628
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Insights into using green and unconventional technologies to recover natural astaxanthin from microbial biomass

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 11211-11225 | Published online: 29 Jun 2022

References

  • Aguilar-Machado, D., C. Delso, J. M. Martinez, L. Morales-Oyervides, J. Montañez, and J. Raso. 2020. Enzymatic processes triggered by PEF for astaxanthin extraction from Xanthophyllomyces dendrorhous. Frontiers in Bioengineering and Biotechnology 8:857. doi: 10.3389/fbioe.2020.00857.
  • Ahmadkelayeh, S., and K. Hawboldt. 2020. Extraction of lipids and astaxanthin from crustacean by-products: A review on supercritical CO2 extraction. Trends in Food Science & Technology 103:94–108. doi: 10.1016/j.tifs.2020.07.016.
  • Ajila, C. M., S. K. Brar, M. Verma, R. D. Tyagi, S. Godbout, and J. R. Valéro. 2011. Extraction and analysis of polyphenols: Recent trends. Critical Reviews in Biotechnology 31 (3):227–49. doi: 10.3109/07388551.2010.513677.
  • Alder, C. M., J. D. Hayler, R. K. Henderson, A. M. Redman, L. Shukla, L. E. Shuster, and H. F. Sneddon. 2016. Updating and further expanding GSK’s solvent sustainability guide. Green Chemistry 18 (13):3879–90. doi: 10.1039/C6GC00611F.
  • Anastas, P. T, and J. C. Warner. 1998. Green chemistry: Theory and practice, 12 principles of green chemistry. Oxford: Oxford University Press.
  • Batghare, A. H., N. Singh, and V. S. Moholkar. 2018. Investigations in ultrasound–induced enhancement of astaxanthin production by wild strain Phaffia rhodozyma MTCC 7536. Bioresource Technology 254:166–73. doi: 10.1016/j.biortech.2018.01.073.
  • Belwal, T., F. Chemat, P. R. Venskutonis, G. Cravotto, D. K. Jaiswal, I. D. Bhatt, H. P. Devkota, and Z. Luo. 2020. Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TrAC Trends in Analytical Chemistry 127:115895. doi: 10.1016/j.trac.2020.115895.
  • Bueno, M., R. Gallego, A. M. Chourio, E. Ibáñez, M. Herrero, and M. D. A. Saldaña. 2020. Green ultra-high-pressure extraction of bioactive compounds from Haematococcus pluvialis and Porphyridium cruentum microalgae. Innovative Food Science & Emerging Technologies 66:102532. doi: 10.1016/j.ifset.2020.102532.
  • Byrne, F. P., S. Jin, G. Paggiola, T. H. M. Petchey, J. H. Clark, T. J. Farmer, A. J. Hunt, C. Robert McElroy, and J. Sherwood. 2016. Tools and techniques for solvent selection: Green solvent selection guides. Sustainable Chemical Processes 4 (1):7. doi: 10.1186/s40508-016-0051-z.
  • Capelli, B., D. Bagchi, and G. R. Cysewski. 2013. Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutrafoods 12 (4):145–52. doi: 10.1007/s13749-013-0051-5.
  • Cárdenas, S., and R. Lucena. 2017. Recent advances in extraction and stirring integrated techniques. Separations 4 (1):6. doi: 10.3390/separations4010006.
  • Cardoso, L. A. C. S. G. Karp, F. Vendruscolo, K. Y. F. Kanno, L. I. C. Zoz, and J. C. Carvalho. 2017. Biotechnological production of carotenoids and their applications in food and pharmaceutical products., In Carotenoids. London: IntechOpen. doi: 10.5772/67725.
  • Carullo, D., B. D. Abera, A. A. Casazza, F. Donsì, P. Perego, G. Ferrari, and G. Pataro. 2018. Effect of pulsed electric fields and high-pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris. Algal Research 31:60–9. doi: 10.1016/j.algal.2018.01.017.
  • Chemspider 2022. http://www.chemspider.com/ (accessed 7.28.21).
  • Cheremisinoff, P. N. 1995. Waste Reduction. In Waste minimization and cost reduction for the process industries 1–51. New Jersey: Elsevier. doi: 10.1016/B978-081551388-9.50003-8.
  • Choi, S. A., Y. K. Oh, J. Lee, S. J. Sim, M. E. Hong, J. Y. Park, M. S. Kim, S. W. Kim, and J. S. Lee. 2019. High-efficiency cell disruption and astaxanthin recovery from Haematococcus pluvialis cyst cells using room-temperature imidazolium-based ionic liquid/water mixtures. Bioresource Technology 274:120–6. doi: 10.1016/j.biortech.2018.11.082.
  • Choi, S.-K., J.-H. Kim, Y.-S. Park, Y.-J. Kim, and H.-I. Chang. 2007. An efficient method for the extraction of astaxanthin from the red yeast Xanthophyllomyces dendrorhous. Journal of microbiology and biotechnology 17 (5):847–52.
  • de Moura, R. R., B. J. Etges, E. O. dos Santos, T. G. Martins, F. Roselet, P. C. Abreu, E. G. Primel, and M. G. M. D’Oca. 2018. Microwave‐assisted extraction of lipids from wet microalgae paste: A quick and efficient method. European Journal of Lipid Science and Technology 120 (7):1700419. doi: 10.1002/ejlt.201700419.
  • Domínguez-Bocanegra, A. R., T. Ponce-Noyola, and J. A. Torres-Muñoz. 2007. Astaxanthin production by Phaffia rhodozyma and Haematococcus pluvialis: A comparative study. Applied Microbiology and biotechnology 75 (4):783–91. doi: 10.1007/s00253-007-0889-9.
  • Drévillon, L., M. Koubaa, and E. Vorobiev. 2018. Lipid extraction from Yarrowia lipolytica biomass using high-pressure homogenization. Biomass and Bioenergy 115:143–50. doi: 10.1016/j.biombioe.2018.04.014.
  • Dzah, C. S., Y. Duan, H. Zhang, C. Wen, J. Zhang, G. Chen, and H. Ma. 2020. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience 35:100547. doi: 10.1016/j.fbio.2020.100547.
  • EFSA 2022. European food safety authority. https://www.efsa.europa.eu/en.
  • Ekpe, L., K. Inaku, E. Eyam, and V. Ekpe. 2018. Antioxidant effects of astaxanthin in various diseases-a review. Oxidants and Antioxidants in Medical Science 1:1. doi: 10.5455/oams.20180315075538.
  • Espinosa Álvarez, C., R. Vardanega, F. Salinas-Fuentes, J. Palma Ramírez, W. Bugueño Muñoz, D. Jiménez-Rondón, M. A. A. Meireles, P. Cerezal Mezquita, and M. C. Ruiz-Domínguez. 2020. Effect of CO2 flow rate on the extraction of astaxanthin and fatty acids from Haematococcus pluvialis using supercritical fluid technology. Molecules 25 (24):6044. doi: 10.3390/molecules25246044.
  • Fan, Y., Z. Niu, C. Xu, L. Yang, F. Chen, and H. Zhang. 2019. Biocompatible protic ionic liquids-based microwave-assisted liquid-solid extraction of astaxanthin from Haematococcus pluvialis. Industrial Crops and Products 141:111809. doi: 10.1016/j.indcrop.2019.111809.
  • FDA 2022. U.S Food & Drug Administration. https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras.
  • Ferrarini, F., G. B. Flôres, A. R. Muniz, and R. P. de Soares. 2018. An open and extensible sigma-profile database for COSMO-based models. AIChE Journal 64 (9):3443–55. doi: 10.1002/aic.16194.
  • Gogate, P. R., and S. G. Nadar. 2015. Ultrasound-assisted intensification of extraction of astaxanthin from Phaffia rhodozyma. Indian Chemical Engineer 57 (3-4):240–55. doi: 10.1080/00194506.2015.1026947.
  • Hansen, B. B., S. Spittle, B. Chen, D. Poe, Y. Zhang, J. M. Klein, A. Horton, L. Adhikari, T. Zelovich, B. W. Doherty, et al. 2021. Deep eutectic solvents: A review of fundamentals and applications. Chemical Reviews 121 (3):1232–85. doi: 10.1021/acs.chemrev.0c00385.
  • Harith, Z. T., D. Charalampopoulos, and A. Chatzifragkou. 2019. Rapeseed meal hydrolysate as substrate for microbial astaxanthin production. Biochemical Engineering Journal 151:107330. doi: 10.1016/j.bej.2019.107330.
  • Hasan, M., M. Azhar, H. Nangia, P. C. Bhatt, and B. P. Panda. 2016. Influence of high-pressure homogenization, ultrasonication, and supercritical fluid on free astaxanthin extraction from β-glucanase-treated Phaffia rhodozyma cells. Preparative Biochemistry & Biotechnology 46 (2):116–22. doi: 10.1080/10826068.2014.995807.
  • Jha, A. K., and N. Sit. 2022. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends in Food Science & Technology 119:579–91. doi: 10.1016/j.tifs.2021.11.019.
  • Jumhawan, U, and T. Bamba. 2017. Supercritical fluid chromatography. In The application of green solvents in separation processes, 483–516. Amsterdam: Elsevier. doi: 10.1016/B978-0-12-805297-6.00016-4.
  • Kapoore, R., T. Butler, J. Pandhal, and S. Vaidyanathan. 2018. Microwave-assisted extraction for microalgae: From biofuels to biorefinery. Biology 7 (1):18. doi: 10.3390/biology7010018.
  • Karimzadeh, Z., E. Rahimpour, W. E. Acree, and A. Jouyban. 2021. Employing Abraham and Hansen parameters for solubility prediction of ketoconazole in binary solvents at various temperatures. Journal of Solution Chemistry doi: 10.1007/s10953-021-01121-3.
  • Katsuda, T., A. Lababpour, K. Shimahara, and S. Katoh. 2004. Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzyme and Microbial Technology 35 (1):81–6. doi: 10.1016/j.enzmictec.2004.03.016.
  • Khoo, K. S., K. W. Chew, G. Y. Yew, S. Manickam, C. W. Ooi, and P. L. Show. 2020. Integrated ultrasound-assisted liquid biphasic flotation for efficient extraction of astaxanthin from Haematococcus pluvialis. Ultrasonics Sonochemistry 67:105052. doi: 10.1016/j.ultsonch.2020.105052.
  • Kotnik, T., P. Kramar, G. Pucihar, D. Miklavcic, and M. Tarek. 2012. Cell membrane electroporation- Part 1: The phenomenon. IEEE Electrical Insulation Magazine 28 (5):14–23. doi: 10.1109/MEI.2012.6268438.
  • Krichnavaruk, S., A. Shotipruk, M. Goto, and P. Pavasant. 2008. Supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis with vegetable oils as co-solvent. Bioresource Technology 99 (13):5556–60. doi: 10.1016/j.biortech.2007.10.049.
  • Kumar, K., S. Srivastav, and V. S. Sharanagat. 2021. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry 70:105325. doi: 10.1016/j.ultsonch.2020.105325.
  • Lancas, F. M., M. E. C. Queiroz, P. Grossi, and I. R. B. Olivares. 2009. Recent developments and applications of stir bar sorptive extraction. Journal of Separation Science 32 (5-6):813–24. doi: 10.1002/jssc.200800669.
  • Lee, A. K., D. M. Lewis, and P. J. Ashman. 2013. Force and energy requirement for microalgal cell disruption: An atomic force microscope evaluation. Bioresource Technology 128:199–206. doi: 10.1016/j.biortech.2012.10.032.
  • Levy, R., Z. Okun, and A. Shpigelman. 2021. High-pressure homogenization: Principles and applications beyond microbial inactivation. Food Engineering Reviews 13 (3):490–508. doi: 10.1007/s12393-020-09239-8.
  • Li, S., J. LI, Z. Zhu, S. Cheng, J. He, and O. Lamikanra. 2020. Soluble dietary fiber and polyphenol complex in lotus root: Preparation, interaction and identification. Food Chemistry 314:126219. doi: 10.1016/j.foodchem.2020.126219.
  • Li, S., R. Zhang, D. Lei, Y. Huang, S. Cheng, Z. Zhu, Z. Wu, and G. Cravotto. 2021. Impact of ultrasound, microwaves and high-pressure processing on food components and their interactions. Trends in Food Science & Technology 109:1–15. doi: 10.1016/j.tifs.2021.01.017.
  • Lim, G.-B., S.-Y. Lee, E.-K. Lee, S.-J. Haam, and W.-S. Kim. 2002. Separation of astaxanthin from red yeast Phaffia rhodozyma by supercritical carbon dioxide extraction. Biochemical Engineering Journal 11 (2-3):181–7. doi: 10.1016/S1369-703X(02)00023-2.
  • Liu, Z.-W., X.-A. Zeng, J.-H. Cheng, D.-B. Liu, and R. M. Aadil. 2018. The efficiency and comparison of novel techniques for cell wall disruption in astaxanthin extraction from Haematococcus pluvialis. International Journal of Food Science & Technology 53 (9):2212–9. doi: 10.1111/ijfs.13810.
  • Lopes, N. A., R. D. Remedi, C. dos Santos Sá, C. A. V. Burkert, and J. F. de Medeiros Burkert. 2017. Different cell disruption methods for obtaining carotenoids by Sporodiobolus pararoseus and Rhodothorula mucilaginosa. Food Science and biotechnology 26 (3):759–66. doi: 10.1007/s10068-017-0098-y.
  • Macias-Sánchez, M. D. 2021. High-pressure extraction of astaxanthin from Haematococcus pluvialis. In Global Perspectives on Astaxanthin, 355–73. London: Elsevier. doi: 10.1016/B978-0-12-823304-7.00002-7.
  • Martínez, J. M., Z. Gojkovic, L. Ferro, M. Maza, I. Álvarez, J. Raso, and C. Funk. 2019. Use of pulsed electric field permeabilization to extract astaxanthin from the Nordic microalga Haematococcus pluvialis. Bioresource Technology 289:121694. doi: 10.1016/j.biortech.2019.121694.
  • Mendes-Pinto, M. M., M. F. J. Raposo, J. Bowen, A. J. Young, and R. Morais. 2001. Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: Effects on astaxanthin recovery and implications for bio-availability. Journal of Applied Phycology 13 (1):19–24. doi: 10.1023/A:1008183429747.
  • Meroni, D., R. Djellabi, M. Ashokkumar, C. L. Bianchi, and D. C. Boffito. 2022. Sonoprocessing: From Concepts to Large-Scale Reactors. Chemical Reviews 122 (3):3219–58. doi:10.1021/acs.chemrev.1c00438. PMID: 34818504
  • Michelon, M., T. de Matos de Borba, R. da Silva Rafael, C. A. V. Burkert, and J. F. de Medeiros Burkert. 2012. Extraction of carotenoids from Phaffia rhodozyma: A comparison between different techniques of cell disruption. Food Science and Biotechnology 21 (1):1–8. doi: 10.1007/s10068-012-0001-9.
  • Molino, A., S. Mehariya, G. di Sanzo, V. Larocca, M. Martino, G. P. Leone, T. Marino, S. Chianese, R. Balducchi, and D. Musmarra. 2020. Recent developments in supercritical fluid extraction of bioactive compounds from microalgae: Role of key parameters, technological achievements and challenges. Journal of CO2 Utilization 36:196–209. doi: 10.1016/j.jcou.2019.11.014.
  • Molino, A., S. Mehariya, A. Iovine, V. Larocca, G. di Sanzo, M. Martino, P. Casella, S. Chianese, and D. Musmarra. 2018. Extraction of astaxanthin and lutein from microalga Haematococcus pluvialis in the red phase using CO2 supercritical fluid extraction technology with ethanol as co-solvent. Marine Drugs 16 (11):432. doi: 10.3390/md16110432.
  • Mota, A. H. A. Sousa, M. Figueira, M. Amaral, B. Sousa, J. Rocha, E. Fattal, A. J. Almeida, and C. P. Reis. 2020. Natural-based consumer health nanoproducts: Medicines, cosmetics, and food supplements. In Handbook of functionalized nanomaterials for industrial applications, 527–78. Amsterdam: Elsevier. doi: 10.1016/B978-0-12-816787-8.00019-3.
  • Motlagh, S. R., A. A. Elgharbawy, R. Khezri, R. Harun, and R. Omar. 2021. Ionic liquid-based microwave-assisted extraction of protein from Nannochloropsis sp. biomass. Biomass Conversion and Biorefinery doi: 10.1007/s13399-021-01778-2.
  • Mussagy, C., S. Khan, and A. M. Kot. 2021a. Current developments on the application of microbial carotenoids as an alternative to synthetic pigments. Critical Reviews in Food Science and Nutrition :1–15. doi: 10.1080/10408398.2021.1908222.
  • Mussagy, C., D. Remonatto, A. v. Paula, R. D. Herculano, V. C. Santos-Ebinuma, J. A. P. Coutinho, and J. F. B. Pereira. 2021b. Selective recovery and purification of carotenoids and fatty acids from Rhodotorula glutinis using mixtures of biosolvents. Separation and Purification Technology 266:118548. doi: 10.1016/j.seppur.2021.118548.
  • Mussagy, C., J. Winterburn, V. C. Santos-Ebinuma, and J. F. B. Pereira. 2019. Production and extraction of carotenoids produced by microorganisms. Applied Microbiology and Biotechnology 103 (3):1095–114. doi: 10.1007/s00253-018-9557-5.
  • Mussagy, C. U., K. A. Kurnia, A. Dias, V. Raghavan, V. C. Santos-Ebinuma, and A. Pessoa. Jr, 2022a. An eco-friendly approach for the recovery of astaxanthin and β-carotene from Phaffia rhodozyma biomass using bio-based solvents. Bioresource Technology 345:126555. doi: 10.1016/j.biortech.2021.126555.
  • Mussagy, C. U., J. F. B. Pereira, L. Dufossé, V. Raghavan, V. C. Santos-Ebinuma, and A. Pessoa. 2021. Advances and trends in biotechnological production of natural astaxanthin by Phaffia rhodozyma yeast. Critical Reviews in Food Science and Nutrition :1–15. doi: 10.1080/10408398.2021.1968788.
  • Mussagy, C. U., V. d C. Santos Ebinuma, M. Gonzalez-Miquel, J. A. P. Coutinho, and J. F. B. Pereira. 2019. Protic ionic liquids as cell disrupting agents for the recovery of intracellular carotenoids from yeast Rhodotorula glutinis CCT-2186. ACS Sustainable Chemistry & Engineering 7 (19):16765–76. doi: 10.1021/acssuschemeng.9b04247.
  • Mussagy, C. U., V. C. Santos-Ebinuma, R. D. Herculano, J. A. P. Coutinho, J. F. B. Pereira, and A. Pessoa. 2022b. Ionic liquids or eutectic solvents? Identifying the best solvents for the extraction of astaxanthin and β-carotene from Phaffia rhodozyma yeast and preparation of biodegradable films. Green Chemistry 24 (1):118–23. doi: 10.1039/D1GC03521E.
  • Mussagy, C. U., V. C. Santos-Ebinuma, K. A. Kurnia, A. Dias, P. Carvalho, J. A. P. Coutinho, and J. F. B. Pereira. 2020. Integrative platform for the selective recovery of intracellular carotenoids and lipids from: Rhodotorula glutinis CCT-2186 yeast using mixtures of bio-based solvents. Green Chemistry 22 (23):8478–94. doi: 10.1039/D0GC02992K.
  • Nobre, B., F. Marcelo, R. Passos, L. Beirão, A. Palavra, L. Gouveia, and R. Mendes. 2006. Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. European Food Research and Technology 223 (6):787–90. doi: 10.1007/s00217-006-0270-8.
  • Olaizola, M. 2000. Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. Journal of Applied Phycology 12 (3/5):499–506. doi: 10.1023/A:1008159127672.
  • Pagano, I., L. Campone, R. Celano, A. L. Piccinelli, and L. Rastrelli. 2021. Green non-conventional techniques for the extraction of polyphenols from agricultural food by-products: A review. Journal of chromatography. A 1651:462295. doi: 10.1016/j.chroma.2021.462295.
  • Palozza, P., and N. I. Krinsky. 1992. Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Archives of Biochemistry and Biophysics 297 (2):291–5. doi: 10.1016/0003-9861(92)90675-M.
  • Panis, G., and J. R. Carreon. 2016. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Research 18:175–90. doi: 10.1016/j.algal.2016.06.007.
  • Pereira, J. F. B., K. A. Kurnia, O. A. Cojocaru, G. Gurau, L. P. N. Rebelo, R. D. Rogers, M. G. Freire, and J. A. P. Coutinho. 2014. Molecular interactions in aqueous biphasic systems composed of polyethylene glycol and crystalline vs. liquid cholinium-based salts. Physical Chemistry Chemical Physics 16 (12):5723. doi: 10.1039/c3cp54907k.
  • Prat, D., A. Wells, J. Hayler, H. Sneddon, C. R. McElroy, S. Abou-Shehada, and P. J. Dunn. 2016. CHEM21 selection guide of classical- and less classical-solvents. Green Chemistry 18 (1):288–96. doi: 10.1039/C5GC01008J.
  • Praveenkumar, R., J. Lee, D. Vijayan, S. Y. Lee, K. Lee, S. J. Sim, M. E. Hong, Y.-E. Kim, and Y.-K. Oh. 2020. Morphological change and cell disruption of Haematococcus pluvialis cyst during high-pressure homogenization for astaxanthin recovery. Applied Sciences 10 (2):513. 513. doi: 10.3390/app10020513.
  • Praveenkumar, R., K. Lee, J. Lee, and Y.-K. Oh. 2015. Breaking dormancy: An energy-efficient means of recovering astaxanthin from microalgae. Green Chemistry 17 (2):1226–34. doi: 10.1039/C4GC01413H.
  • Rezaei Motlagh, S., R. Harun, D. Awang Biak, S. Hussain, W. Wan Ab Karim Ghani, R. Khezri, C. Wilfred, and A. Elgharbawy. 2019. Screening of suitable ionic liquids as green solvents for extraction of eicosapentaenoic acid (EPA) from microalgae biomass using COSMO-RS model. Molecules 24 (4):713. doi: 10.3390/molecules24040713.
  • Ruen-ngam, D., A. Shotipruk, and P. Pavasant. 2010. Comparison of extraction methods for recovery of astaxanthin from Haematococcus pluvialis. Separation Science and Technology 46 (1):64–70. doi: 10.1080/01496395.2010.493546.
  • Sanzo, G., S. Mehariya, M. Martino, V. Larocca, P. Casella, S. Chianese, D. Musmarra, R. Balducchi, and A. Molino. 2018. Supercritical Carbon dioxide extraction of astaxanthin, lutein, and fatty acids from Haematococcus pluvialis microalgae. Marine Drugs 16 (9):334. doi: 10.3390/md16090334.
  • Sarada, R., R. Vidhyavathi, D. Usha, and G. A. Ravishankar. 2006. An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. Journal of agricultural and food chemistry 54 (20):7585–8. doi: 10.1021/jf060737t.
  • Schewe, H., A. Kreutzer, I. Schmidt, C. Schubert, and J. Schrader. 2017. High concentrations of biotechnologically produced astaxanthin by lowering pH in a Phaffia rhodozyma bioprocess. Biotechnology and Bioprocess Engineering 22 (3):319–26. doi: 10.1007/s12257-016-0349-4.
  • Schmidt, I., H. Schewe, S. Gassel, C. Jin, J. Buckingham, M. Hümbelin, G. Sandmann, and J. Schrader. 2011. Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Applied Microbiology and biotechnology 89 (3):555–71. doi: 10.1007/s00253-010-2976-6.
  • Singh, A., S. Ahmad, and A. Ahmad. 2015. Green extraction methods and environmental applications of carotenoids-a review. RSC Advances 5 (77):62358–93. doi: 10.1039/C5RA10243J.
  • Singh, S. K., and A. W. Savoy. 2020. Ionic liquids synthesis and applications: An overview. Journal of Molecular Liquids 297:112038. doi: 10.1016/j.molliq.2019.112038.
  • Sztretye, M., B. Dienes, M. Gönczi, T. Czirják, L. Csernoch, L. Dux, P. Szentesi, and A. Keller-Pintér. 2019. Astaxanthin: A potential mitochondrial-targeted antioxidant treatment in diseases and with aging. Oxidative Medicine and cellular longevity 2019:3849692. doi: 10.1155/2019/3849692.
  • Thana, P., S. Machmudah, M. Goto, M. Sasaki, P. Pavasant, and A. Shotipruk. 2008. Response surface methodology to supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis. Bioresource Technology 99 (8):3110–5. doi: 10.1016/j.biortech.2007.05.062.
  • Trevisani Juchen, P., M. Nolasco Araujo, F. Hamerski, M. L. Corazza, and F. A. Pedersen Voll. 2019. Extraction of parboiled rice bran oil with supercritical CO2 and ethanol as co-solvent: Kinetics and characterization. Industrial Crops and Products 139:111506. doi: 10.1016/j.indcrop.2019.111506.
  • Vállez-Gomis, V., J. Grau, J. L. Benedé, D. L. Giokas, A. Chisvert, and A. Salvador. 2021. Fundamentals and applications of stir bar sorptive dispersive microextraction: A tutorial review. Analytica Chimica Acta 1153:338271. doi: 10.1016/j.aca.2021.338271.
  • Wang, L., B. Yang, B. Yan, and X. Yao. 2012. Supercritical fluid extraction of astaxanthin from Haematococcus pluvialis and its antioxidant potential in sunflower oil. Innovative Food Science & Emerging Technologies 13:120–7. doi: 10.1016/j.ifset.2011.09.004.
  • Wen, C., J. Zhang, H. Zhang, C. S. Dzah, M. Zandile, Y. Duan, H. Ma, and X. Luo. 2018. Advances in ultrasound assisted extraction of bioactive compounds from cash crops—A review. Ultrasonics Sonochemistry 48:538–49. doi: 10.1016/j.ultsonch.2018.07.018.
  • Zhang, C., V. Y. Seow, X. Chen, and H.-P. Too. 2018. Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli. Nature Communications 9 (1):1858. doi: 10.1038/s41467-018-04211-x.
  • Zhao, L., G. Chen, G. Zhao, and X. Hu. 2009. Optimization of microwave-assisted extraction of astaxanthin from Haematococcus Pluvialis by response surface methodology and antioxidant activities of the extracts. Separation Science and Technology 44 (1):243–62. doi: 10.1080/01496390802282321.
  • Zhao, T., X. Yan, L. Sun, T. Yang, X. Hu, Z. He, F. Liu, and X. Liu. 2019. Research progress on extraction, biological activities and delivery systems of natural astaxanthin. Trends in Food Science & Technology 91:354–61. doi: 10.1016/j.tifs.2019.07.014.
  • Zhu, Z., J. He, G. Liu, F. J. Barba, M. Koubaa, L. Ding, O. Bals, N. Grimi, and E. Vorobiev. 2016. Recent insights for the green ­recovery of inulin from plant food materials using non-conventional extraction technologies: A review. Innovative Food Science & Emerging Technologies 33:1–9. doi: 10.1016/j.ifset.2015.12.023.
  • Zhuang, Y, and M.-J. Zhu. 2021. Recent developments in astaxanthin production from Phaffia rhodozyma and its applications. In Global perspectives on astaxanthin, 225–51. London: Elsevier. doi: 10.1016/B978-0-12-823304-7.00006-4.
  • Zou, T.-B., Q. Jia, H.-W. Li, C.-X. Wang, and H.-F. Wu. 2013. Response surface methodology for ultrasound-assisted extraction of astaxanthin from Haematococcus pluvialis. Marine Drugs 11 (5):1644–55. doi: 10.3390/md11051644.
  • Zygler, A. M. Słomińska, and J. Namieśnik. 2012. Soxhlet Extraction and new developments such as soxtec. In Comprehensive sampling and sample preparation, 65–82. Amsterdam: Elsevier. doi: 10.1016/B978-0-12-381373-2.00037-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.