75
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of drug load and lipid–wax blends on drug release and stability from spray-congealed microparticles

ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1069-1082 | Received 20 Oct 2022, Accepted 22 Nov 2022, Published online: 01 Dec 2022

References

  • Akiyama Y, Yoshioka M, Horibe H, Hirai S, Kitamori N, Toguchi H. 1993. Novel oral controlled-release microspheres using polyglycerol esters of fatty acids. J Control Release. 26(1):1–10.
  • Al Zahabi KH, Ben Tkhayat H, Abu-Basha E, Sallam AS, Younes HM. 2021. Formulation of lipid-based tableted spray-congealed microparticles for sustained release of vildagliptin: in vitro and in vivo studies. Pharmaceutics. 13(12):2158.
  • Albertini B, Passerini N, Pattarino F, Rodriguez L. 2008. New spray congealing atomizer for the microencapsulation of highly concentrated solid and liquid substances. Eur J Pharm Biopharm. 69(1):348–357.
  • Bertoni S, Albertini B, Facchini C, Prata C, Passerini N. 2019. Glutathione-loaded solid lipid microparticles as innovative delivery system for oral antioxidant therapy. Pharmaceutics. 11(8):364.
  • Bertoni S, Albertini B, Ferraro L, Beggiato S, Dalpiaz A, Passerini N. 2019. Exploring the use of spray congealing to produce solid dispersions with enhanced indomethacin bioavailability: in vitro characterization and in vivo study. Eur J Pharm Biopharm. 139:132–141.
  • Bertoni S, Albertini B, Passerini N. 2020. Different BCS class II drug-gelucire solid dispersions prepared by spray congealing: evaluation of solid state properties and in vitro performances. Pharmaceutics. 12(6):548.
  • Bertoni S, Tedesco D, Bartolini M, Prata C, Passerini N, Albertini B. 2020. Solid lipid microparticles for oral delivery of catalase: focus on the protein structural integrity and gastric protection. Mol Pharm. 17(9):3609–3621.
  • Bilati U, Allémann E, Doelker E. 2005. Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur J Pharm Biopharm. 59(3):375–388.
  • Bodmer D, Kissel T, Traechslin E. 1992. Factors influencing the release of peptides and proteins from biodegradable parenteral depot systems. J Control Release. 21(1–3):129–137.
  • Cavallari C, Gonzalez-Rodriguez M, Tarterini F, Fini A. 2014. Image analysis of lutrol/gelucire/olanzapine microspheres prepared by ultrasound-assisted spray congealing. Eur J Pharm Biopharm. 88(3):909–918.
  • Cavallari C, Rodriguez L, Albertini B, Passerini N, Rosetti F, Fini A. 2005. Thermal and fractal analysis of diclofenac/gelucire 50/13 microparticles obtained by ultrasound-assisted atomization. J Pharm Sci. 94(5):1124–1134.
  • Consoli L, Grimaldi R, Sartori T, Menegalli FC, Hubinger MD. 2016. Gallic acid microparticles produced by spray chilling technique: production and characterization. LWT - Food Science and Technology. 65:79–87.
  • Dash S, Murthy PN, Nath L, Chowdhury P. 2010. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 67(3):217–223.
  • Database, ChemSpider. 2022. Cetyl palmitate. Royal Society of Chemistry.
  • Di Sabatino M, Albertini B, Kett VL, Passerini N. 2012. Spray congealed lipid microparticles with high protein loading: preparation and solid state characterisation. Eur J Pharm Sci. 46(5):346–356.
  • Duarte Í, Andrade R, Pinto JF, Temtem M. 2016. Green production of cocrystals using a new solvent-free approach by spray congealing. Int J Pharm. 506(1–2):68–78.
  • Elbakry AM, Abd Al Haleem EN. 2015. Spray congealing for enhancement the solubility and pharmacological activity of methylprednisolone. J Pharmaceut Sci Pharmacol. 2(2):73–85.
  • Emås M, Nyqvist H. 2000. Methods of studying aging and stabilization of spray-congealed solid dispersions with carnauba wax. 1. Microcalorimetric investigation. Int J Pharm. 197(1–2):117–127.
  • Felder CB, Blanco-Príeto MJ, Heizmann J, Merkle HP, Gander B. 2003. Ultrasonic atomization and subsequent polymer desolvation for peptide and protein microencapsulation into biodegradable polyesters. J Microencapsul. 20(5):553–567.
  • Fini A, Rodriguez L, Cavallari C, Albertini B, Passerini N. 2002. Ultrasound-compacted and spray-congealed indomethacin/polyethyleneglycol systems. Int J Pharm. 247(1–2):11–22.
  • Guo QY, Chan LW, Heng PWS. 2005. Investigation of the release of aspirin from spray-congealed micro-pellets. J Microencapsul. 22(3):245–251.
  • Hassan EE, Eshra AG, Nada AH. 1995. Formulation of prolonged release lipid micropellets by emulsion congealing: optimization of ketoprofen entrapment and release. Int J Pharm. 121(2):149–155.
  • Ilić I, Dreu R, Burjak M, Homar M, Kerč J, Srčič S. 2009. Microparticle size control and glimepiride microencapsulation using spray congealing technology. Int J Pharm. 381(2):176–183.
  • Jaspart S, Piel G, Delattre L, Evrard B. 2005. Solid lipid microparticles: formulation, preparation, characterisation, drug release and applications. Expert Opin Drug Deliv. 2(1):75–87.
  • Kulthe VV, Chaudhari PD. 2014. Effectiveness of spray congealing to obtain physically stabilized amorphous dispersions of a poorly soluble thermosensitive API. AAPS PharmSciTech. 15(6):1370–1377.
  • Leeson LJ, Mattocks AM. 1958. Decomposition of aspirin in the solid state. J Am Pharm Assoc Am Pharm Assoc. 47(5):329–333.
  • Lopes JD, Grosso CRF, de Andrade Calligaris G, Cardoso LP, Basso RC, Ribeiro APB, Efraim P. 2015. Solid lipid microparticles of hardfats produced by spray cooling as promising crystallization modifiers in lipid systems. Eur J Lipid Sci Technol. 117(11):1733–1744.
  • Martins RM, Siqueira S, Freitas LAP. 2012. Spray congealing of pharmaceuticals: study on production of solid dispersions using Box-Behnken design. Dry Technol. 30(9):935–945.
  • Martins RM, Siqueira S, Machado MO, Freitas LAP. 2013. The effect of homogenization method on the properties of carbamazepine microparticles prepared by spray congealing. J Microencapsul. 30(7):692–700.
  • Maschke A, Becker C, Eyrich D, Kiermaier J, Blunk T, Göpferich A. 2007. Development of a spray congealing process for the preparation of insulin-loaded lipid microparticles and characterization thereof. Eur J Pharm Biopharm. 65(2):175–187.
  • McCarron PA, Donnelly RF, Al-Kassas R. 2008. Comparison of a novel spray congealing procedure with emulsion-based methods for the micro-encapsulation of water-soluble drugs in low melting point triglycerides. J Microencapsul. 25(6):365–378.
  • Mendyk A, Jachowicz R, Fijorek K, Dorożyński P, Kulinowski P, Polak S. 2012. KinetDS: an open source software for dissolution test data analysis. Dissolution Technol. 19(1):6–11.
  • Novartis Bodmer D, Fong JW, Kissel T, Maulding HV, Nagele O, Pearson JE, Novartis AG, inventors. Novartis AG, assignee. 1996. Sustained release formulations of water soluble peptides. United States patent US5538739A.
  • Oh CM, Guo Q, Heng PWS, Chan LW. 2014. Spray-congealed microparticles for drug delivery – an overview of factors influencing their production and characteristics. Expert Opin Drug Deliv. 11(7):1047–1060.
  • Oh CM, Heng PWS, Chan LW. 2015. Influence of hydroxypropyl methylcellulose on metronidazole crystallinity in spray-congealed polyethylene glycol microparticles and its impact with various additives on metronidazole release. AAPS PharmSciTech. 16(6):1357–1367.
  • Oh CM, Siow CRS, Heng PWS, Chan LW. 2016. Impact of HPMC on the physical properties of spray-congealed PEG microparticles and its swelling effect on rifampicin dissolution. Drug Dev Ind Pharm. 42(3):403–411.
  • Ouyang H, Zheng AY, Heng PWS, Chan LW. 2018. Effect of lipid additives and drug on the rheological properties of molten paraffin wax, degree of surface drug coating, and drug release in spray-congealed microparticles. Pharmaceutics. 10(3):75.
  • Park SB, Kang HW, Haam S, Park HY, Kim WS. 2004. Ca-alginate microspheres encapsulated in chitosan beads. J Microencapsul. 21(5):485–497.
  • Passerini N, Albertini B, Perissutti B, Rodriguez L. 2006. Evaluation of melt granulation and ultrasonic spray congealing as techniques to enhance the dissolution of praziquantel. Int J Pharm. 318(1–2):92–102.
  • Passerini N, Perissutti B, Albertini B, Franceschinis E, Lenaz D, Hasa D, Locatelli I, Voinovich D. 2012. A new approach to enhance oral bioavailability of Silybum Marianum dry extract: association of mechanochemical activation and spray congealing. Phytomedicine. 19(2):160–168.
  • Passerini N, Perissutti B, Albertini B, Voinovich D, Moneghini M, Rodriguez L. 2003. Controlled release of verapamil hydrochloride from waxy microparticles prepared by spray congealing. J Control Release. 88(2):263–275.
  • Passerini N, Perissutti B, Moneghini M, Voinovich D, Albertini B, Cavallari C, Rodriguez L. 2002. Characterization of carbamazepine-gelucire 50/13 microparticles prepared by a spray-congealing process using ultrasounds. J Pharm Sci. 91(3):699–707.
  • PubChem. 2022a. Aspirin. Bethesda (MD): National Center for Biotechnology Information.
  • PubChem. 2022b. Cetyl alcohol. Bethesda (MD): National Center for Biotechnology Information.
  • PubChem. 2022c. Stearic acid. Bethesda (MD): National Center for Biotechnology Information.
  • Qi S, Deutsch D, Craig DQM. 2006. An investigation into the interaction between taste masking fatty acid microspheres and alkaline buffer using thermal and spectroscopic analysis. J Pharm Sci. 95(5):1022–1028.
  • Quadir MA, Rahman MS, Karim MZ, Akter S, Awkat MTB, Reza MS. 2003. Evaluation of hydrophobic materials as matrices for controlled-release drug delivery. Pak J Pharm Sci. 16(2):17–28.
  • Reithmeier H, Herrmann J, Göpferich A. 2001. Development and characterization of lipid microparticles as a drug carrier for somatostatin. Int J Pharm. 218(1–2):133–143.
  • Rodriguez L, Albertini B, Passerini N, Cavallari C, Giovannelli L. 2004. Hot air coating technique as a novel method to produce microparticles. Drug Dev Ind Pharm. 30(9):913–923.
  • Rodriguez L, Passerini N, Cavallari C, Cini M, Sancin P, Fini A. 1999. Description and preliminary evaluation of a new ultrasonic atomizer for spray-congealing processes. Int J Pharm. 183(2):133–143.
  • Sasol. 2022. Fischer-Tropsch waxes. [accessed 2022 August 19]. http://www.sasolwax.com/index.php?id=fischer_tropsch_wax.
  • Savolainen M, Herder J, Khoo C, Lövqvist K, Dahlqvist C, Glad H, Juppo AM. 2003. Evaluation of polar lipid–hydrophilic polymer microparticles. Int J Pharm. 262(1–2):47–62.
  • Savolainen M, Khoo C, Glad H, Dahlqvist C, Juppo AM. 2002. Evaluation of controlled-release polar lipid microparticles. Int J Pharm. 244(1–2):151–161.
  • Scalia S, Traini D, Young PM, Di Sabatino M, Passerini N, Albertini B. 2013. Comparison of spray congealing and melt emulsification methods for the incorporation of the water-soluble salbutamol sulphate in lipid microparticles. Pharm Dev Technol. 18(1):266–273.
  • Sorita GD, Santamaria-Echart A, Gozzo A, Gonçalves OH, Leimann FV, Bona E, Manrique Y, Fernandes I, Ferreira IC, Barreiro M. 2021. Lipid composition optimization in spray congealing technique and testing with curcumin-loaded microparticles. Adv Powder Technol. 32(5):1710–1722.
  • Thies C. 1996. A survey of microencapsulation processes. Vol. 73. New York (NY): m. Dekker.
  • Traub-Hoffmann K, Gegenfurtner K, Kraft K-U, Friess W. 2020. Spray congealed solid lipid microparticles as a sustained release delivery system for Gonadorelin [6-D-Phe]: production, optimization and in vitro release behavior. Eur J Pharm Biopharm. 154:18–32.
  • Uchida T, Tanigake A, Miyanaga Y, Matsuyama K, Kunitomo M, Kobayashi Y, Ikezaki H, Taniguchi A. 2010. Evaluation of the bitterness of antibiotics using a taste sensor. J Pharm Pharmacol. 55(11):1479–1485.
  • Wong PCH, Heng PWS, Chan LW. 2015. Spray congealing as a microencapsulation technique to develop modified-release ibuprofen solid lipid microparticles: the effect of matrix type, polymeric additives and drug–matrix miscibility. J Microencapsul. 32(8):725–736.
  • Yajima T, Fukushima Y, Itai S, Kawashima Y. 2002. Method of evaluation of the bitterness of clarithromycin dry syrup. Chem Pharm Bull. 50(2):147–152.
  • Yajima T, Itai S, Takeuchi H, Kawashima Y. 2003. Optimum heat treatment conditions for masking the bitterness of the clarithromycin wax matrix. Chem Pharm Bull. 51(11):1223–1226.
  • Yajima T, Nogata A, Demachi M, Umeki N, Itai S, Yunoki N, Nemoto M. 1996. Particle design for taste-masking using a spray-congealing technique. Chem Pharm Bull. 44(1):187–191.
  • Yajima T, Umeki N, Itai S. 1999. Optimum spray congealing conditions for masking the bitter taste of clarithromycin in wax matrix. Chem Pharm Bull. 47(2):220–225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.