21,338
Views
294
CrossRef citations to date
0
Altmetric
Review

Basic concepts and recent advances in nanogels as carriers for medical applications

, , , &
Pages 539-557 | Received 07 Nov 2016, Accepted 20 Dec 2016, Published online: 09 Feb 2017

References

  • Ahmed EM. (2015). Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–21
  • Akiyama E, Morimoto N, Kujawa P. (2007). Self-assembled nanogels of cholesteryl-modified polysaccharides: effect of the polysaccharide structure on their association characteristics in the dilute and semidilute regimes. Biomacromolecules 8:2366–73
  • Akiyoshi K, Deguchi N, Moriguchi N. (1993). Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules 26:3062–8
  • Akiyoshi K, Kang EC, Kuromada S. (2000). Controlled association of amphiphilic polymers in water: thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly(N-isopropylacrylamides). Macromolecules 33:3244–9
  • Akiyoshi K, Kobayashi S, Shichibe S, et al. (1998). Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J Control Release 54:313–20
  • Amamoto Y, Otsuka H, Takahara A. (2011). Synthesis and characterization of polymeric nanogels. In: Kumar CSSR, ed. Nanomaterials for the life sciences. Vol. 10: Polymeric nanomaterials. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 27–57
  • An Z, Qiu Q, Liu G. (2011). Synthesis of architecturally well-defined nanogels via RAFT polymerization for potential bioapplications. Chem Commun (Camb) 47:12424–40
  • Aoki M, Ueda S, Nishikawa H. (2009). Antibody responses against NY-ESO-1 and HER2 antigens in patients vaccinated with combinations of cholesteryl pullulan (CHP)-NY-ESO-1 and CHP-HER2 with OK-432. Vaccine 27:6854–61
  • Arnfast L, Madsen CG, Jorgensen L, Baldursdottir S. (2014). Design and processing of nanogels as delivery systems for peptides and proteins. Ther Deliv 5:691–708
  • Asadi H, Khoee S. (2016). Dual responsive nanogels for intracellular doxorubicin delivery. Int J Pharm 511:424–35
  • Asadian-Birjand M, Sousa-Herves A, Steinhilber D. (2012). Functional nanogels for biomedical applications. Curr Med Chem 19:5029–43
  • Ayame H, Morimoto N, Akiyoshi K. (2008). Self-assembled cationic nanogels for intracellular protein delivery. Bioconjug Chem 19:882–90
  • Bencherif SA, Siegwart DJ, Srinivasan A. (2009). Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. Biomaterials 30:5270–8
  • Bohannon J, Hernandez A, Enkhbaatar P. (2013). The immunobiology of toll-like receptor 4 agonists: from endotoxin tolerance to immunoadjuvants. Shock 40:451–62
  • Börner HG, Kühnle H, Hentschel J. (2010). Making “smart polymers” smarter: modern concepts to regulate functions in polymer science. J Polym Sci A Polym Chem 48:1–14
  • Börner HG. (2009). Strategies exploiting functions and self-assembly properties of bioconjugates for polymer and materials sciences. Prog Polym Sci 34:811–51
  • Bronich TK, Vinogradov SV, Kabanov AV. (2001). Interaction of nanosized copolymer networks with oppositely charged amphiphilic molecules. Nano Lett 1:535–40
  • Bruno B, Miller G, Lim C. (2013). Basics and recent advances in peptide and protein drug delivery. Ther Deliv 4:1443–67
  • Cassani B, Villablanca E, De Calisto J. (2012). Vitamin A and immune regulation: role of retinoic acid in gut-associated dendritic cell education, immune protection and tolerance. Mol Aspects Med 33:63–76
  • Chacko RT, Ventura J, Zhuang J, Thayumanavan S. (2012). Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 64:836–51
  • Cheng J, Teply BA, Sherifi I. (2007). Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28:869–76
  • Costa D, Valente A, Queiroz J. (2015). Stimuli-responsive polyamine-DNA blend nanogels for co-delivery in cancer therapy. Colloids Surf B: Biointerfaces 132:194–201
  • Costantino L, Boraschi D. (2012). Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents? Drug Discov Today 17:367–78
  • Crespy D, Landfester K. (2010). Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers. Beilstein J Org Chem 6:1132–48
  • Crucho CIC. (2015). Stimuli-responsive polymeric nanoparticles for nanomedicine. Chem Med Chem 10:24–38
  • Cuggino JC, Alvarez ICI, Strumia MC. (2011). Thermosensitive nanogels based in dendritic polyglycerol and N-isopropylacrylamide for biomedical applications. Soft Matter 7:11259–66
  • Cui DX, Gao HJ. (2003). Advance and prospect of bionanomaterials. Biotechnol Prog 19:683–92
  • Das M, Mardyani S, Chan WCW, Kumacheva E. (2006). Biofunctionalized pH-responsive microgels for cancer cell targeting: rational design. Adv Mater 18:80–3
  • De Robertis S, Bonferoni MC, Elviri L. (2015). Advances in oral controlled drug delivery: the role of drug-polymer and interpolymer non-covalent interactions. Expert Opin Drug Deliv 12:441–53
  • Demirel G, Rzaev Z, Patir S, Piskin E. (2009). Poly(N-isopropylacrylamide) layers on silicon wafers as smart DNA-sensor platforms. J Nanosci Nanotechnol 9:1865–71
  • Ding J, Shi F, Xiao C. (2011). One-step preparation of reduction-responsive poly(ethylene glycol)–poly(amino acid)s nanogels as efficient intracellular drug delivery platforms. Polym Chem 2:2857–64
  • Dispenza C, Adamo G, Sabatino M. (2014). Oligonucleotides-decorated-poly(N-vinyl pyrrolidone) nanogels for gene delivery. J Appl Polym Sci 131:39774–81
  • Dorwal D. (2012). Nanogels as novel and versatile pharmaceuticals. Int J Pharm Pharm Sci 4:67–74
  • Dupin D, Fujii S, Armes SP. (2006). Efficient synthesis of sterically stabilized pH-responsive microgels of controllable particle diameter by emulsion polymerization. Langmuir 22:3381–7
  • Durán-Lobato M, Carrillo-Conde B, Khairandish Y, Peppas N. (2014). Surface-modified P(HEMA-co-MAA) nanogel carriers for oral vaccine delivery: design, characterization, and in vitro targeting evaluation. Biomacromolecules 15:2725–34
  • Eckmann DM, Composto RJ, Tsourkas A, Muzykantov VR. (2014). Nanogel carrier design for targeted drug delivery. J Mater Chem B Mater Biol Med 2:8085–97
  • Edman P, Ekman B, Sjoholm I. (1980). Immobilization of proteins in microspheres of biodegradable polyacryldextran. J Pharm Sci 69:838–42
  • Ekkelenkamp AE, Jansman MM, Roelofs K. (2016). Surfactant-free preparation of highly stable zwitterionic poly(amido amine) nanogels with minimal cytotoxicity. Acta Biomater 30:126–34
  • Etheridge ML, Campbell SA, Erdman AG. (2013). The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed: Nanotechnol Biol Med 9:1–14
  • Ferreira SA, Gama FM, Vilanova M. (2013). Polymeric nanogels as vaccine delivery systems. Nanomedicine 9:159–73
  • Fukuyama Y, Yuki Y, Katakai Y. (2015). Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques. Mucosal Immunol 8:1144–53
  • Ganesh VA, Baji A, Ramakrishna S. (2014). Smart functional polymers – a new route towards creating a sustainable environment. RSC Adv 4:53352–64
  • Ganta S, Devalapally H, Shahiwala A, Amiji M. (2008). A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126:187–204
  • Gao Y, Xie J, Chen H. (2014). Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol Adv 32:761–77
  • Ge J, Lu D, Wang J, Liu Z. (2009). Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide. Biomacromolecules 10:1612–18
  • Giulbudagian M, Asadian-Birjand M, Steinhilber D. (2014). Fabrication of thermoresponsive nanogels by thermo-nanoprecipitation and in situ encapsulation of bioactives. Polym Chem 5:6909–13
  • Goncalves C, Ferreira S, Correia A. (2016). Potential of mannan or dextrin nanogels as vaccine carrier/adjuvant systems. J Bioact Compat Polym 31:453–66
  • Gonçalves C, Pereira P, Gama M. (2010). Self-assembled hydrogel nanoparticles for drug delivery applications. Materials 3:1420–60
  • Gong Y, Fan M, Gao F. (2009). Preparation and characterization of amino functionalized magnetic nanogels via photopolymerisation for MRI applications. Colloids Surf B 71:243–7
  • Grohn F, Antonietti M. (2000). Intermolecular structure of spherical polyelectrolyte microgels in salt-free solution. 1. Quantification of the attraction between equally charged polyelectrolytes. Macromolecules 33:5938–49
  • Hamidi M, Azadi A, Rafiei P. (2008). Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–49
  • Hasegawa U, Nomura ICM, Kaul SC. (2005). Nanogel-quantum dot hybrid nanoparticles for live cell imaging. Biochem Biophys Res Commun 331:917–21
  • Hasegawa U, Sawada S, Shimizu T. (2009). Raspberry-like assembly of cross-linked nanogels for protein delivery. J Control Release 140:312–17
  • Hendrickson GR, Lyon LA. (2010). Microgel translocation through pores under confinement. Angew Chem Int Ed 49:2193–7
  • Hoare TR, Kohane DS. (2008). Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007
  • Hoffman AS, Stayton PS, Press O. (2002). Design of “Smart” polymers that can direct intracellular drug delivery. Polym Adv Technol 13:992–9
  • Hoffman AS. (2002). Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12
  • Hong C, Kim J, Lee S. (2012). Reductively dissociable siRNA-polymer hybrid nanogels for efficient targeted gene silencing. Adv Funct Mater 23:316–22
  • Huang H, Remsen EE, Wooley KL. (1998). Amphiphilic core–shell nanospheres obtained by intramicellar shell crosslinking of polymer micelles with poly(ethylene oxide) linkers. Chem Commun 13:1415–16
  • Jackson AW, Fulton DA. (2012). Triggering polymeric nanoparticle disassembly through the simultaneous application of two different stimuli. Macromolecules 45:2699–708
  • Jackson AW, Stakes CH, Fulton DA. (2011). The formation of core cross-linked star polymer and nanogel assemblies facilitated by the formation of dynamic covalent imine bonds. Polym Chem 2:2500–11
  • Jaiswal MK, Pradhan A, Banerjee R, Bahadur D. (2014). Dual pH and temperature stimuli-responsive magnetic nanohydrogels for thermo-chemotherapy. J Nanosci Nanotechnol 14:4082–9
  • Jen AC, Wake MC, Mikos AG. (1996). Review: hydrogels for cell immobilization. Biotechnol Bioeng 50:357–64
  • Jere D, Jiang H, Arote R. (2009). Degradable polyethylenimines as DNA and small interfering RNA carriers. Expert Opin Drug Deliv 6:827–34
  • Jochum FD, Theato P. (2013). Temperature- and light-responsive smart polymer materials. Chem Soc Rev 42:7468–83
  • Joralemon MJ, O’Reilly RK, Hawker CJ, Wooley KL. (2005). Shell click-crosslinked (SCC) nanoparticles: a new methodology for synthesis and orthogonal functionalization. J Am Chem Soc 127:16892–9
  • Joralemon MJ, Smith NL, Holowka D, et al. (2005). Antigen-decorated shell cross-linked nanoparticles: synthesis, characterization, and antibody interactions. Bioconjug Chem 16:1246–56
  • Kabanov AV, Vinogradov SV. (2009). Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed Engl 48:5418–29
  • Kageyama S, Kitano S, Hirayama M. (2008). Humoral immune responses in patients vaccinated with 1–146 HER2 protein complexed with cholesteryl pullulan nanogel. Cancer Sci 99:601–7
  • Kakizawa Y, Harada A, Kataoka K. (1999). Environment-sensitive stabilization of core–shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond. J Am Chem Soc 121:11247–9
  • Karasulu HY. (2008). Microemulsions as novel drug carriers: the formation, stability, applications and toxicity. Expert Opin Drug Deliv 5:119–35
  • Karimi M, Ghasemi A, Sahandi Zangabad P. (2016). Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45:1457–501
  • Karimi M, Zangabad PS, Ghasemi A. (2016). Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances. ACS Appl Mater Interfaces 8:21107–33
  • Kato N, Hasegawa U, Morimoto N. (2007). Nanogel-based delivery system enhances PGE2 effects on bone formation. J Cell Biochem 101:1063–70
  • Keles E, Song Y, Du D. (2016). Recent progress in nanomaterials for gene delivery applications. Biomater Sci 4:1291–309
  • Kersey FR, Merkel TJ, Perry JL. (2012). Effect of aspect ratio and deformability on nanoparticle extravasation through nanopores. Langmuir 28:8773–81
  • Khmelnitsky YL, Neverova IN, Gedrovich AV. (1992). Catalysis by alpha-chymotrypsin entrapped into surface-modified polymeric nanogranules in organic solvent. Eur J Biochem 210:751–7
  • Khoee S, Asadi H. (2016). Nanogels: chemical approaches to preparation. In: Encyclopedia of biomedical polymers and polymeric biomaterials. New York: Taylor and Francis, 5266–93
  • Kihara N, Adachi Y, Nakao K, Fukutomi T. (1998). Reaction of methyl thioglycolate with chloromethylstyrene microgel: preparation of core–shell-type microgel by chemical modification. J Appl Polym Sci 69:1863–73
  • Kim JW, Utada AS, Fernandez Nieves A. (2007). Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew Chem Int Ed Engl 46:1819–22
  • Kim SY, Lee YM. (2001). Taxol-loaded block copolymer nanospheres composed of methoxypoly(ethylene glycol) and poly(ɛ-caprolactone) as novel anticancer drug carriers. Biomaterials 22:1697–704
  • Koetting MC, Peters JT, Steichen SD, Peppas NA. (2015). Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep 93:1–49
  • Kolb HC, Finn MG, Sharpless KB. (2001). Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40:2004–21
  • Kono K, Igawa T, Takagishi T. (1997). Cytoplasmic delivery of calcein mediated by liposomes modified with a pH-sensitive poly(ethylene glycol) derivative. Biochim Biophys Acta 1325:143–54
  • Kuroda K, Fujimoto K, Sunamoto J, Akiyoshi K. (2002). Hierarchical self-assembly of hydrophobically modified pullulan in water: gelation by networks of nanoparticles. Langmuir 18:3780–6
  • Landfester K, Musyanovych A, Mailander V. (2010). From polymeric particles to multifunctional nanocapsules for biomedical applications using the miniemulsion process. J Polym Sci A Polym Chem 48:493–515
  • Landfester K, Musyanovych A. (2011). Hydrogels in miniemulsions. In: Pich A, Richtering W, eds. Chemical design of responsive microgels. Vol. 234. Berlin Heidelberg: Springer, 39–63
  • Landfester K. (2003). Miniemulsions for nanoparticle synthesis. Top Curr Chem 227:75–123
  • Landfester K. (2006). Synthesis of colloidal particles in miniemulsions. Ann Rev Mater Res 36:231–79
  • Laschewsky A. (2014). Structures and synthesis of zwitterionic polymers. Polymers 6:1544–601
  • Lee H, Mok H, Lee S. (2007). Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. J Control Release 119:245–52
  • Lee I, Akiyoshi K. (2004). Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobic interfaces. Biomaterials 25:2911–18
  • Lehn JM. (2007). From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem Soc Rev 36:151–60
  • Lemieux P, Vinogradov SV, Gebhart CL. (2000). Block and graft copolymers and NanoGel copolymer networks for DNA delivery into cell. J Drug Target 8:91–105
  • Li IL, Zhu L, Liu Z. (2009). Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells. Angew Chem Int Ed 48:9914–18
  • Li P, Luo Z, Liu P. (2013). Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. J Control Release 168:271–9
  • Li R, Wu W, Song H. (2016). Well-defined reducible cationic nanogels based on functionalized low-molecular-weight PGMA for effective pDNA and siRNA delivery. Acta Biomater. 41:282–92
  • Li Y, Du W, Sun G, Wooley KL. (2008). pH-responsive shell cross-linked nanoparticles with hydrolytically labile cross-links. Macromolecules 41:6605–7
  • Li Z, Guan J. (2011). Thermosensitive hydrogels for drug delivery. Expert Opin Drug Deliv 8:991–1007
  • Liang K, Ng S, Lee F. (2016). Targeted intracellular protein delivery based on hyaluronic acid-green tea catechin nanogels. Acta Biomater 33:142–52
  • Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. (2010). Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–73
  • Liha E, Ohb SH, Jounga YK. (2015). Polymers for cell/tissue anti-adhesion. Prog Polym Sci 44:28–61
  • Lutz JF, Börner HG. (2008). Modern trends in polymer bioconjugates design. Prog Polym Sci 33:1–39
  • Maharjan P, Woonton BW, Bennett LE. (2008). Novel chromatographic separation – the potential of smart polymers. Innov Food Sci Emerg Technol 9:232–42
  • Maisonneuve C, Bertholet S, Philpott D, De Gregorio E. (2014). Unleashing the potential of NOD- and Toll-like agonists as vaccine adjuvants. Proc Natl Acad Sci USA 111:12294–9
  • Matsumoto NM, Gonzalez-Toro DC, Chacko RT. (2013). Synthesis of nanogel-protein conjugates. Polym Chem 4:2464–9
  • Mavuso S, Marimuthu T, Choonara YE. (2015). A review of polymeric colloidal nanogels in transdermal drug delivery. Curr Pharm Des 21:2801–13
  • Maya S, Sarmento B, Nair A. (2013). Smart stimuli sensitive nanogels in cancer drug delivery and imaging: a review. Curr Pharm Des 19:7203–18
  • Merino S, Martín C, Kostarelos K. (2015). Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano 9:4686–97
  • Mimi H, Ho K, Siu Y. (2012). Polyethyleneimine-based core–shell nanogels: a promising siRNA carrier for argininosuccinate synthetase mRNA knockdown in HeLa cells. J Control Release 158:123–30
  • Missirlis D, Tirelli N, Hubbell JA. (2005). Amphiphilic hydrogel nanoparticles. Preparation, characterization, and preliminary assessment as new colloidal drug carriers. Langmuir 21:2605–13
  • Molina M, Asadian-Birjand M, Balach J. (2015). Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev 44:6161–86
  • Molina M, Giulbudagian M, Calderon M. (2014). Positively charged thermoresponsive nanogels for anticancer drug delivery. Macromol Chem Phys 215:2414–19
  • Motornov M, Roiter Y, Tokarev I, Minko S. (2010). Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35:174–211
  • Moya-Ortega MD, Alvarez-Lorenzo C, Concheiro A, Loftsson T. (2012). Cyclodextrin-based nanogels for pharmaceutical and biomedical applications. Int J Pharm 428:152–63
  • Moya-Ortega MD, Alvarez-Lorenzo C, Sigurdsson HH. (2012). Cross-linked hydroxypropyl-b-cyclodextrin and g-cyclodextrin nanogels for drug delivery: physicochemical and loading/release properties. Carbohydr Polym 87:2344–51
  • Mu L, Feng SS. (2003). A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release 86:33–48
  • Muheem A, Shakeel F, Jahangir MA. (2016). A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J 24:413–28
  • Mura S, Nicolas J, Couvreur P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003
  • Murphy EA, Majeti BK, Mukthavaram R. (2011). Targeted nanogels: a versatile platform for drug delivery to tumors. Mol Cancer Ther 10:972–82
  • Musyanovych A, Landfester K. (2014). Polymer micro- and nanocapsules as biological carriers with multifunctional properties. Macromol Biosci 14:458–77
  • Napier ME, De Simone JM. (2007). Nanoparticle drug delivery platform. J Macromol Sci C Polym Rev 47:321–7
  • Nayerossadat N, Ali P, Maedeh T. (2012). Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 1:27
  • Nguyen DH, Choi JH, Joung YK, Park KD. (2011). Disulfide-crosslinked heparin-pluronic nanogels as a redox-sensitive nanocarrier for intracellular protein delivery. J Bioact Compat Polym 26:287–300
  • Nie Z, Xu S, Seo M. (2005). Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J Am Chem Soc 127:8058–63
  • Nochi T, Yuki Y, Takahashi H. (2010). Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater 9:572–8
  • Nomura Y, Ikeda M, Yamaguchi N, et al. (2003). Protein refolding assisted by self-assembled nanogels as novel artificial molecular chaperone. FEBS Lett 553:271–6
  • Nopphadol U, Sung-Gyu Pyo Park HH, Parkl H. (2014). Fabrication of nanogels for delivery of molecules. J Nanosci Nanotechnol 14:7363–73
  • Nuhn L, Vanparijs N, De Beuckelaer A, et al. (2016). pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation. Proc Natl Acad Sci USA 113:8098–103
  • O’Reilly RK, Joralemon MJ, Wooley KL, Hawker CJ. (2005). Functionalization of micelles and shell cross-linked nanoparticles using click chemistry. Chem Mater 17:5976–88
  • Oberoi HS, Nukolova NV, Laquer FC, et al. (2012). Cisplatin-loaded core cross-linked micelles: comparative pharmacokinetics, antitumor activity, and toxicity in mice. Int J Nanomedicine 7:2557–71
  • Oh JK, Bencherif SA, Matyjaszewski K. (2009). Atom transfer radical polymerization in inverse miniemulsion: a versatile route toward preparation and functionalization of microgels/nanogels for targeted drug delivery applications. Polymer 50:4407–23
  • Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. (2008). The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–77
  • Oh JK, Siegwart DJ, Lee HI, et al. (2007). Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation. J Am Chem Soc 129:5939–45
  • Oh JK, Siegwart DJ, Matyjaszewski K. (2007). Synthesis and biodegradation of nanogels as delivery carriers for carbohydrate drugs. Biomacromolecules 8:3326–31
  • Oh JK, Tang C, Gao H, et al. (2006). Inverse miniemulsion ATRP: a new method for synthesis and functionalization of well-defined water-soluble/cross-linked polymeric particles. J Am Chem Soc 128:5578–84
  • Oh NM, Oh KT, Baik HJ, et al. (2010). A self-organized 3-diethylaminopropyl-bearing glycol chitosan nanogel for tumor acidic pH targeting: in vitro evaluation. Colloids Surf B Biointerfaces 78:120–6
  • Park D, Kim Y, Kim H, et al. (2012). Hyaluronic acid promotes angiogenesis by inducing RHAMM-TGFβ receptor interaction via CD44-PKCδ. Mol Cells 33:563–74
  • Park J, Yi S, Kim H, Park K. (2016). Receptor-mediated gene delivery into human mesenchymal stem cells using hyaluronic acid-shielded polyethylenimine/pDNA nanogels. Carbohydr Polym 136:791–802
  • Pich A, Tessier A, Boyko V, et al. (2006). Synthesis and characterization of poly(vinylcaprolactam)-based microgels exhibiting temperature and pH-sensitive properties. Macromolecules 39:7701–7
  • Pich A, Zhang F, Shen L, et al. (2008). Biocompatible hybrid nanogels. Small 4:2171–5
  • Pioge S, Nesterenko A, Brotons G, et al. (2011). Core cross-linking of dynamic diblock copolymer micelles: quantitative study of photopolymerization efficiency and micelle structure. Macromolecules 44:594–603
  • Pujana MA, Pérez-Álvarez L, Iturbe LCC, Katime I. (2014). pH-sensitive chitosan-folate nanogels crosslinked with biocompatible dicarboxylic acids. Eur Polym J 61:215–25
  • Qiao Z, Zhang R, Du F, et al. (2011). Multi-responsive nanogels containing motifs of ortho ester, oligo(ethylene glycol) and disulfide linkage as carriers of hydrophobic anti-cancer drugs. J Control Release 152:57–66
  • Raemdonck K, Demeester J, De Smedt S. (2009). Advanced nanogel engineering for drug delivery. Soft Matter 5:707–15
  • Raverdeau Mills K. (2014). Modulation of T cell and innate immune responses by retinoic acid. J Immunol 192:2953–8
  • Rolland JP, Maynor BW, Euliss LE, et al. (2005). Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 127:10096–100
  • Rosler A, Vadermeulen GWM, Klok HA. (2001). Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev 53:95–108
  • Roux E, Stomp R, Giasson S, et al. (2002). Steric stabilization of liposomes by pH-responsive N-isopropylacrylamide copolymer. J Pharm Sci 91:1795–802
  • Ryu J, Jiwpanich S, Chacko R, et al. (2010). Surface-functionalizable polymer nanogels with facile hydrophobic guest encapsulation capabilities. JACS 132:8246–7
  • Sahoo SK, Labhasetwar V. (2003). Nanotech approaches to drug delivery and imaging. Drug Discov Today 8:1112–20
  • Sasaki Y, Akiyoshi K. (2010). Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem Rec 10:366–76
  • Satarkar NS, Hilt JZ. (2008). Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Release 130:246–51
  • Shidhaye S, Lotlikar V, Malke S, Kadam V. (2008). Nanogel engineered polymeric micelles for drug delivery. Curr Drug Ther 3:209–17
  • Shimoda A, Sawada S, Akiyoshi K. (2011). Cell specific peptide-conjugated polysaccharide nanogels for protein delivery. Macromol Biosci 11:882–8
  • Siegwart D, Oh J, Matyjaszewski K. (2012). ATRP in the design of functional materials for biomedical applications. Prog Polym Sci 37:18–37
  • Singh N, Gill V, Gill P. (2013). Nanogel based artificial chaperone technology: an overview. Am J Adv Drug Deliv 1:271–6
  • Sivaram AJ, Rajitha P, Maya S, et al. (2015). Nanogels for delivery, imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:509–33
  • Smith MH, Lyon LA. (2012). Multifunctional nanogels for siRNA delivery. Acc Chem Res 45:985–93
  • Solaro R, Chiellini F, Battisti A. (2010). Targeted delivery of protein drugs by nanocarriers. Materials 3:1928–80
  • Soni G, Yadav KS. (2016). Nanogels as potential nanomedicine carrier for treatment of cancer: a mini review of the state of the art. Saudi Pharm J 24:133–9
  • Soni KS, Desale SS, Bronich TK. (2016). Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 240:109–26
  • Soni S, Babbar AK, Sharma RK, Maitra A. (2006). Delivery of hydrophobised 5-fluorouracil derivative to brain tissue through intravenous route using surface modified nanogels. J Drug Target 14:87–95
  • Sood N, Bhardwaj A, Mehta S, Mehta A. (2016). Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv 23:748–70
  • Steinhilber D, Rossow T, Wedepohl S, et al. (2013). A microgel construction kit for bioorthogonal encapsulation and pH-controlled release of living cells. Angew Chem Int Ed Engl 52:13538–43
  • Stuart MAC, Huck WT, Genzer J, et al. (2010). Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–13
  • Sun H, Yu J, Gong P, et al. (2005). Novel core shell magnetic nanogels synthesized in an emulsion free aqueous systems under UV irradiation for targeted radiopharmaceutical applications. J Magn Magn Mater 294:273–80
  • Sunasee R, Wattanaarsakit P, Ahmed M, et al. (2012). Biodegradable and nontoxic nanogels as nonviral gene delivery systems. Bioconjug Chem 23:1925–33
  • Tahara Y, Akiyoshi K. (2015). Current advances in self-assembled nanogel delivery systems for immunotherapy. Adv Drug Deliv Rev 95:65–76
  • Tan H, Jin H, Mei H. (2012). PEG-urokinase nanogels with enhanced stability and controllable bioactivity. Soft Matter 8:2644–50
  • Tan JPK, Zeng AQF, Chang CC, Tam KC. (2008). Release kinetics of procaine hydrochloride (PrHy) from pH-responsive nanogels: theory and experiments. Int J Pharm 357:305–13
  • Tian Y, Bian S, Yang W. (2016). A redox-labile poly(oligo(ethylene glycol)methacrylate)-based nanogel with tunable thermosensitivity for drug delivery. Polym Chem 7:1913–21
  • Tiwari S, Singh S, Tripathi P, Dubey C. (2015). A review—nanogel drug delivery system. Asia J Res Pharm Sci 5:253–5
  • Tobita H, Kumagai M, Aoyagi N. (2000). Microgel formation in emulsion polymerization. Polymer 41:481–7
  • Tobita H, Yamamoto K. (1994). Network formation in emulsion cross-linking copolymerization. Macromolecules 27:3389–96
  • Tong R, Tang L, Ma L, et al. (2014). Smart chemistry in polymeric nanomedicine. Chem Soc Rev 43:6982–7012
  • Torchilin VP. (2014). Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13:813–27
  • Tsarevsky NV, Sumerlin BS, Matyjaszewski K. (2005). Step-growth “click” coupling of telechelic polymers prepared by atom transfer radical polymerization. Macromolecules 38:3558–61
  • Vamvakaki M. (2014). Organic nanoparticle bioconjugate: micelles, cross-linked micelles, and nanogels. In: Narain R, ed. Chemistry of bioconjugates: synthesis, characterization, and biomedical applications. 1st ed. John Wiley & Sons, Inc
  • Vasilakos J, Tomai M. (2013). The use of Toll-like receptor 7/8 agonists as vaccine adjuvants. Expert Rev Vaccines 12:809–19
  • Vauthier C, Bouchemal K. (2009). Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–58
  • Vinogradov S, Batrakova E, Kabanov A. (1999). Poly(ethylene glycol)–polyethyleneimine NanoGel (TM) particles: novel drug delivery systems for antisense oligonucleotides. Colloids Surf B 16:291–304
  • Vinogradov SV, Bronich TK, Kabanov AV, et al. (2002). Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54:135–47
  • Vinogradov SV, Kohli E, Zeman A. (2006). Comparison of nanogel drug carriers and their formulations with nucleoside 5′-triphosphates. Pharm Res 23:920–30
  • Vinogradov SV. (2007). Polymeric nanogel formulations of nucleoside analogs. Expert Opin Drug Deliv 4:5–17
  • Vinogradov SV. (2010). Nanogels in the race for drug delivery. Nanomedicine (Lond) 5:165–8
  • Wang C, Li P, Liu L, et al. (2016). Self-adjuvanted nanovaccine for cancer immunotherapy: role of lysosomal rupture-induced ROS in MHC class I antigen presentation. Biomaterials 79:88–100
  • Wang Y, Luo Y, Zhao Q, et al. (2016). An enzyme-responsive nanogel carrier based on PAMAM dendrimers for drug delivery. ACS Appl Mater Interfaces 8:19899–906
  • Wang Y, Xu H, Ma L. (2015). Recent advances of thermally responsive nanogels for cancer therapy. Ther Deliv 6:1157–69
  • Weiss CK, Landfester K. (2010). Miniemulsion polymerizations as a means to encapsulate organic and inorganic materials. Adv Polym Sci 233:185–236
  • Weng Z, Zhou P, Salminen W, et al. (2014). Green tea epigallocatechin gallate binds to and inhibits respiratory complexes in swelling but not normal rat hepatic mitochondria. Biochem Biophys Res Commun 443:1097–104
  • Whitcombe MJ, Alexander C, Vulfson EN. (1997). Smart polymers for the food industry. Trends Food Sci Technol 8:140–5
  • Wu HQ, Wang CC. (2016). Biodegradable smart nanogels: a new platform for targeting drug delivery and biomedical diagnostics. Langmuir 32:6211–25
  • Wu W, Aiello M, Zhou T, et al. (2010). In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials 31:3023–31
  • Yallapu MM, Jaggi M, Chauhan SC. (2011). Design and engineering of nanogels for cancer treatment. Drug Discov Today 16:457–63
  • Yallapu MM, Reddy MK, Labhasetwar V. (2007). Nanogels: chemistry to drug delivery. In: Labhasetwar V, Pelecky LDL, eds. Biomedical applications of nanotechnology. John Wiley & Sons, Inc, 131–72
  • Yan L, Tao W. (2010). One step synthesis of pegylated cationic nanogel of poly(N,N′-dimethyl-aminoethyl methacrylate) in aqueous solution via self stabilizing micelle using an amphiphilic macroRAFT agent. Polymer 51:2161–7
  • Yan M, Liu Z, Lu D, Liu Z. (2007). Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperature. Biomacromolecules 8:560–5
  • Yang H, Choi J, Park J, et al. (2014). Differentiation of endothelial progenitor cells into endothelial cells by heparin-modified supramolecular pluronic nanogels encapsulating bFGF and complexed with VEGF165 genes. Biomaterials 35:4716–28
  • Yarin AL. (2008). Stimuli-responsive polymers in nanotechnology: deposition and possible effect on drug release. Math Model Nat Phenom 3:1–15
  • Zeng Z, Yingqi S, Peng Z, et al. (2016). Enzyme-mediated in situ formation of pH-sensitive nanogels for proteins delivery. RSC Adv 6:8032–42
  • Zha L, Banik B, Alexis F. (2011). Stimulus responsive nanogels for drug delivery. Soft Matter 7:5908–16
  • Zhang H, Zhai Y, Wang J, Zhai G. (2016). New progress and prospects: the application of nanogel in drug delivery. Mater Sci Eng C Mater Biol Appl 60:560–8
  • Zhang J, Zhou Y, Zhu Z, et al. (2008). Polyion complex micelles possessing thermoresponsive coronas and their covalent core stabilization via “Click” chemistry. Macromolecules 41:1444–54
  • Zhang L, Cao Z, Li Y, et al (2012). Softer zwitterionic nanogels for longer circulation and lower splenic accumulation. ACS Nano 6:6681–6
  • Zhang S. (2002). Emerging biological materials through molecular self-assembly. Biotechnol Adv 20:321–39
  • Zhang X, Malhotra S, Molina M, Haag R. (2015). Micro- and nanogels with labile crosslinks – from synthesis to biomedical applications. Chem Soc Rev 44:1948–73
  • Zhou X, Lin A, Yuan X, et al. (2016). Glucose-sensitive and blood-compatible nanogels for insulin controlled release. J Appl Polym Sci 133:43504–14