30,049
Views
151
CrossRef citations to date
0
Altmetric
Reviews

Polyphenols and their benefits: A review

, &
Pages 1700-1741 | Received 30 Jan 2017, Accepted 07 Jul 2017, Published online: 21 Dec 2017

References

  • Wegener, G. ‘Let Food Be Thy Medicine, and Medicine Be Thy Food’: Hippocrates Revisited. Acta Neuropsychiatr. 2014, 26(01), 1–3. 10.1017/neu.2014.3.
  • Clydesdale, F. M.; Francis, F. J. Food Nutrition and Health; Springer Science & Business Media, Netherlands: 1985.
  • Bøhn, S. K.; Croft, K. D.; Burrows, S.; Puddey, I. B.; Mulder, T. P.; Fuchs, D.; Woodman, R. J.; Hodgson, J. M. Effects of Black Tea on Body Composition and Metabolic Outcomes Related to Cardiovascular Disease Risk: A Randomized Controlled Trial. Food Funct. 2014, 5(7), 1613–1620. 10.1039/C4FO00209A.
  • Rasouli, H.; Hosseini-Ghazvini, S. M.-B.; Adibi, H. Differential Α-Amylase/Α-Glucosidase Inhibitory Activities of Plant-Derived Phenolic Compounds: A Virtual Screening Perspective for the Treatment of Obesity and Diabetes. Food Funct. 2017, 8, 1942–1954. 10.1039/C7FO00220C.
  • Akbari, M.; Rasouli, H.; Bahdor, T. Physiological and Pharmaceutical Effect of Fenugreek: A Review. IOSR J. Pharm. 2012, 2(4), 49–53. 10.9790/3013-24204953.
  • Valdés, L.; Cuervo, A.; Salazar, N.; Ruas-Madiedo, P.; Gueimonde, M.; González, S. The Relationship between Phenolic Compounds from Diet and Microbiota: Impact on Human Health. Food Funct. 2015, 6(8), 2424–2439. 10.1039/C5FO00322A.
  • Oh, -M.-M.; Trick, H. N.; Rajashekar, C. Secondary Metabolism and Antioxidants are Involved in Environmental Adaptation and Stress Tolerance in Lettuce. J. Plant Physiol. 2009, 166(2), 180–191. 10.1016/j.jplph.2008.04.015.
  • Yue, W.; Ming, Q.-L.; Lin, B.; Rahman, K.; Zheng, C.-J.; Han, T.; Qin, L.-P. Medicinal Plant Cell Suspension Cultures: Pharmaceutical Applications and High-Yielding Strategies for the Desired Secondary Metabolites. Crit. Rev. Biotechnol. 2016, 36(2), 215–232. 10.3109/07388551.2014.923986.
  • Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of Plant Secondary Metabolites: A Historical Perspective. Plant Sci. 2001, 161(5), 839–851. 10.1016/S0168-9452(01)00490-3.
  • Montero, R.; Pérez‐Bueno, M. L.; Barón, M.; Florez‐Sarasa, I.; Tohge, T.; Fernie, A. R.; Flexas, J.; Bota, J. Alterations in Primary and Secondary Metabolism in Vitis Vinifera ‘Malvasía De Banyalbufar’upon Infection with Grapevine Leafroll‐Associated Virus 3. Physiol. Plant. 2016. 10.1111/ppl.12440.
  • Okumoto, S.; Funck, D.; Trovato, M.; Forlani, G. Editorial: Amino Acids of the Glutamate Family: Functions beyond Primary Metabolism. Front. Plant Sci. 2016, 7, 1–3. 10.3389/fpls.2016.00318.
  • Kossel, A. Ueber Die Chemische Zusammensetzung Der Zelle. Du Bois-Reymond’s Archiv/Arch Anat. Physiol. Physiol. Abt. 1891, 278,181–186.
  • Czapek, F. Biochemie Der Pflanzen. G. Fischer, Germany: 1925; Vol. 2.
  • Rasouli, H.; Farzaei, M. H.; Mansouri, K.; Mohammadzadeh, S.; Khodarahmi, R. Plant Cell Cancer: May Natural Phenolic Compounds Prevent Onset and Development of Plant Cell Malignancy? A Literature Review. Molecules. 2016, 21(9), 1104. 10.3390/molecules21091104.
  • Villaño, D.; Vilaplana, C.; Medina, S.; Algaba-Chueca, F.; Cejuela-Anta, R.; Martínez-Sanz, J.; Ferreres, F.; Gil-Izquierdo, A. Relationship between the Ingestion of a Polyphenol-Rich Drink, Hepcidin Hormone, and Long-Term Training. Molecules. 2016, 21(10), 1333. 10.3390/molecules21101333.
  • Zhou, Z.-Q.; Xiao, J.; Fan, H.-X.; Yu, Y.; He, -R.-R.; Feng, X.-L.; Kurihara, H.; So, K.-F.; Yao, X.-S.; Gao, H. Polyphenols from Wolfberry and Their Bioactivities. Food Chem. 2017, 214, 644–654. 10.1016/j.foodchem.2016.07.105.
  • Farzaei, H.; Rahimi, M. R.; Abdollahi, M. The Role of Dietary Polyphenols in the Management of Inflammatory Bowel Disease. Curr. Pharm. Biotechnol. 2015, 16(3), 196–210. PMID: 25601607.
  • Khurana, S.; Venkataraman, K.; Hollingsworth, A.; Piche, M.; Tai, T. Polyphenols: Benefits to the Cardiovascular System in Health and in Aging. Nutrients. 2013, 5(10), 3779–3827. 10.3390/nu5103779.
  • Pinent, M.; Blay, M.; Serrano, J.; Ardévol, A. Effects of Flavanols on the Enteroendocrine System: Repercussions on Food Intake. Crit. Rev. Food Sci. Nutr. 2015, (just-accepted), 00–00. 10.1080/10408398.2013.871221.
  • Visioli, F.; Lastra, C. A. D. L.; Andres-Lacueva, C.; Aviram, M.; Calhau, C.; Cassano, A.; D’Archivio, M.; Faria, A.; Favé, G.; Fogliano, V. Polyphenols and Human Health: A Prospectus. Crit. Rev. Food Sci. Nutr. 2011, 51(6), 524–546. 10.1080/10408391003698677.
  • McSweeney, M.; Seetharaman, K. State of Polyphenols in the Drying Process of Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2015, 55(5), 660–669.
  • Yang, C. S.; Chung, J. Y.; Yang, G.-Y.; Chhabra, S. K.; Lee, M.-J. Tea and Tea Polyphenols in Cancer Prevention. J. Nutr. 2000, 130(2), 472S–478S.
  • Bose, M.; Lambert, J. D.; Ju, J.; Reuhl, K. R.; Shapses, S. A.; Yang, C. S. The Major Green Tea Polyphenol,(-)-Epigallocatechin-3-Gallate, Inhibits Obesity, Metabolic Syndrome, and Fatty Liver Disease in High-Fat–Fed Mice. J. Nutr. 2008, 138(9), 1677–1683. PMCID: PMC2586893.
  • Lu, C.; Zhu, W.; Shen, C.-L.; Gao, W. Green Tea Polyphenols Reduce Body Weight in Rats by Modulating Obesity-Related Genes. PLoS ONE. 2012, 7(6), e38332.
  • Aviram, M.; Dornfeld, L.; Rosenblat, M.; Volkova, N.; Kaplan, M.; Coleman, R.; Hayek, T.; Presser, D.; Fuhrman, B. Pomegranate Juice Consumption Reduces Oxidative Stress, Atherogenic Modifications to LDL, and Platelet Aggregation: Studies in Humans and in Atherosclerotic Apolipoprotein E–Deficient Mice. Am. J. Clin. Nutr. 2000, 71(5), 1062–1076.
  • Scalbert, A.; Johnson, I. T.; Saltmarsh, M. Polyphenols: Antioxidants and Beyond. Am. J. Clin. Nutr. 2005, 81(1), 215S–217S.
  • Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 1998, 56(11), 317–333. PMID: 9838798.
  • Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules. 2016, 21(7), 901–939. 10.3390/molecules21070901.
  • Shao, Y.; Bao, J. Polyphenols in Whole Rice Grain: Genetic Diversity and Health Benefits. Food Chem. 2015, 180, 86–97. 10.1016/j.foodchem.2015.02.027.
  • Pereira, D. M.; Valentão, P.; Pereira, J. A.; Andrade, P. B. Phenolics: From Chemistry to Biology. Molecules. 2009, 14(6), 2202–2211.
  • Zhang, H.; Tsao, R. Dietary Polyphenols. Oxidative Stress Antioxidant Anti-Inflammatory Effects. Cur. Opinion Food Sci. 2016, 8, 33–42.
  • Moga, M.; Dimienescu, O.; Arvatescu, C.; Mironescu, A.; Dracea, L.; Ples, L. The Role of Natural Polyphenols in the Prevention and Treatment of Cervical Cancer—An Overview. Molecules. 2016, 21(8), 1055.
  • Miglio, C.; Chiavaro, E.; Visconti, A.; Fogliano, V.; Pellegrini, N. Effects of Different Cooking Methods on Nutritional and Physicochemical Characteristics of Selected Vegetables. J. Agric. Food Chem. 2007, 56(1), 139–147.
  • Napolitano, A.; Cascone, A.; Graziani, G.; Ferracane, R.; Scalfi, L.; Di Vaio, C.; Ritieni, A.; Fogliano, V. Influence of Variety and Storage on the Polyphenol Composition of Apple Flesh. J. Agric. Food Chem. 2004, 52(21), 6526–6531.
  • Xiao, J. Phytochemicals in Food and Nutrition. Crit. Rev. Food Sci. Nutr. 2016, 56(1), S1–S3.
  • Pangeni, R.; Sahni, J. K.; Ali, J.; Sharma, S.; Baboota, S. Resveratrol: Review on Therapeutic Potential and Recent Advances in Drug Delivery. Expert Opin. Drug Deliv. 2014, 11(8), 1285–1298.
  • Scopus. Scopus Database, USA (20.10.2016); 2016.
  • Rendeiro, C.; Vauzour, D.; Rattray, M.; Waffo-Téguo, P.; Mérillon, J. M.; Butler, L. T.; Williams, C. M.; Spencer, J. P. Dietary Levels of Pure Flavonoids Improve Spatial Memory Performance and Increase Hippocampal Brain-Derived Neurotrophic Factor. PLoS ONE. 2013, 8(5), e63535.
  • Nie, N. H.; Bent, D. H.; Hull, C. H. SPSS: Statistical Package for the Social Sciences; McGraw-Hill: New York, 1970.
  • Kaufman, L.; Rousseeuw, P. J. Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, New Jercy, USA: 2009; Vol. 344.
  • Tian, Y.; Liimatainen, J.; Alanne, A.-L.; Lindstedt, A.; Liu, P.; Sinkkonen, J.; Kallio, H.; Yang, B. Phenolic Compounds Extracted by Acidic Aqueous Ethanol from Berries and Leaves of Different Berry Plants. Food Chem. 2017, 220, 266–281. 10.1016/j.foodchem.2016.09.145.
  • Botelho, G.; Canas, S.; Lameiras, J. 14 - Development of Phenolic Compounds Encapsulation Techniques as a Major Challenge for Food Industry and for Health and Nutrition Fields A2 - Grumezescu, Alexandru Mihai, in Nutrient Delivery; Academic Press, USA : 2017; 535–586.
  • Archivio, D.; Filesi, M. C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, Dietary Sources and Bioavailability. Annali dell’Istituto Superiore Di Sanità. 2007, 43(4), 348.
  • Lattanzio, V.; Lattanzio, V. M.; Cardinali, A. Role of Polyphenols in the Resistance Mechanisms of Plants against Fungal Pathogens and Insects, in Phytochemistry, Kerala, India ; 2006; 23–67.
  • Gómez-Caravaca, A.; Verardo, V.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Caboni, M.; Watson, R. Phenolic Compounds and Saponins in Plants Grown under Different Irrigation Regimes; Academic Press: New York, USA: 2013; 37–48.
  • Ajila, C.; Brar, S.; Verma, M.; Tyagi, R.; Godbout, S.; Valero, J. Extraction and Analysis of Polyphenols: Recent Trends. Crit. Rev. Biotechnol. 2011, 31(3), 227–249. 10.3109/07388551.2010.513677.
  • Ignat, I.; Volf, I.; Popa, V. I. A Critical Review of Methods for Characterisation of Polyphenolic Compounds in Fruits and Vegetables. Food Chem. 2011, 126(4), 1821–1835. 10.1016/j.foodchem.2010.12.026.
  • Schöttner, M.; Ganßer, D.; Spiteller, G. Lignans from the Roots of Urtica Dioica and Their Metabolites Bind to Human Sex Hormone Binding Globulin (SHBG). Planta Med. 1997, 63(06), 529–532.
  • Neveu, V.; Perez-Jimenez, J.; Vos, F.; Crespy, V.; Du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D. Phenol-Explorer: An Online Comprehensive Database on Polyphenol Contents in Foods. Database. 2010, 2010, 1–9. 10.1093/database/bap024.
  • Bhagwat, S.; Haytowitz, D. B.; Holden, J. M. USDA Database for the Flavonoid Content of Selected Foods, Release 3.1; US Department of Agriculture: Beltsville, MD, USA, 2014.
  • Coskun, O.; Kanter, M.; Korkmaz, A.; Oter, S. Quercetin, a Flavonoid Antioxidant, Prevents and Protects Streptozotocin-Induced Oxidative Stress and Β-Cell Damage in Rat Pancreas. Pharm. Res. 2005, 51(2), 117–123.
  • Nijveldt, R. J.; Van Nood, E.; Van Hoorn, D. E.; Boelens, P. G.; Van Norren, K.; Van Leeuwen, P. A. Flavonoids: A Review of Probable Mechanisms of Action and Potential Applications. Am. J. Clin. Nutr. 2001, 74(4), 418–425.
  • Kohn, M. J. You are What You Eat. Science. 1999, 283(5400), 335–336.
  • Herzog, E. D.; Muglia, L. J. You are When You Eat. Nat. Neurosci. 2006, 9(3), 300–302.
  • Liang, D.; Silverman, J. “You are What You Eat”: Diet Modifies Cuticular Hydrocarbons and Nestmate Recognition in the Argentine Ant, Linepithema Humile. Naturwissenschaften. 2000, 87(9), 412–416.
  • Taylor, L. You are What You Eat. Vet. Nurs. J. 2005, 20(2), 34–34.
  • Vita, J. A. Polyphenols and Cardiovascular Disease: Effects on Endothelial and Platelet Function. Am. J. Clin. Nutr. 2005, 81(1), 292S–297S. PMID: 15640493.
  • Kanadaswami, C.; Lee, L.-T.; Lee, -P.-P. H.; Hwang, -J.-J.; Ke, F.-C.; Huang, Y.-T.; Lee, M.-T. The Antitumor Activities of Flavonoids. In Vivo. 2005, 19(5), 895–909.
  • Chen, A. Y.; Chen, Y. C. A Review of the Dietary Flavonoid, Kaempferol on Human Health and Cancer Chemoprevention. Food Chem. 2013, 138(4), 2099–2107. 10.1016/j.foodchem.2012.11.139.
  • Guiné, R.; Ferreira, M.; Correia, P.; Duarte, J. Perception of Health Benefits of Dietary Fibre among the Portuguese Population. Atención Primaria. 2016, 48, 65–65.
  • Hollman, P.; De Vries, J.; Van Leeuwen, S. D.; Mengelers, M.; Katan, M. B. Absorption of Dietary Quercetin Glycosides and Quercetin in Healthy Ileostomy Volunteers. Am. J. Clin. Nutr. 1995, 62(6), 1276–1282.
  • Hosseinzadeh, H.; Nassiri-Asl, M. Review of the Protective Effects of Rutin on the Metabolic Function as an Important Dietary Flavonoid. J. Endocrinol. Invest. 2014, 37(9), 783–788. Epub. 10.1007/s40618-014-0096-3.
  • Little, C.; Combet, E.; McMillan, D.; Horgan, P.; Roxburgh, C. The Role of Dietary Polyphenols in the Moderation of the Inflammatory Response in Early Stage Colorectal Cancer. Crit. Rev. Food Sci. Nutr. 2015, 57(11), 2310–2320. 10.1080/10408398.2014.997866.
  • Liu, R. H. Health Benefits of Dietary Flavonoids: Flavonols and Flavones. Fruit Q. 2002, 10, 21–23.
  • Calderon-Montano, M.; Burgos-Morón, J. E.; Pérez-Guerrero, C.; López-Lázaro, M. A Review on the Dietary Flavonoid Kaempferol. Mini-Rev. Med. Chem. 2011, 11(4), 298–344.
  • Williamson, G.; Day, A.; Plumb, G.; Couteau, D. Human Metabolic Pathways of Dietary Flavonoids and Cinnamates. Biochem. Soc. Trans. 2000, 28(2), 16–22.
  • Pandey, K. B.; Rizvi, S. I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2(5), 270–278. 10.4161/oxim.2.5.9498.
  • Taylor, P. W.; Hamilton-Miller, J. M.; Stapleton, P. D. Antimicrobial Properties of Green Tea Catechins. Food Sci. Technol. Bull. Functional Foods. 2005, 2, 71–81. PMCID: PMC2763290.
  • Diniz, T. C.; Silva, J. C.; Lima-Saraiva, S. R. G. D.; Ribeiro, F. P. R. D. A.; Pacheco, A. G. M.; De Freitas, R. M.; Quintans-Júnior, L. J.; Quintans, J. D. S. S.; Mendes, R. L.; Almeida, J. R. G. D. S. The Role of Flavonoids on Oxidative Stress in Epilepsy. Oxid. Med. Cell. Longev. 2015, 2015.
  • Ramalingam, R.; Nath, A. R.; Madhavi, B. B.; Nagulu, M.; Balasubramaniam, A. Free Radical Scavenging and Antiepileptic Activity of Leucas Lanata. J. Pharm. Res. 2013, 6(3), 368–372. 10.1016/j.jopr.2013.03.011.
  • Choudhary, N.; Bijjem, K. R. V.; Kalia, A. N. Antiepileptic Potential of Flavonoids Fraction from the Leaves of Anisomeles Malabarica. J. Ethnopharmacol. 2011, 135(2), 238–242. 10.1016/j.jep.2011.02.019.
  • Costa Marques, T. H.; Santos De Melo, C. H.; De Carvalho, F.; Rusbene, B.; Costa, L. M.; De Souza, A. A.; David, J. M.; De Lima David, J. P.; De Freitas, R. M. Phytochemical Profile and Qualification of Biological Activity of an Isolated Fraction of Bellis Perennis. Biol. Res. 2013, 46(3), 231–238. 10.4067/S0716-97602013000300002.
  • Santangelo, C.; Varì, R.; Scazzocchio, B.; Di Benedetto, R.; Filesi, C.; Masella, R. Polyphenols, Intracellular Signalling and Inflammation. Annali Istituto Superiore Di Sanita. 2007, 43(4), 394–405. PMID: 18209273.
  • Luceri, C.; Caderni, G.; Sanna, A.; Dolara, P. Red Wine and Black Tea Polyphenols Modulate the Expression of Cycloxygenase-2, Inducible Nitric Oxide Synthase and Glutathione-Related Enzymes in Azoxymethane-Induced F344 Rat Colon Tumors. J. Nutr. 2002, 132(6), 1376–1379. PMID: 12042461.
  • Ferrandiz, M.; Alcaraz, M. Anti-Inflammatory Activity and Inhibition of Arachidonic Acid Metabolism by Flavonoids. Inflamm. Res. 1991, 32(3), 283–288. 10.1007/BF01980887.
  • Kim, H.; Mani, I.; Iversen, L.; Ziboh, V. Effects of Naturally-Occurring Flavonoids and Biflavonoids on Epidermal Cyclooxygenase and Lipoxygenase from Guinea-Pigs. Prostaglandins Leukot. Essent. Fatty Acids. 1998, 58(1), 17–24. PMID: 9482162.
  • Hou, D.-X.; Luo, D.; Tanigawa, S.; Hashimoto, F.; Uto, T.; Masuzaki, S.; Fujii, M.; Sakata, Y. Prodelphinidin B-4 3′-O-Gallate, a Tea Polyphenol, Is Involved in the Inhibition of COX-2 and iNOS via the Downregulation of Tak1-Nf-Κb Pathway. Biochem. Pharmacol. 2007, 74(5), 742–751. 10.1016/j.bcp.2007.06.006.
  • Hou, D.-X.; Masuzaki, S.; Hashimoto, F.; Uto, T.; Tanigawa, S.; Fujii, M.; Sakata, Y. Green Tea Proanthocyanidins Inhibit Cyclooxygenase-2 Expression in LPS-activated Mouse Macrophages: Molecular Mechanisms and Structure–Activity Relationship. Arch. Biochem. Biophys. 2007, 460(1), 67–74. 10.1016/j.abb.2007.01.009.
  • Ozcan, T.; Akpinar-Bayizit, A.; Yilmaz-Ersan, L.; Delikanli, B. Phenolics in Human Health. Int. J. Chem. Eng. Appl. 2014, 5(5), 393–396.
  • Petti, S.; Scully, C. Polyphenols, Oral Health and Disease: A Review. J. Dent. 2009, 37(6), 413–423.
  • Bensalem, J.; Dal-Pan, A.; Gillard, E.; Calon, F.; Pallet, V. Protective Effects of Berry Polyphenols against Age-Related Cognitive Impairment. Nutr. Aging. 2016, 3(2–4), 89–106. 10.3233/NUA-150051.
  • Schneider, M.; Norman, R.; Steyn, N.; Bradshaw, D.; Collaboration, S. A. C. R. A. Estimating the Burden of Disease Attributable to Low Fruit and Vegetable Intake in South Africa in 2000. South. Afr. Med. J. 2007, 97(8), 717–723.
  • Whitley, A. C.; Sweet, D. H.; Walle, T. Site‐Specific Accumulation of the Cancer Preventive Dietary Polyphenol Ellagic Acid in Epithelial Cells of the Aerodigestive Tract. J. Pharm. Pharmacol. 2006, 58(9), 1201–1209.
  • Kumar, S.; Pandey, A. K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 1–17.
  • Gülçin, İ. Antioxidant Properties of Resveratrol: A Structure–Activity Insight. Innovative Food Sci. Emer. Technol. 2010, 11(1), 210–218. 10.1016/j.ifset.2009.07.002.
  • Torel, J.; Cillard, J.; Cillard, P. Antioxidant Activity of Flavonoids and Reactivity with Peroxy Radical. Phytochemistry. 1986, 25(2), 383–385. 10.1016/S0031-9422(00)85485-0.
  • Cos, P.; Ying, L.; Calomme, M.; Hu, J. P.; Cimanga, K.; Van Poel, B.; Pieters, L.; Vlietinck, A. J.; Berghe, D. V. Structure-Activity Relationship and Classification of Flavonoids as Inhibitors of Xanthine Oxidase and Superoxide Scavengers. J. Nat. Prod. 1998, 61(1), 71–76. 10.1021/np970237h.
  • Dehmlow, C.; Erhard, J.; De Groot, H. Inhibition of Kupffer Cell Functions as an Explanation for the Hepatoprotective Properties of Silibinin. Hepatology. 1996, 23(4), 749–754. 10.1053/jhep.1996.v23.pm0008666328.
  • Friesenecker, B.; Tsai, A.; Allegra, C.; Intaglietta, M. Oral Administration of Purified Micronized Flavonoid Fraction Suppresses Leukocyte Adhesion in Ischemia-Reperfusion Injury: In Vivo Observations in the Hamster Skin Fold. J. Vasc. Res. 1994, 14(1–2), 50–55.
  • Lima, G. P. P.; Vianello, F.; Corrêa, C. R.; Da Silva Campos, R. A.; Borguini, M. G. Polyphenols in Fruits and Vegetables and Its Effect on Human Health. Food Nutr. Sci. 2014, 5(11), 1065–1082. 10.4236/fns.2014.511117.
  • Harcourt, B. E.; Sourris, K. C.; Coughlan, M. T.; Walker, K. Z.; Dougherty, S. L.; Andrikopoulos, S.; Morley, A. L.; Thallas-Bonke, V.; Chand, V.; Penfold, S. A. Targeted Reduction of Advanced Glycation Improves Renal Function in Obesity. Kidney Int. 2011, 80(2), 190–198. Epub. 10.1038/ki.2011.57.
  • Yamagishi, A.; Kunisawa, T.; Nagashima, M.; Takahata, O.; Iwasaki, H. [Clinical Usefulness of Continuous Cardiac Output Measurement: PulseCO]. Masui. 2009, 58(4), 422–425.
  • Rodiño-Janeiro, B. K.; Salgado-Somoza, A.; Teijeira-Fernández, E.; González-Juanatey, J. R.; Álvarez, E.; Eiras, S. Receptor for Advanced Glycation End-Products Expression in Subcutaneous Adipose Tissue Is Related to Coronary Artery Disease. Eur. J. Endocrinol. 2011, 164(4), 529–537.
  • Alappat, L.; Awad, A. B. Curcumin and Obesity: Evidence and Mechanisms. Nutr. Rev. 2010, 68(12), 729–738. 10.1111/j.1753-4887.2010.00341.x.
  • Shen, C.-L.; Cao, J. J.; Dagda, R. Y.; Tenner, T. E., Jr; Chyu, M.-C.; Yeh, J. K. Supplementation with Green Tea Polyphenols Improves Bone Microstructure and Quality in Aged, Orchidectomized Rats. Calcif. Tissue Int. 2011, 88(6), 455–463.
  • Araújo, J. R.; Gonçalves, P.; Martel, F. Chemopreventive Effect of Dietary Polyphenols in Colorectal Cancer Cell Lines. Nutr. Rev. 2011, 31(2), 77–87. 10.1016/j.nutres.2011.01.006.
  • Aguirre, L.; Arias, N.; Macarulla, M. T.; Gracia, A.; Portillo, M. P. Beneficial Effects of Quercetin on Obesity and Diabetes. Open Nutraceuticals J. 2011, 4, 189–198.
  • Kelly, G. S. Quercetin. Altern. Med. Rev. 2011, 16(2), 172–194.
  • Jung, J. Y.; Lim, Y.; Moon, M. S.; Kim, J. Y.; Kwon, O. Onion Peel Extracts Ameliorate Hyperglycemia and Insulin Resistance in High Fat Diet/Streptozotocin-Induced Diabetic Rats. J. Nutr. Metab. 2011, 8(1), 8–18. 10.1186/1743-7075-8-18.
  • Rauter, A. P.; Martins, A.; Borges, C.; Mota‐Filipe, H.; Pinto, R.; Sepodes, B.; Justino, J. Antihyperglycaemic and Protective Effects of Flavonoids on Streptozotocin–Induced Diabetic Rats. Phytother. Res. 2010, 24(S2), S133–S138.
  • Choi, M.; Jung, U.; Yeo, J.; Kim, M.; Lee, M. Genistein and Daidzein Prevent Diabetes Onset by Elevating Insulin Level and Altering Hepatic Gluconeogenic and Lipogenic Enzyme Activities in Non‐Obese Diabetic (NOD) Mice. Diabetes Metab. Res. Rev. 2008, 24(1), 74–81. 10.1002/dmrr.780.
  • González-Castejón, M.; Rodriguez-Casado, A. Dietary Phytochemicals and Their Potential Effects on Obesity: A Review. Pharm. Res. 2011, 64(5), 438–455. 10.1016/j.phrs.2011.07.004.
  • Zhou, H.; Beevers, C. S.; Huang, S. The Targets of Curcumin. Curr Drug Targets. 2011, 12(3), 332–347.
  • Aggarwal, B. B.; Shishodia, S. Molecular Targets of Dietary Agents for Prevention and Therapy of Cancer. Biochem. Pharmacol. 2006, 71(10), 1397–1421. 10.1016/j.bcp.2006.02.009.
  • Boots, A. W.; Haenen, G. R.; Bast, A. Health Effects of Quercetin: From Antioxidant to Nutraceutical. Eur. J. Pharmacol. 2008, 585(2), 325–337. Epub. 10.1016/j.ejphar.2008.03.008.
  • Buchweitz, M.; Kroon, P. A.; Rich, G. T.; Wilde, P. J. Quercetin Solubilisation in Bile Salts: A Comparison with Sodium Dodecyl Sulphate. Food Chem. 2016, 211, 356–364. 10.1016/j.foodchem.2016.05.034.
  • Amić, A.; Lučić, B.; Stepanić, V.; Marković, Z.; Marković, S.; Dimitrić Marković, J. M.; Amić, D. Free Radical Scavenging Potency of Quercetin Catecholic Colonic Metabolites: Thermodynamics of 2h+/2e− Processes. Food Chem. 2017, 218, 144–151. 10.1016/j.foodchem.2016.09.018.
  • Popova, A. V.; Hincha, D. K. Effects of Flavonol Glycosides on Liposome Stability during Freezing and Drying. Biochim. Biophys. Acta. 2016, 1858(12), 3050–3060.
  • Harris, S.; Brunton, N.; Tiwari, U.; Cummins, E. Human Exposure Modelling of Quercetin in Onions (Allium Cepa L.) following Thermal Processing. Food Chem. 2015, 187, 135–139. 10.1016/j.foodchem.2015.04.035.
  • Lee, J.; Mitchell, A. E. Quercetin and Isorhamnetin Glycosides in Onion (Allium Cepa L.): Varietal Comparison, Physical Distribution, Coproduct Evaluation, and Long-Term Storage Stability. J. Agric. Food Chem. 2011, 59(3), 857–863. 10.1021/jf1033587.
  • Murakami, A.; Ashida, H.; Terao, J. Multitargeted Cancer Prevention by Quercetin. Cancer Lett. 2008, 269(2), 315–325.
  • Shinoki, A.; Lang, W.; Thawornkuno, C.; Kang, H.-K.; Kumagai, Y.; Okuyama, M.; Mori, H.; Kimura, A.; Ishizuka, S.; Hara, H. A Novel Mechanism for the Promotion of Quercetin Glycoside Absorption by Megalo Α-1,6-Glucosaccharide in the Rat Small Intestine. Food Chem. 2013, 136(2), 293–296. 10.1016/j.foodchem.2012.08.028.
  • Chen, X.; Zou, L.; Liu, W.; McClements, D. J. Potential of Excipient Emulsions for Improving Quercetin Bioaccessibility and Antioxidant Activity: An in Vitro Study. J. Agric. Food Chem. 2016, 64(18), 3653–3660. Epub. 10.1021/acs.jafc.6b01056.
  • Hisanaga, A.; Mukai, R.; Sakao, K.; Terao, J.; Hou, D. X. Anti‐Inflammatory Effects and Molecular Mechanisms of 8‐Prenyl Quercetin. Mol. Nutr. Food Res. 2016, 60(5), 1020–1032. Epub. 10.1002/mnfr.201500871.
  • Guillermo Gormaz, J.; Quintremil, S.; Rodrigo, R. Cardiovascular Disease: A Target for the Pharmacological Effects of Quercetin. Curr. Top. Med. Chem. 2015, 15(17), 1735–1742. PMID: 25915608.
  • Vaidya, B.; Cho, S.-Y.; Oh, K.-S.; Kim, S. H.; Kim, Y. O.; Jeong, E.-H.; Nguyen, T. T.; Kim, S. H.; Kim, I. S.; Kwon, J. Effectiveness of Periodic Treatment of Quercetin against Influenza A Virus H1N1 through Modulation of Protein Expression. J. Agric. Food Chem. 2016. 10.1021/acs.jafc.6b00148.
  • Al-Jabban, S.; Zhang, X.; Chen, G.; Mekuria, E. A.; Rakotondraibe, L. H.; Chen, Q.-H. Synthesis and Anti-Proliferative Effects of Quercetin Derivatives. Nat. Prod. Commun. 2015, 10(12), 2113–2118. PMID: 26882678.
  • Snyder, S. M.; Zhao, B.; Luo, T.; Kaiser, C.; Cavender, G.; Hamilton-Reeves, J.; Sullivan, D. K.; Shay, N. F. Consumption of Quercetin and Quercetin-Containing Apple and Cherry Extracts Affects Blood Glucose Concentration, Hepatic Metabolism, and Gene Expression Patterns in Obese C57BL/6J High Fat–Fed Mice. J. Nutr. 2016, 146(5), 1001–1007.
  • Murota, K.; Terao, J. Antioxidative Flavonoid Quercetin: Implication of Its Intestinal Absorption and Metabolism. Arch. Biochem. Biophys. 2003, 417(1), 12–17.
  • Andarwulan, N.; Batari, R.; Sandrasari, D. A.; Bolling, B.; Wijaya, H. Flavonoid Content and Antioxidant Activity of Vegetables from Indonesia. Food Chem. 2010, 121(4), 1231–1235. 10.1016/j.foodchem.2010.01.033.
  • Iacopini, P.; Baldi, M.; Storchi, P.; Sebastiani, L. Catechin, Epicatechin, Quercetin, Rutin and Resveratrol in Red Grape: Content, in Vitro Antioxidant Activity and Interactions. J. Food Composition Anal. 2008, 21(8), 589–598. 10.1016/j.jfca.2008.03.011.
  • Xiao, J.; Kai, G. A Review of Dietary Polyphenol-Plasma Protein Interactions: Characterization, Influence on the Bioactivity, and Structure-Affinity Relationship. Crit. Rev. Food Sci. Nutr. 2012, 52(1), 85–101.
  • Petersen, B.; Egert, S.; Bosy-Westphal, A.; Müller, M. J.; Wolffram, S.; Hubbermann, E. M.; Rimbach, G.; Schwarz, K. Bioavailability of Quercetin in Humans and the Influence of Food Matrix Comparing Quercetin Capsules and Different Apple Sources. Food Res. Int. 2016, 88(Part A), 159–165.
  • Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G. L. The Flavonoid Quercetin in Disease Prevention and Therapy: Facts and Fancies. Biochem. Pharmacol. 2012, 83(1), 6–15.
  • Wang, L.; Morris, M. E. Liquid Chromatography–Tandem Mass Spectroscopy Assay for Quercetin and Conjugated Quercetin Metabolites in Human Plasma and Urine. J. Chromatogr. B. 2005, 821(2), 194–201.
  • Day, A. J.; Gee, J. M.; DuPont, M. S.; Johnson, I. T.; Williamson, G. Absorption of Quercetin-3-Glucoside and Quercetin-4′-Glucoside in the Rat Small Intestine: The Role of Lactase Phlorizin Hydrolase and the Sodium-Dependent Glucose Transporter. Biochem. Pharmacol. 2003, 65(7), 1199–1206.
  • Piskula, M. K. Factors Affecting Flavonoids Absorption. Biofactors. 2000, 12(1–4), 175–180.
  • Arts, I. C.; Sesink, A. L.; Faassen-Peters, M.; Hollman, P. C. The Type of Sugar Moiety Is a Major Determinant of the Small Intestinal Uptake and Subsequent Biliary Excretion of Dietary Quercetin Glycosides. Br. J. Nutr. 2004, 91(06), 841–847. 10.1079/BJN20041123.
  • Crespy, V.; Morand, C.; Manach, C.; Besson, C.; Demigne, C.; Remesy, C. Part of Quercetin Absorbed in the Small Intestine Is Conjugated and Further Secreted in the Intestinal Lumen. Am. J. Physiol. Gastrointest. Liver Physiol. 1999, 277(1), G120–G126.
  • Meng, X.; Maliakal, P.; Lu, H.; Lee, M.-J.; Yang, C. S. Urinary and Plasma Levels of Resveratrol and Quercetin in Humans, Mice, and Rats after Ingestion of Pure Compounds and Grape Juice. J. Agric. Food Chem. 2004, 52(4), 935–942.
  • Bischoff, S. C. Quercetin: Potentials in the Prevention and Therapy of Disease. Curr. Opin. Clin. Nutr. Metab. Care. 2008, 11(6), 733–740. 10.1097/MCO.0b013e32831394b8.
  • Perez-Vizcaino, F.; Duarte, J.; Andriantsitohaina, R. Endothelial Function and Cardiovascular Disease: Effects of Quercetin and Wine Polyphenols. Free Radic. Res. 2006, 40(10), 1054–1065.
  • Laslett, L. J.; Alagona, P.; Clark, B. A.; Drozda, J. P.; Saldivar, F.; Wilson, S. R.; Poe, C.; Hart, M. The Worldwide Environment of Cardiovascular Disease: Prevalence, Diagnosis, Therapy, and Policy Issues: A Report from the American College of Cardiology. J. Am. Coll. Cardiol. 2012, 60(25_S), S1–S49. 10.1016/j.jacc.2012.11.002.
  • Xu, S.-W.; Law, B. Y. K.; Mok, S. W. F.; Leung, E. L. H.; Fan, X. X.; Coghi, P. S.; Zeng, W.; Leung, C.-H.; Ma, D.-L.; Liu, L. Autophagic Degradation of Epidermal Growth Factor Receptor in Gefitinib-Resistant Lung Cancer by Celastrol. Int. J. Oncol. 2016, 49(4), 1576–1588.
  • Chan, C.-Y.; Lien, C.-H.; Lee, M.-F.; Huang, C.-Y. Quercetin Suppresses Cellular Migration and Invasion in Human Head and Neck Squamous Cell Carcinoma (HNSCC). Biomedicine. 2016, 6(3), 10–15. 10.7603/s40681-016-0015-3.
  • Pan, H.-C.; Jiang, Q.; Yu, Y.; Mei, J.-P.; Cui, Y.-K.; Zhao, W.-J. Quercetin Promotes Cell Apoptosis and Inhibits the Expression of MMP-9 and Fibronectin via the AKT and ERK Signalling Pathways in Human Glioma Cells. Neurochem. Int. 2015, 80, 60–71. 10.1016/j.neuint.2014.12.001.
  • Zhang, S.; Qin, C.; Safe, S. H. Flavonoids as Aryl Hydrocarbon Receptor Agonists/Antagonists: Effects of Structure and Cell Context. Environ. Health Perspect. 2003, 111(16), 1877.
  • Chen, W.; Wang, X.; Zhuang, J.; Zhang, L.; Lin, Y. Induction of Death Receptor 5 and Suppression of Survivin Contribute to Sensitization of TRAIL-induced Cytotoxicity by Quercetin in Non-Small Cell Lung Cancer Cells. Carcinogenesis. 2007, 28(10), 2114–2121. 10.1093/carcin/bgm133.
  • Xu, L.; Qu, X.; Zhang, Y.; Hu, X.; Yang, X.; Hou, K.; Teng, Y.; Zhang, J.; Sada, K.; Liu, Y. Oxaliplatin Enhances TRAIL‐induced Apoptosis in Gastric Cancer Cells by CBL‐regulated Death Receptor Redistribution in Lipid Rafts. FEBS Lett. 2009, 583(5), 943–948.
  • Tarahovsky, Y. S.; Kim, Y. A.; Yagolnik, E. A.; Muzafarov, E. N. Flavonoid–Membrane Interactions: Involvement of Flavonoid–Metal Complexes in Raft Signaling. Biochim. Biophys. Acta. 2014, 1838(5), 1235–1246. 10.1016/j.bbamem.2014.01.021.
  • Simons, K.; Toomre, D. Lipid Rafts and Signal Transduction. Nat. Rev. Mol. . Biol. 2000, 1(1), 31–39.
  • Lamson, D. W.; Brignall, M. S. Antioxidants and Cancer, Part 3: Quercetin. Altern. Med. Rev. 2000, 5(3), 196–208. PMID: 10869101.
  • Lee, K. W.; Bode, A. M.; Dong, Z. Molecular Targets of Phytochemicals for Cancer Prevention. Nat. Rev. Cancer. 2011, 11(3), 211–218. 10.1038/nrc3017.
  • Annapurna, A.; Reddy, C. S.; Akondi, R. B.; Rao, S. R. Cardioprotective Actions of Two Bioflavonoids, Quercetin and Rutin, in Experimental Myocardial Infarction in Both Normal and Streptozotocin‐Induced Type I Diabetic Rats. J. Pharm. Pharmacol. 2009, 61(10), 1365–1374. 10.1211/jpp/61.10.0014.
  • Sugamura, K.; Keaney, J. F. Reactive Oxygen Species in Cardiovascular Disease. Free Radic. Biol. Med. 2011, 51(5), 978–992.
  • Liu, H.; Zhang, L.; Lu, S. Evaluation of Antioxidant and Immunity Activities of Quercetin in Isoproterenol-Treated Rats. Molecules. 2012, 17(4), 4281–4291. 10.3390/molecules17044281.
  • Glässer, G.; Graefe, E.; Struck, F.; Veit, M.; Gebhardt, R. Comparison of Antioxidative Capacities and Inhibitory Effects on Cholesterol Biosynthesis of Quercetin and Potential Metabolites. Phytomedicine. 2002, 9(1), 33–40. 10.1078/0944-7113-00080.
  • Chuang, -C.-C.; Martinez, K.; Xie, G.; Kennedy, A.; Bumrungpert, A.; Overman, A.; Jia, W.; McIntosh, M. K. Quercetin Is Equally or More Effective than Resveratrol in Attenuating Tumor Necrosis Factor-Α–Mediated Inflammation and Insulin Resistance in Primary Human Adipocytes. Am. J. Clin. Nutr. 2010, 92(6), 1511–1521. Epub. 10.3945/ajcn.2010.29807.
  • Setorki, M.; Asgary, S.; Eidi, A.; Esmaeil, N. Effects of Apple Juice on Risk Factors of Lipid Profile, Inflammation and Coagulation, Endothelial Markers and Atherosclerotic Lesions in High Cholesterolemic Rabbits. Lipids Health Dis. 2009, 8(1), 1–9.
  • Lee, K.-H.; Park, E.; Lee, H.-J.; Kim, M.-O.; Cha, Y.-J.; Kim, J.-M.; Lee, H.; Shin, M.-J. Effects of Daily Quercetin-Rich Supplementation on Cardiometabolic Risks in Male Smokers. Nutr. Res. Pract. 2011, 5(1), 28–33. 10.4162/nrp.2011.5.1.28.
  • Oberley, L. W. Free Radicals and Diabetes. Free Radic. Biol. Med. 1988, 5(2), 113–124.
  • Delcourt, C.; Cristol, J.-P.; Tessier, F.; Léger, C. L.; Michel, F.; Papoz, L.; Group, P. S. Risk Factors for Cortical, Nuclear, and Posterior Subcapsular Cataracts: The POLA Study. Am. J. Epidemiol. 2000, 151(5), 497–504.
  • Ottonello, S.; Foroni, C.; Carta, A.; Petrucco, S.; Maraini, G. Oxidative Stress and Age-Related Cataract. Ophthalmologica. 2000, 214(1), 78–85.
  • Jung, H. A.; Yoon, N. Y.; Kang, S. S.; Kim, Y. S.; Choi, J. S. Inhibitory Activities of Prenylated Flavonoids from Sophora Flavescens against Aldose Reductase and Generation of Advanced Glycation Endproducts. J. Pharm. Pharmacol. 2008, 60(9), 1227–1236. 10.1211/jpp.60.9.0016.
  • Vrensen, G. F. Early Cortical Lens Opacities: A Short Overview. Acta Ophthalmol. 2009, 87(6), 602–610. 10.1111/j.1755-3768.2009.01674.x.
  • Stefek, M.; Karasu, C. Eye Lens in Aging and Diabetes: Effect of Quercetin. Rejuvenation Res. 2011, 14(5), 525–534.
  • Dayan, N.; Kromidas, L. Formulating, Packaging, and Marketing of Natural Cosmetic Products; John Wiley & Sons, USA: 2011.
  • Mulholland, P.; Ferry, D.; Anderson, D.; Hussain, S.; Young, A.; Cook, J.; Hodgkin, E.; Seymour, L.; Kerr, D. Pre-Clinical and Clinical Study of QC12, a Water-Soluble, Pro-Drug of Quercetin. Ann. Oncol. 2001, 12(2), 245–248.
  • Chen, C.; Zhou, J.; Ji, C. Quercetin: A Potential Drug to Reverse Multidrug Resistance. Life Sci. 2010, 87(11), 333–338. Epub. 10.1016/j.lfs.2010.07.004.
  • Sharma, S.; Ali, A.; Ali, J.; Sahni, J. K.; Baboota, S. Rutin: Therapeutic Potential and Recent Advances in Drug Delivery. Expert Opin. Investig. Drugs. 2013, 22(8), 1063–1079.
  • Erlund, I.; Kosonen, T.; Alfthan, G.; Mäenpää, J.; Perttunen, K.; Kenraali, J.; Parantainen, J.; Aro, A. Pharmacokinetics of Quercetin from Quercetin Aglycone and Rutin in Healthy Volunteers. Eur. J. Clin. Pharmacol. 2000, 56(8), 545–553.
  • Sattanathan, K.; Dhanapal, C.; Manavalan, R. LDL Lowering Properties of Rutin in Diabetic Patients. Int. J. Pharma Bio Sci. 2010, 1(4), P–473.
  • Kamalakkannan, N.; Prince, P. S. M. Antihyperglycaemic and Antioxidant Effect of Rutin, a Polyphenolic Flavonoid, in Streptozotocin‐Induced Diabetic Wistar Rats. Basic Clin. Pharmacol. Toxicol. 2006, 98(1), 97–103.
  • Fernandes, A. A. H.; Novelli, E. L. B.; Okoshi, K.; Okoshi, M. P.; Di Muzio, B. P.; Guimarães, J. F. C.; Junior, A. F. Influence of Rutin Treatment on Biochemical Alterations in Experimental Diabetes. Biomed. Pharmacol. 2010, 64(3), 214–219. Epub. 10.1016/j.biopha.2009.08.007.
  • Boyle, S.; Dobson, V.; Duthie, S.; Hinselwood, D.; Kyle, J.; Collins, A. Bioavailability and Efficiency of Rutin as an Antioxidant: A Human Supplementation Study. Eur. J. Clin. Nutr. 2000, 54(10), 774–782. PMID: 11083486.
  • La Casa, C.; Villegas, I.; De La Lastra, C. A.; Motilva, V.; Calero, M. M. Evidence for Protective and Antioxidant Properties of Rutin, a Natural Flavone, against Ethanol Induced Gastric Lesions. J. Ethnopharmacol. 2000, 71(1), 45–53. PMID: 10904145.
  • Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and Bioefficacy of Polyphenols in Humans. I. Review of 97 Bioavailability Studies. Am. J. Clin. Nutr. 2005, 81(1), 230S–242S.
  • Yu, C.-P.; Wu, -P.-P.; Hou, Y.-C.; Lin, S.-P.; Tsai, S.-Y.; Chen, C.-T.; Chao, P.-D. L. Quercetin and Rutin Reduced the Bioavailability of Cyclosporine from Neoral, an Immunosuppressant, through Activating P-Glycoprotein and CYP 3A4. J. Agric. Food Chem. 2011, 59(9), 4644–4648.
  • Cai, X.; Fang, Z.; Dou, J.; Yu, A.; Zhai, G. Bioavailability of Quercetin: Problems and Promises. Curr. Med. Chem. 2013, 20(20), 2572–2582. PMID: 23514412.
  • Dian, L.; Yu, E.; Chen, X.; Wen, X.; Zhang, Z.; Qin, L.; Wang, Q.; Li, G.; Wu, C. Enhancing Oral Bioavailability of Quercetin Using Novel Soluplus Polymeric Micelles. Nanoscale Res. Lett. 2014, 9(1), 684. 10.1186/1556-276x-9-684.
  • Kessler, M.; Ubeaud, G.; Jung, L. Anti‐And Pro‐Oxidant Activity of Rutin and Quercetin Derivatives. J. Pharm. Pharmacol. 2003, 55(1), 131–142. 10.1211/002235702559.
  • Kappel, V. D.; Zanatta, L.; Postal, B. G.; Silva, F. R. M. B. Rutin Potentiates Calcium Uptake via Voltage-Dependent Calcium Channel Associated with Stimulation of Glucose Uptake in Skeletal Muscle. Arch. Biochem. Biophys. 2013, 532(2), 55–60.
  • Krishna, K. M.; Annapurna, A.; Gopal, G. S.; Chalam, C. R.; Madan, K.; Kumar, V. K.; Prakash, G. J. Partial Reversal by Rutin and Quercetin of Impaired Cardiac Function in Streptozotocin-Induced Diabetic Rats. Can. J. Physiol. Pharmacol. 2005, 83(4), 343–355. 10.1139/y05-009.
  • Je, H. D.; Shin, C. Y.; Park, S. Y.; Yim, S. H.; Kum, C.; Huh, I. H.; Kim, J. H.; Sohn, U. D. Combination of Vitamin C and Rutin on Neuropathy and Lung Damage of Diabetes Mellitus Rats. Arch. Pharm. Res. 2002, 25(2), 184–190.
  • Cai, E. P.; Lin, J.-K. Epigallocatechin Gallate (EGCG) and Rutin Suppress the Glucotoxicity through Activating IRS2 and AMPK Signaling in Rat Pancreatic Β Cells. J. Agric. Food Chem. 2009, 57(20), 9817–9827. 10.1021/jf902618v.
  • Korkmaz, A.; Kolankaya, D. Protective Effect of Rutin on the Ischemia/Reperfusion Induced Damage in Rat Kidney. J. Surg. Res. 2010, 164(2), 309–315. 10.1016/j.jss.2009.03.022.
  • Kappel, V. D.; Cazarolli, L. H.; Pereira, D. F.; Postal, B. G.; Zamoner, A.; Reginatto, F. H.; Silva, F. R. M. B. Involvement of GLUT‐4 in the Stimulatory Effect of Rutin on Glucose Uptake in Rat Soleus Muscle. J. Pharm. Pharmacol. 2013, 65(8), 1179–1186. 10.1111/jphp.12066.
  • Clouth, A.; Schöfer, H. Treatment of Recalcitrant Facial Verrucae Vulgares with Sinecatechins (Greentea Catechins) Ointment. J. Eur. Acad. Dermatol. Venereol. 2015, 29(1), 178–179. Epub. 10.1111/jdv.12341.
  • Higdon, J. V.; Frei, B. Tea Catechins and Polyphenols: Health Effects, Metabolism, and Antioxidant Functions. Crit. Rev. Food Sci. Nutr. 2003, 89–143. 10.1080/10408690390826464.
  • Türközü, D.; Acar Tek, N. A Minireview of Effects of Green Tea on Energy Expenditure. Crit. Rev. Food Sci. Nutr. 2015, (just-accepted), 00–00. 10.1080/10408398.2014.986672.
  • Kondo, S.; Tsuda, K.; Muto, N.; Ueda, J.-E. Antioxidative Activity of Apple Skin or Flesh Extracts Associated with Fruit Development on Selected Apple Cultivars. Sci. Hortic. 2002, 96(1–4), 177–185. 10.1016/S0304-4238(02)00127-9.
  • Gadkari, P. V.; Balaraman, M. Catechins: Sources, Extraction and Encapsulation: A Review. Food Bioprod. Proc. 2015, 93, 122–138. 10.1016/j.fbp.2013.12.004.
  • Arts, I. C.; Hollman, P. C.; Feskens, E. J.; De Mesquita, H. B. B.; Kromhout, D. Catechin Intake Might Explain the Inverse Relation between Tea Consumption and Ischemic Heart Disease: The Zutphen Elderly Study. Am. J. Clin. Nutr. 2001, 74(2), 227–232. PMID: 11470725.
  • Friedman, M. Overview of Antibacterial, Antitoxin, Antiviral, and Antifungal Activities of Tea Flavonoids and Teas. Mol. Nutr. Food Res. 2007, 51(1), 116–134. 10.1002/mnfr.200600173.
  • Park, K. D.; Park, Y. S.; Cho, S. J.; Sun, W. S.; Kim, S. H.; Jung, D. H.; Kim, J. H. Antimicrobial Activity of 3-O-Acyl-(-)-Epicatechin and 3-O-Acyl-(+)-Catechin Derivatives. Planta Med. 2004, 70(03), 272–276.
  • Zhao, L.; La, V. D.; Grenier, D. Antibacterial, Antiadherence, Antiprotease, and Anti-Inflammatory Activities of Various Tea Extracts: Potential Benefits for Periodontal Diseases. J. Med. Food. 2013, 16(5), 428–436. 10.1089/jmf.2012.0207.
  • Kivits, G.; Weststrate, J.; Tijburg, L. Bioavailability of Catechins from Tea: The Effect of Milk. Eur. J. Clin. Nutr. 1998, 52(5), 356–359.
  • Zhu, M.; Chen, Y.; Li, R. C. Oral Absorption and Bioavailability of Tea Catechins. Planta Med. 2000, 66(05), 444–447.
  • Chung, J. Y.; Huang, C.; Meng, X.; Dong, Z.; Yang, C. S. Inhibition of Activator Protein 1 Activity and Cell Growth by Purified Green Tea and Black Tea Polyphenols in H-Ras-Transformed Cells: Structure- Activity Relationship and Mechanisms Involved. Cancer Res. 1999, 59(18), 4610–4617.
  • Yang, C. S.; Wang, H.; Chen, J. X.; Zhang, J. Effects of Tea Catechins on Cancer Signaling Pathways. Enzymes. 2014, 36, 195–221.
  • Navarro-Perán, E.; Cabezas-Herrera, J.; García-Cánovas, F.; Durrant, M. C.; Thorneley, R. N.; Rodríguez-López, J. N. The Antifolate Activity of Tea Catechins. Cancer Res. 2005, 65(6), 2059–2064.
  • Shin, E. S.; Park, J.; Shin, J.-M.; Cho, D.; Cho, S. Y.; Shin, D. W.; Ham, M.; Kim, J. B.; Lee, T. R. Catechin Gallates are NADP+-competitive Inhibitors of Glucose-6-Phosphate Dehydrogenase and Other Enzymes that Employ NADP+ as a Coenzyme. Bioorg. Med. Chem. 2008, 16(7), 3580–3586. 10.1016/j.bmc.2008.02.030.
  • Ishii, T.; Mori, T.; Tanaka, T.; Mizuno, D.; Yamaji, R.; Kumazawa, S.; Nakayama, T.; Akagawa, M. Covalent Modification of Proteins by Green Tea Polyphenol (–)-Epigallocatechin-3-Gallate through Autoxidation. Free Radic. Biol. Med. 2008, 45(10), 1384–1394. 10.1016/j.freeradbiomed.2008.07.023.
  • Huang, W.; Ding, L.; Huang, Q.; Hu, H.; Liu, S.; Yang, X.; Hu, X.; Dang, Y.; Shen, S.; Li, J. Carbonyl Reductase 1 as a Novel Target of (−)‐Epigallocatechin Gallate against Hepatocellular Carcinoma. Hepatology. 2010, 52(2), 703–714. 10.1002/hep.23723.
  • Adachi, S.; Nagao, T.; Ingolfsson, H. I.; Maxfield, F. R.; Andersen, O. S.; Kopelovich, L.; Weinstein, I. B. The Inhibitory Effect of (−)-Epigallocatechin Gallate on Activation of the Epidermal Growth Factor Receptor Is Associated with Altered Lipid Order in HT29 Colon Cancer Cells. Cancer Res. 2007, 67(13), 6493–6501. 10.1158/0008-5472.CAN-07-0411.
  • Duhon, D.; Bigelow, R. L. H.; Coleman, D. T.; Steffan, J. J.; Yu, C.; Langston, W.; Kevil, C. G.; Cardelli, J. A. The Polyphenol Epigallocatechin-3-Gallate Affects Lipid Rafts to Block Activation of the c-Met Receptor in Prostate Cancer Cells. Mol. Carcinog. 2010, 49(8), 739–749. 10.1002/mc.20649.
  • Fujimura, Y.; Yamada, K.; Tachibana, H. A Lipid Raft-Associated 67 kDa Laminin Receptor Mediates Suppressive Effect of epigallocatechin-3-O-gallate on FcεRI Expression. Biochem. Biophys. Res. Commun. 2005, 336(2), 674–681. 10.1016/j.bbrc.2005.08.146.
  • Chen, Y.-K.; Cheung, C.; Reuhl, K. R.; Liu, A. B.; Lee, M.-J.; Lu, Y.-P.; Yang, C. S. Effects of Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate on Newly Developed high-fat/Western-style Diet-Induced Obesity and Metabolic Syndrome in Mice. J. Agric. Food Chem. 2011, 59(21), 11862–11871. 10.1021/jf2029016.
  • Korkmaz, A.; Reiter, R. J.; Topal, T.; Manchester, L. C.; Oter, S.; Tan, D.-X. Melatonin: An Established Antioxidant Worthy of Use in Clinical Trials. Mol. Med. 2009, 15(1–2), 43–50. 10.2119/molmed.2008.00117.
  • Tsatsanis, C.; Androulidaki, A.; Venihaki, M.; Margioris, A. N. Signalling Networks Regulating Cyclooxygenase-2. Int. J. Biochem. Cell Biol. 2006, 38(10), 1654–1661. 10.1016/j.biocel.2006.03.021.
  • Hu, K.-Q. Cyclooxygenase 2 (Cox2)-Prostanoid Pathway and Liver Diseases. Prostaglandins Leukot. Essent. Fatty Acids. 2003, 69(5), 329–337.
  • Leung, T.-M.; Fung, M.-L.; Liong, E. C.; Lau, T. Y.; Nanji, A. A.; Tipoe, G. L. Role of Nitric Oxide in the Regulation of Fibrogenic Factors in Experimental Liver Fibrosis in Mice. Histol. Histopathol. 2011, 26(2), 201–211. 10.14670/HH-26.201.
  • Tipoe, G. L.; Leung, T. M.; Liong, E. C.; Lau, T. Y. H.; Fung, M. L.; Nanji, A. A. Epigallocatechin-3-Gallate (EGCG) Reduces Liver Inflammation, Oxidative Stress and Fibrosis in Carbon Tetrachloride (Ccl 4)-Induced Liver Injury in Mice. Toxicology. 2010, 273(1), 45–52. 10.1016/j.tox.2010.04.014.
  • Shankar, E.; Kanwal, R.; Candamo, M.; Gupta, S. Dietary Phytochemicals as Epigenetic Modifiers in Cancer: Promise and Challenges. Semin. Cancer Biol. 2016, 40–41, 82–99. 10.1016/j.semcancer.2016.04.002.
  • Russo, G. L.; Vastolo, V.; Ciccarelli, M.; Albano, L.; Macchia, P. E.; Ungaro, P. Dietary Polyphenols and Chromatin Remodelling. Crit. Rev. Food Sci. Nutr. 2017, 57(12), 2589–2599.
  • Fang, M. Z.; Wang, Y.; Ai, N.; Hou, Z.; Sun, Y.; Lu, H.; Welsh, W.; Yang, C. S. Tea Polyphenol (−)-Epigallocatechin-3-Gallate Inhibits DNA Methyltransferase and Reactivates Methylation-Silenced Genes in Cancer Cell Lines. Cancer Res. 2003, 63(22), 7563–7570.
  • Lee, W. J.; Shim, J.-Y.; Zhu, B. T. Mechanisms for the Inhibition of DNA Methyltransferases by Tea Catechins and Bioflavonoids. Mol. Pharmacol. 2005, 68(4), 1018–1030. 10.1124/mol.104.008367.
  • Xu, Y.; Ho, C.-T.; Amin, S. G.; Han, C.; Chung, F.-L. Inhibition of Tobacco-Specific Nitrosamine-Induced Lung Tumorigenesis in A/J Mice by Green Tea and Its Major Polyphenol as Antioxidants. Cancer Res. 1992, 52(14), 3875–3879. PMID: 1617663.
  • Srividhya, R.; Jyothilakshmi, V.; Arulmathi, K.; Senthilkumaran, V.; Kalaiselvi, P. Attenuation of Senescence-Induced Oxidative Exacerbations in Aged Rat Brain by (−)-Epigallocatechin-3-Gallate. Int. J. Dev. Neurosci. 2008, 26(2), 217–223.
  • Almajano, M. P.; Delgado, M. E.; Gordon, M. H. Albumin Causes a Synergistic Increase in the Antioxidant Activity of Green Tea Catechins in Oil-In-Water Emulsions. Food Chem. 2007, 102(4), 1375–1382. 10.1016/j.foodchem.2006.06.067.
  • Trnková, L.; Boušová, I.; Staňková, V.; Dršata, J. Study on the Interaction of Catechins with Human Serum Albumin Using Spectroscopic and Electrophoretic Techniques. J. Mol. Struct. 2011, 985(2), 243–250. 10.1016/j.molstruc.2010.11.001.
  • Ishii, T.; Ichikawa, T.; Minoda, K.; Kusaka, K.; Ito, S.; Suzuki, Y.; Akagawa, M.; Mochizuki, K.; Goda, T.; Nakayama, T. Human Serum Albumin as an Antioxidant in the Oxidation of (−)-Epigallocatechin Gallate: Participation of Reversible Covalent Binding for Interaction and Stabilization. Biosci. Biotechnol. Biochem. 2011, 75(1), 100–106. 10.1271/bbb.100600.
  • Watanabe, J.; Kawabata, J.; Niki, R. Isolation and Identification of acetyl-CoA Carboxylase Inhibitors from Green Tea (Camellia Sinensis). Biosci. Biotechnol. Biochem. 1998, 62(3), 532–534.
  • Lin, J. K.; Lin‐Shiau, S. Y. Mechanisms of Hypolipidemic and Anti‐Obesity Effects of Tea and Tea Polyphenols. Mol. Nutr. Food Res. 2006, 50(2), 211–217. 10.1002/mnfr.200500138.
  • Wolfram, S.; Wang, Y.; Thielecke, F. Anti‐Obesity Effects of Green Tea: From Bedside to Bench. Mol. Nutr. Food Res. 2006, 50(2), 176–187.
  • Xu, Y.; Zhang, M.; Wu, T.; Dai, S.; Xu, J.; Zhou, Z. The Anti-Obesity Effect of Green Tea Polysaccharides, Polyphenols and Caffeine in Rats Fed with a High-Fat Diet. Food Funct. 2015, 6(1), 296–303. 10.1039/c4fo00970c.
  • Fujiki, H.; Sueoka, E.; Watanabe, T.; Suganuma, M. Synergistic Enhancement of Anticancer Effects on Numerous Human Cancer Cell Lines Treated with the Combination of EGCG, Other Green Tea Catechins, and Anticancer Compounds. J. Cancer Res. Clin. Oncol. 2015, 141(9), 1511–1522. Epub. 10.1007/s00432-014-1899-5.
  • Downey, M. O.; Dokoozlian, N. K.; Krstic, M. P. Cultural Practice and Environmental Impacts on the Flavonoid Composition of Grapes and Wine: A Review of Recent Research. Am. J. Enol. Vitic. 2006, 57(3), 257–268.
  • Huang, W. W.; Chiu, Y. J.; Fan, M. J.; Lu, H. F.; Yeh, H. F.; Li, K. H.; Chen, P. Y.; Chung, J. G.; Yang, J. S. Kaempferol Induced Apoptosis via Endoplasmic Reticulum Stress and Mitochondria‐Dependent Pathway in Human Osteosarcoma U‐2 OS Cells. Mol. Nutr. Food Res. 2010, 54(11), 1585–1595. 10.1002/mnfr.201000005.
  • Sharma, V.; Joseph, C.; Ghosh, S.; Agarwal, A.; Mishra, M. K.; Sen, E. Kaempferol Induces Apoptosis in Glioblastoma Cells through Oxidative Stress. Mol. Cancer Ther. 2007, 6(9), 2544–2553.
  • Barve, A.; Chen, C.; Hebbar, V.; Desiderio, J.; Saw, C. L. L.; Kong, A. N. Metabolism, Oral Bioavailability and Pharmacokinetics of Chemopreventive Kaempferol in Rats. Biopharm. Drug Dispos. 2009, 30(7), 356–365. 10.1002/bdd.677.
  • DuPont, M.; Day, A.; Bennett, R.; Mellon, F.; Kroon, P. Absorption of Kaempferol from Endive, a Source of Kaempferol-3-Glucuronide, in Humans. Eur. J. Clin. Nutr. 2004, 58(6), 947–954. 10.1038/sj.ejcn.1601916.
  • Taraphdar, A. K.; Roy, M.; Bhattacharya, R. Natural Products as Inducers of Apoptosis: Implication for Cancer Therapy and Prevention. Curr. Sci. 2001, 80(11), 1387–1396.
  • Zhang, Y.; Chen, A. Y.; Li, M.; Chen, C.; Yao, Q. Ginkgo Biloba Extract Kaempferol Inhibits Cell Proliferation and Induces Apoptosis in Pancreatic Cancer Cells. J. Surg. Res. 2008, 148(1), 17–23.
  • Song, W.; Dang, Q.; Xu, D.; Chen, Y.; Zhu, G.; Wu, K.; Zeng, J.; Long, Q.; Wang, X.; He, D. Kaempferol Induces Cell Cycle Arrest and Apoptosis in Renal Cell Carcinoma through EGFR/p38 Signaling. Oncol. Rep. 2014, 31(3), 1350–1356.
  • Lee, J.; Kim, J. H. Kaempferol Inhibits Pancreatic Cancer Cell Growth and Migration through the Blockade of EGFR-Related Pathway in Vitro. PLoS ONE. 2016, 11(5), e0155264.
  • Xu, K.; Shu, H.-K. G. EGFR Activation Results in Enhanced Cyclooxygenase-2 Expression through P38 Mitogen-Activated Protein Kinase–Dependent Activation of the SP1/SP3 Transcription Factors in Human Gliomas. Cancer Res. 2007, 67(13), 6121–6129.
  • Cheng, J.-C.; Klausen, C.; Leung, P. C. Hydrogen Peroxide Mediates EGF-induced Down-Regulation of E-Cadherin Expression via P38 MAPK and Snail in Human Ovarian Cancer Cells. Mol. Endocrinol. 2010, 24(8), 1569–1580. Epub. 10.1210/me.2010-0034.
  • Tang, X.-L.; Liu, J.-X.; Dong, W.; Li, P.; Li, L.; Hou, J.-C.; Zheng, Y.-Q.; Lin, C.-R.; Ren, J.-G. Protective Effect of Kaempferol on LPS Plus ATP-induced Inflammatory Response in Cardiac Fibroblasts. Inflammation. 2015, 38(1), 94–101. 10.1007/s10753-014-0011-2.
  • Zang, Y.; Zhang, L.; Igarashi, K.; Yu, C. The Anti-Obesity and Anti-Diabetic Effects of Kaempferol Glycosides from Unripe Soybean Leaves in High-Fat-Diet Mice. Food Funct. 2015, 6(3), 834–841. 10.1039/c4fo00844h.
  • Montero, M.; De La Fuente, S.; Fonteriz, R. I.; Moreno, A.; Alvarez, J. Effects of Long-Term Feeding of the Polyphenols Resveratrol and Kaempferol in Obese Mice. PLoS ONE. 2014, 9(11), e112825.
  • García-Mediavilla, V.; Crespo, I.; Collado, P. S.; Esteller, A.; Sánchez-Campos, S.; Tuñón, M. J.; González-Gallego, J. The Anti-Inflammatory Flavones Quercetin and Kaempferol Cause Inhibition of Inducible Nitric Oxide Synthase, Cyclooxygenase-2 and Reactive C-Protein, and Down-Regulation of the Nuclear Factor kappaB Pathway in Chang Liver Cells. Eur. J. Pharmacol. 2007, 557(2), 221–229. 10.1016/j.ejphar.2006.11.014.
  • Hossain, P.; Kawar, B.; El Nahas, M. Obesity and Diabetes in the Developing World—A Growing Challenge. N. Engl. J. Med. 2007, 356(3), 213–215. 10.1056/NEJMp068177.
  • Song, Y.; Lee, S.-J.; Jang, S.-H.; Ha, J. H.; Song, Y. M.; Ko, Y.-G.; Kim, H.-D.; Min, W.; Kang, S. N.; Cho, J.-H. Sasa Borealis Stem Extract Attenuates Hepatic Steatosis in High-Fat Diet-Induced Obese Rats. Nutrients. 2014, 6(6), 2179–2195.
  • Berger, A., Venturelli, S., Kallnischkies, M., Böcker, A., Busch, C., Weiland, T., Noor, S., Leischner, C., Weiss, T.S., Lauer, U.M., Bischoff, S.C., Bitzer, M. Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J NutrBiochem. 2013, 24(6), 977–985.
  • Marfe, G.; Tafani, M.; Indelicato, M.; Sinibaldi‐Salimei, P.; Reali, V.; Pucci, B.; Fini, M.; Russo, M. A. Kaempferol Induces Apoptosis in Two Different Cell Lines via Akt Inactivation, Bax and SIRT3 Activation, and Mitochondrial Dysfunction. J. Cell. Biochem. 2009, 106(4), 643–650.
  • Nguyen, T.; Tran, E.; Ong, C.; Lee, S.; Do, P.; Huynh, T.; Nguyen, T.; Lee, J.; Tan, Y.; Ong, C. Kaempferol‐Induced Growth Inhibition and Apoptosis in A549 Lung Cancer Cells Is Mediated by Activation of MEK‐MAPK. J. Cell. Physiol. 2003, 197(1), 110–121. 10.1002/jcp.10340.
  • Tu, L.-Y.; Pi, J.; Jin, H.; Cai, J.-Y.; Deng, S.-P. Synthesis, Characterization and Anticancer Activity of Kaempferol-Zinc (II) Complex. Bioorg. Med. Chem. Lett. 2016, 26(11), 2730–2734. 10.1016/j.bmcl.2016.03.091.
  • Escandón, R. A.; Del Campo, M.; López-Solis, R.; Obreque-Slier, E.; Toledo, H. Antibacterial Effect of Kaempferol and (−)-Epicatechin on Helicobacter Pylori. Eur. Food Res. Technol. 2016, 1–8. 10.1007/s00217-016-2650-z.
  • Del Valle, P.; García-Armesto, M. R.; De Arriaga, D.; González-Donquiles, C.; Rodríquez-Fernández, P.; Rúa, J. Antimicrobial Activity of Kaempferol and Resveratrol in Binary Combinations with Parabens or Propyl Gallate against Enterococcus Faecalis. Food Control. 2016, 61, 213–220. 10.1016/j.foodcont.2015.10.001.
  • Kai, H.; Obuchi, M.; Yoshida, H.; Watanabe, W.; Tsutsumi, S.; Park, Y. K.; Matsuno, K.; Yasukawa, K.; Kurokawa, M. In Vitro and in Vivo Anti-Influenza Virus Activities of Flavonoids and Related Compounds as Components of Brazilian Propolis (AF-08). J. Funct. Foods. 2014, 8, 214–223.
  • Hassan, S. T.; Masarčíková, R.; Berchová, K. Bioactive Natural Products with Anti‐Herpes Simplex Virus Properties. J. Pharm. Pharmacol. 2015, 67(10), 1325–1336. Epub. 10.1111/jphp.12436.
  • Wagner, H.; Bauer, R.; Melchart, D.; Staudinger, A. Herba Violae–Zihuadiding, in Chromatographic Fingerprint Analysis of Herbal Medicines Volume IV; Springer, Switzerland: 2016; 115–123.
  • Behbahani, M.; Sayedipour, S.; Pourazar, A.; Shanehsazzadeh, M. In Vitro anti-HIV-1 Activities of Kaempferol and Kaempferol-7-O-glucoside Isolated from Securigera Securidaca. Res. Pharm. Sci. 2014, 9(6), 463–469. PMCID: PMC4326984.
  • Park, U.-H.; Jeong, J.-C.; Jang, J.-S.; Sung, M.-R.; Youn, H.; Lee, S.-J.; Kim, E.-J.; Um, S.-J. Negative Regulation of Adipogenesis by Kaempferol, a Component of Rhizoma Polygonati Falcatum in 3T3-L1 Cells. Biol. Pharm. Bull. 2012, 35(9), 1525–1533.
  • Mahat, M. Y. A.; Kulkarni, N. M.; Vishwakarma, S. L.; Khan, F. R.; Thippeswamy, B.; Hebballi, V.; Adhyapak, A. A.; Benade, V. S.; Ashfaque, S. M.; Tubachi, S. Modulation of the Cyclooxygenase Pathway via Inhibition of Nitric Oxide Production Contributes to the Anti-Inflammatory Activity of Kaempferol. Eur. J. Pharmacol. 2010, 642(1), 169–176.
  • Kim, T. H.; Ku, S.-K.; Lee, I.-C.; Bae, J.-S. Anti-Inflammatory Effects of kaempferol-3-O-sophoroside in Human Endothelial Cells. Inflamm. Res. 2012, 61(3), 217–224. 10.1007/s00011-011-0403-9.
  • Labbé, D.; Provençal, M.; Lamy, S.; Boivin, D.; Gingras, D.; Béliveau, R. The Flavonols Quercetin, Kaempferol, and Myricetin Inhibit Hepatocyte Growth Factor-Induced Medulloblastoma Cell Migration. J. Nutr. 2009, 139(4), 646–652. 10.3945/jn.108.102616.
  • Bhat, K. P.; Kosmeder, J. W.; Pezzuto, J. M. Biological Effects of Resveratrol. Antioxid. Redox Signal. 2001, 3(6), 1041–1064. 10.1089/152308601317203567.
  • Burns, J.; Yokota, T.; Ashihara, H.; Lean, M. E.; Crozier, A. Plant Foods and Herbal Sources of Resveratrol. J. Agric. Food Chem. 2002, 50(11), 3337–3340. PMID: 12010007.
  • Harikumar, K. B.; Aggarwal, B. B. Resveratrol: A Multitargeted Agent for Age-Associated Chronic Diseases. Cell Cycle. 2008, 7(8), 1020–1035. 10.4161/cc.7.8.5740.
  • Baur, J. A.; Sinclair, D. A. Therapeutic Potential of Resveratrol: The in Vivo Evidence. Nat. Rev. Drug Discov. 2006, 5(6), 493–506. 10.1038/nrd2060.
  • Aguirre, L.; Fernández-Quintela, A.; Arias, N.; Portillo, M. P. Resveratrol: Anti-Obesity Mechanisms of Action. Molecules. 2014, 19(11), 18632–18655. 10.3390/molecules191118632.
  • Olas, B.; Wachowicz, B.; Saluk-Juszczak, J.; Zieliński, T.; Kaca, W.; Buczyński, A. Antioxidant Activity of Resveratrol in Endotoxin-Stimulated Blood Platelets. Cell Biol. Toxicol. 2001, 17(2), 117–125.
  • Dolinsky, V. W.; Jones, K. E.; Sidhu, R. S.; Haykowsky, M.; Czubryt, M. P.; Gordon, T.; Dyck, J. R. Improvements in Skeletal Muscle Strength and Cardiac Function Induced by Resveratrol during Exercise Training Contribute to Enhanced Exercise Performance in Rats. J. Physiol. 2012, 590(11), 2783–2799. Epub. 10.1113/jphysiol.2012.230490.
  • Elmali, N.; Baysal, O.; Harma, A.; Esenkaya, I.; Mizrak, B. Effects of Resveratrol in Inflammatory Arthritis. Inflammation. 2007, 30(1–2), 1–6. 10.1007/s10753-006-9012-0.
  • Palsamy, P.; Subramanian, S. Modulatory Effects of Resveratrol on Attenuating the Key Enzymes Activities of Carbohydrate Metabolism in Streptozotocin–Nicotinamide-Induced Diabetic Rats. Chem. Biol. Interact. 2009, 179(2), 356–362.
  • Sun, A. Y.; Wang, Q.; Simonyi, A.; Sun, G. Y. Resveratrol as a Therapeutic Agent for Neurodegenerative Diseases. Mol. Neurobiol. 2010, 41(2–3), 375–383.
  • Shin, J. A.; Lee, H.; Lim, Y.-K.; Koh, Y.; Choi, J. H.; Park, E.-M. Therapeutic Effects of Resveratrol during Acute Periods following Experimental Ischemic Stroke. J. Neuroimmunol. 2010, 227(1), 93–100.
  • Bradamante, S.; Barenghi, L.; Villa, A. Cardiovascular Protective Effects of Resveratrol. Cardiovasc. Drug Rev. 2004, 22(3), 169–188. PMID: 15492766.
  • Sun, W.; Wang, W.; Kim, J.; Keng, P.; Yang, S.; Zhang, H.; Liu, C.; Okunieff, P.; Zhang, L. Anti-Cancer Effect of Resveratrol Is Associated with Induction of Apoptosis via a Mitochondrial Pathway Alignment,AdvExp Med Biol. 2008, 614, 179–186.
  • Sakagami, H.; Sheng, H.; Okudaira, N.; Yasui, T.; Wakabayashi, H.; Jia, J.; Natori, T.; Suguro-Kitajima, M.; Oizumi, H.; Oizumi, T. Prominent Anti-UV Activity and Possible Cosmetic Potential of Lignin-Carbohydrate Complex. In Vivo. 2016, 30(4), 331–339.
  • Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005, 45(4), 287–306.
  • Trela, B. C.; Waterhouse, A. L. Resveratrol: Isomeric Molar Absorptivities and Stability. J. Agric. Food Chem. 1996, 44(5), 1253–1257. 10.1021/jf9504576.
  • Delmas, D.; Aires, V.; Limagne, E.; Dutartre, P.; Mazué, F.; Ghiringhelli, F.; Latruffe, N. Transport, Stability, and Biological Activity of Resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215(1), 48–59. 10.1111/j.1749-6632.2010.05871.x.
  • Walle, T.; Hsieh, F.; DeLegge, M. H.; Oatis, J. E.; Walle, U. K. High Absorption but Very Low Bioavailability of Oral Resveratrol in Humans. Drug Metab. Dispos. 2004, 32(12), 1377–1382. 10.1124/dmd.104.000885.
  • Walle, T. Bioavailability of Resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215(1), 9–15.
  • Vanamala, J.; Reddivari, L.; Radhakrishnan, S.; Tarver, C. Resveratrol Suppresses IGF-1 Induced Human Colon Cancer Cell Proliferation and Elevates Apoptosis via Suppression of IGF-1R/Wnt and Activation of P53 Signaling Pathways. BMC Cancer. 2010, 10(1), 238. 10.1186/1471-2407-10-238.
  • Wang, -X.-X.; Li, Y.-B.; Yao, H.-J.; Ju, R.-J.; Zhang, Y.; Li, R.-J.; Yu, Y.; Zhang, L.; Lu, W.-L. The Use of Mitochondrial Targeting Resveratrol Liposomes Modified with a Dequalinium Polyethylene Glycol-Distearoylphosphatidyl Ethanolamine Conjugate to Induce Apoptosis in Resistant Lung Cancer Cells. Biomaterials. 2011, 32(24), 5673–5687.
  • Filippi-Chiela, E. C.; Villodre, E. S.; Zamin, L. L.; Lenz, G. Autophagy Interplay with Apoptosis and Cell Cycle Regulation in the Growth Inhibiting Effect of Resveratrol in Glioma Cells. PLoS ONE. 2011, 6(6), e20849. 10.1371/journal.pone.0020849.
  • Athar, M.; Back, J. H.; Tang, X.; Kim, K. H.; Kopelovich, L.; Bickers, D. R.; Kim, A. L. Resveratrol: A Review of Preclinical Studies for Human Cancer Prevention. Toxicol. Appl. Pharmacol. 2007, 224(3), 274–283. 10.1016/j.taap.2006.12.025.
  • Jiang, H.; Shang, X.; Wu, H.; Gautam, S. C.; Al-Holou, S.; Li, C.; Kuo, J.; Zhang, L.; Chopp, M. Resveratrol Downregulates PI3K/Akt/mTOR Signaling Pathways in Human U251 Glioma Cells. J. Exp. Ther. Oncol. 2009, 8(1), 25–33.
  • Kim, S.; Jin, Y.; Choi, Y.; Park, T. Resveratrol Exerts Anti-Obesity Effects via Mechanisms Involving Down-Regulation of Adipogenic and Inflammatory Processes in Mice. Biochem. Pharmacol. 2011, 81(11), 1343–1351.
  • Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R. H.; Van De Weijer, T.; Goossens, G. H.; Hoeks, J.; Van Der Krieken, S.; Ryu, D.; Kersten, S. Calorie Restriction-Like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans. Cell Metab. 2011, 14(5), 612–622. 10.1016/j.cmet.2011.10.002.
  • Smoliga, J. M.; Vang, O.; Baur, J. A. Challenges of Translating Basic Research into Therapeutics: Resveratrol as an Example. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67(2), 158–167.
  • Ma, Z.-H.; Ma, Q.-Y.; Wang, L.-C.; Sha, H.-C.; Wu, S.-L.; Zhang, M. Effect of Resveratrol on Nf-Κb Activity in Rat Peritoneal Macrophages. Am. J. Chin. Med. (Gard City N Y). 2006, 34(04), 623–630. 10.1142/S0192415X06004156.
  • Sharma, S.; Chopra, K.; Kulkarni, S.; Agrewala, J. Resveratrol and Curcumin Suppress Immune Response through CD28/CTLA‐4 and CD80 Co‐Stimulatory Pathway. Clin. Exp. Immunol. 2007, 147(1), 155–163. 10.1111/j.1365-2249.2006.03257.x.
  • Renaud, J.; Martinoli, M. G. Prevention of Neuroinflammation by Resveratrol, in Neuroprotective Effects of Phytochemicals in Neurological Disorders, John Wiley & Sons, Inc, USA; 2017; 377–394.
  • Bonnefont-Rousselot, D. Resveratrol and Cardiovascular Diseases. Nutrients. 2016, 8(5), 1–24. 10.3390/nu8050250.
  • López-Nicolás, J. M.; García-Carmona, F. Aggregation State and P K a Values of (E)-Resveratrol as Determined by Fluorescence Spectroscopy and UV− Visible Absorption. J. Agric. Food Chem. 2008, 56(17), 7600–7605. 10.1021/jf800843e.
  • Pezzuto, J. M. Resveratrol as an Inhibitor of Carcinogenesis. Pharm. Biol. 2008, 46(7–8), 443–573.
  • Vang, O. Resveratrol: Challenges in Analyzing Its Biological Effects. Ann. N. Y. Acad. Sci. 2015, 1348(1), 161–170. 10.1111/nyas.12879.
  • Barreiro-Hurlé, J.; Colombo, S.; Cantos-Villar, E. Is There a Market for Functional Wines? Consumer Preferences and Willingness to Pay for Resveratrol-Enriched Red Wine. Food Qual. Prefer. 2008, 19(4), 360–371. 10.1016/j.foodqual.2007.11.004.
  • Taleb, H.; Morris, R. K.; Withycombe, C. E.; Maddocks, S. E.; Kanekanian, A. D. Date Syrup–Derived Polyphenols Attenuate Angiogenic Responses and Exhibits Anti-Inflammatory Activity Mediated by Vascular Endothelial Growth Factor and Cyclooxygenase-2 Expression in Endothelial Cells. Nutr. Res. 2016, 36(7), 636–647. 10.1016/j.nutres.2016.02.010.
  • Leikert, J. F.; Räthel, T. R.; Wohlfart, P.; Cheynier, V.; Vollmar, A. M.; Dirsch, V. M. Red Wine Polyphenols Enhance Endothelial Nitric Oxide Synthase Expression and Subsequent Nitric Oxide Release from Endothelial Cells. Circulation. 2002, 106(13), 1614–1617. PMID: 12270851.
  • Tapiero, H.; Tew, K.; Ba, G. N.; Mathe, G. Polyphenols: Do They Play a Role in the Prevention of Human Pathologies? Biomed. Pharmacother. 2002, 56(4), 200–207. PMID: 12109813.
  • Rajan, S.; Ravi, J.; Suresh, A.; Guru, S. Hidden Secrets of ‘Punica Granatum’use and Its Effects on Oral Health: A Short Review. J. Dental Orofacial Res. 2013, 3(1), 38–41. 10.5005/jp-journals-10026-1061.
  • Norusis, M. SPSS 16.0 Statistical Procedures Companion; Prentice Hall Press, Upper Saddle River, NJ, USA: 2008.
  • Clatworthy, J.; Buick, D.; Hankins, M.; Weinman, J.; Horne, R. The Use and Reporting of Cluster Analysis in Health Psychology: A Review. Br. J. Health Psychol. 2005, 10(3), 329–358. 10.1348/135910705X25697.
  • Sharplin, A. D.; Mabry, R. H. The Relative Importance of Journals Used in Management Research: An Alternative Ranking. Hum. Relations. 1985, 38(2), 139–149.
  • Momen, H. The Role of Journals in Enhancing Health Research in Developing Countries. Bull. World Health Organ. 2004, 82, 163–163. PMCID: PMC2585931.
  • Yao, L. H.; Jiang, Y.; Shi, J.; Tomas-Barberan, F.; Datta, N.; Singanusong, R.; Chen, S. Flavonoids in Food and Their Health Benefits. Plant Foods Hum. Nutr. 2004, 59(3), 113–122. 10.1007/s11130-004-0049-7.
  • Hertog, M. G.; Hollman, P. C.; Katan, M. B. Content of Potentially Anticarcinogenic Flavonoids of 28 Vegetables and 9 Fruits Commonly Consumed in the Netherlands. J. Agric. Food Chem. 1992, 40(12), 2379–2383. 10.1021/jf00024a011.
  • Balentine, D. A.; Dwyer, J. T.; Erdman, J. W.; Ferruzzi, M. G.; Gaine, P. C.; Harnly, J. M.; Kwik-Uribe, C. L. Recommendations on Reporting Requirements for Flavonoids in Research. Am. J. Clin. Nutr. 2015, 101(6), 1113–1125. 10.3945/ajcn.113.071274.
  • Jones, E.; Hughes, R. Quercetin, Flavonoids and the Life-Span of Mice. Exp. Gerontol. 1982, 17(3), 213–217. PMID: 7140862.
  • Gleichenhagen, M.; Schieber, A. Current Challenges in Polyphenol Analytical Chemistry. Curr. Opin. Food Sci. 2016, 7, 43–49. 10.1016/j.cofs.2015.10.004.
  • Vauzour, D. Dietary Polyphenols as Modulators of Brain Functions: Biological Actions and Molecular Mechanisms Underpinning Their Beneficial Effects. Oxid. Med. Cell. Longev. 2012, 2012, 1–16. 10.1155/2012/914273.
  • Rossi, L.; Mazzitelli, S.; Arciello, M.; Capo, C.; Rotilio, G. Benefits from Dietary Polyphenols for Brain Aging and Alzheimer’s Disease. Neurochem. Res. 2008, 33(12), 2390–2400.
  • Obied, H. K. Biography of Biophenols: Past, Present and Future. Funct. Foods Health Disease. 2013, 3(6), 230–241.
  • Halliwell, B. Are Polyphenols Antioxidants or Pro-Oxidants? What Do We Learn from Cell Culture and in Vivo Studies? Arch. Biochem. Biophys. 2008, 476(2), 107–112. 10.1016/j.abb.2008.01.028.
  • Halliwell, B. Free Radicals and Antioxidants–Quo Vadis? Trends Pharmacol. Sci. 2011, 32(3), 125–130. 10.1016/j.tips.2010.12.002.
  • Duarte, T. L.; Lunec, J. Review: When Is an Antioxidant Not an Antioxidant? A Review of Novel Actions and Reactions of Vitamin C. Free Radic. Res. 2005, 39(7), 671–686. 10.1080/10715760500104025.
  • Yordi, E. G.; Pérez, E. M.; Matos, M. J.; Villares, E. U. Antioxidant and Pro-Oxidant Effects of Polyphenolic Compounds and Structure-Activity Relationship Evidence; Nutrition, Well-being and health, London : 2012; 23–48.
  • Carocho, M.; Ferreira, I. C. A Review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Compounds, Screening and Analysis Methodologies and Future Perspectives. Food Chem. Toxicol. 2013, 51, 15–25. 10.1016/j.fct.2012.09.021.
  • Galati, G.; O’brien, P. J. Potential Toxicity of Flavonoids and Other Dietary Phenolics: Significance for Their Chemopreventive and Anticancer Properties. Free Radic. Biol. Med. 2004, 37(3), 287–303. 10.1016/j.freeradbiomed.2004.04.034.
  • Lacroix, S.; Lauria, M.; Scott-Boyer, M.-P.; Marchetti, L.; Priami, C.; Caberlotto, L. Systems Biology Approaches to Study the Molecular Effects of Caloric Restriction and Polyphenols on Aging Processes. Genes Nutr. 2015, 10(6), 1–10. 10.1007/s12263-015-0508-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.