis 28 (2):175–9. doi: 10.1016/S1872-2067(07)60016-3.
  • Zhang, P., W. Zhang, X. Zhou, P. Bai, J. M. Cregg, and Y. Zhang. 2010. Catabolite repression of Aox in Pichia pastoris is dependent on hexose transporter PpHxt1 and pexophagy. Applied and Environmental Microbiology 76 (18):6108–18. doi: 10.1128/AEM.00607-10.
  • Zhao, L.-L., J.-H. Xu, J. Zhao, J. Pan, and Z.-L. Wang. 2008. Biochemical properties and potential applications of an organic solvent-tolerant lipase isolated from Serratia marcescens ECU1010. Process Biochemistry 43 (6):626–33. doi: 10.1016/j.procbio.2008.01.023.
  • Zhou, Y., M. Fan, and L. Chen. 2016. Interface and bonding mechanisms of plant fiber composites: An overview. Composites Part B: Engineering 101:31–45. doi: 10.1016/j.compositesb.2016.06.055.
  • Zhou, Q., Z. Su, L. Jiao, Y. Wang, K. Yang, W. Li, and Y. Yan. 2019. High-level production of a thermostable mutant of Yarrowia lipolytica lipase 2 in Pichia pastoris. International Journal of Molecular Sciences 21 (1):279. doi: 10.3390/ijms21010279.
  • Zou, X., J. Huang, Q. Jin, Z. Guo, Y. Liu, L. Cheong, X. Xu, and X. Wang. 2013. Lipid composition analysis of milk fats from different mammalian species: Potential for use as human milk fat substitutes. Journal of Agricultural and Food Chemistry 61 (29):7070–80. doi: 10.1021/jf401452y.
  • Zoumpanioti, M., E. Merianou, T. Karandreas, H. Stamatis, and A. Xenakis. 2010. Esterification of phenolic acids catalyzed by lipases immobilized in organogels. Biotechnology Letters 32 (10):1457–62. doi: 10.1007/s10529-010-0305-x.
  • Zucca, P., R. Fernandez-Lafuente, and E. Sanjust. 2016. Agarose and its derivatives as supports for enzyme immobilization. Molecules 21 (11):1577. doi: 10.3390/molecules21111577.
  • Zucca, P., and E. Sanjust. 2014. Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms. Molecules (Basel, Switzerland) 19 (9):14139–94. doi: 10.3390/molecules190914139.
  • Ηatzisymeon, M., S. Kamenopoulos, and T. Tsoutsos. 2019. Risk assessment of the life-cycle of the used cooking oil-to-biodiesel supply chain. Journal of Cleaner Production 217:836–43. doi: 10.1016/j.jclepro.2019.01.088.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.