10,421
Views
18
CrossRef citations to date
0
Altmetric
Review

Bioactive profile and functional food applications of banana in food sectors and health: a review

, , , , , , , & show all
Pages 2286-2300 | Received 18 Jul 2022, Accepted 26 Sep 2022, Published online: 11 Oct 2022

References

  • Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and Vegetables, as a Source of Nutritional Compounds and Phytochemicals: Changes in Bioactive Compounds during Lactic Fermentation. Int. Food Res. J. 2018, 104, 86–99. DOI: 10.1016/j.foodres.2017.09.031.
  • Kwon, Y. S.; Yang, Y. Y.; Park, Y.; Park, Y. K.; Kim, S. Dietary Assessment and Factors according to Fruits and Vegetables Intake in Korean Elderly People: Analysis of Data from the Korea National Health and Nutrition Examination Survey. Nutrients. 2020, 12(11), 3492. DOI: 10.3390/nu12113492.
  • Singh, B.; Singh, J. P.; Kaur, A.; Singh, N. Bioactive Compounds in Banana and Their Associated Health Benefits A Review. Food Chem. 2016, 206, 1–11. DOI: 10.1016/j.foodchem.2016.03.033.
  • Hong, K.; Pak, C. H.; Pak, S. J. Measuring Abnormal pricing–an Alternative Approach: The Case of US Banana Trade with Latin American and Caribbean Countries. J Money Laund Control. 2014, 17(2), 203–218. DOI: 10.1108/JMLC-11-2013-0043.
  • Food and Agriculture Organization of the United Nations (FAO), Banana Market Review: Preliminary resultsR 2019, Rome. 2020. Available at https://www.fao.org/publications/card/en/c/CA7567EN/
  • Netshiheni, R. K.; Omolola, A. O.; Anyasi, T. A.; Jideani, A. I. Banana Bioactives: Absorption, Utilization and Health Benefits. In Banana nutrition-function and Processing Kinetics; Intech Open, 2019.
  • Bhat, E. A.; Sajjad, N.; Manzoor, I.; Rasool, A. Bioactive Compounds in Peanuts and Banana. Anal. Biochem. 2019, 8(382), 2161.
  • Sarma, P. P.; Gurumayum, N.; Verma, A. K.; Devi, R. A Pharmacological Perspective of Banana: Implications Relating to Therapeutic Benefits and Molecular Docking. Food Funct. 2021, 12(11), 4749–4767. DOI: 10.1039/D1FO00477H.
  • Davey, M. W.; Stals, E.; Ngoh-Newilah, G.; Tomekpe, K.; Lusty, C.; Markham, R.; Keulemans, J.; Keulemans, J. Sampling Strategies and Variability in Fruit Pulp Micronutrient Contents of West and Central African Bananas and Plantains (Musa Species). J. Agric. Food Chem. 2007, 55(7), 2633–2644. DOI: 10.1021/jf063119l.
  • Fungo, R.; Kikafunda, J. K.; Pillay, M. β-carotene, Iron and Zinc Content in Papua New Guinea and East African Highland Bananas. Afr J Food Agric Nutr Dev 2010, 10(6).
  • Ahmad, B. A.; Zakariyya, U. A.; Abubakar, M.; Sani, M. M.; Ahmad, M. A. Pharmacological Activities of Banana. In Banana Nutrition-Function and Processing Kinetics; IntechOpen, 2019.
  • Ranjha, M. M. A. N.; Irfan, S.; Nadeem, M.; Mahmood, S. A Comprehensive Review on Nutritional Value, Medicinal Uses, and Processing of Banana. Food Rev Int 2022, 38, 199–225. DOI: 10.1080/87559129.2020.1725890.
  • Qamar, S.; Shaikh, A. Therapeutic Potentials and Compositional Changes of Valuable Compounds from banana-A Review. Trends Food Sci Technol 2018, 79, 1–9. DOI: 10.1016/j.tifs.2018.06.016.
  • Emily, C. Amalia GM Scannell. Br Food J 2020.
  • Sulistyaning, A.; Farida, F.; Sari, H. The Consumption of Yellow Watermelon-plantain Juice before Anaerobic Exercise Improves Blood Glucose and Suppresses Oxidative Stress Formation in Rats. Open Access. Maced J Med Sci 2022, 10, 396–401. DOI: 10.3889/oamjms.2022.8553.
  • Pareek, S. Nutritional and Biochemical Composition of Banana (Musa Spp.) Cultivars. Nutri compost fruit cultivars 2016, 49–81.
  • Phillips, K. M.; McGinty, R. C.; Couture, G.; Pehrsson, P. R.; McKillop, K.; Fukagawa, N. K.; de Brito, E. Dietary Fiber, Starch, and Sugars in Bananas at Different Stages of Ripeness in the Retail Market. Plos one 2021, 16(7), 0253366. DOI: 10.1371/journal.pone.0253366.
  • Desai, B. B.; Deshpande, P. B. Chemical Transformation in Three Varieties of Banana (Musa Paradisiaca Linn.) Fruits Stored at 20 Degrees C. Mysore J Agri Sci 1975.
  • Gao, H.; Huang, S.; Dong, T.; Yang, Q.; Yi, G. Analysis of Resistant Starch Degradation in Postharvest Ripening of Two Banana Cultivars: Focus on Starch Structure and Amylases. Postharvest Biol. Technol. 2016, 119, 1–8. DOI: 10.1016/j.postharvbio.2016.03.022.
  • Dhull, S. B.; Malik, T.; Kaur, R.; Kumar, P.; Kaushal, N.; Singh, A. Banana Starch: Properties Illustration and Food Applications-A Review. Starch‐Stärke. 2021, 73(1–2), 2000085. DOI: 10.1002/star.202000085.
  • Toledo, T. T.; Nogueira, S. B.; Cordenunsi, B. R.; Gozzo, F. C.; Pilau, E. J.; Lajolo, F.; Do Nascimento, J. R. O. M.; Do Nascimento, J. R. O. Proteomic Analysis of Banana Fruit Reveals Proteins that are Differentially Accumulated during Ripening. Postharvest Bio. Technol. 2012, 70, 51–58. DOI: 10.1016/j.postharvbio.2012.04.005.
  • Pereira, A.; Maraschin, M. Banana (Musa Spp) from Peel to Pulp: Ethnopharmacology, Source of Bioactive Compounds and Its Relevance for Human Health. J. Ethnopharmacol. 2015, 160, 149–163. DOI: 10.1016/j.jep.2014.11.008.
  • Lau, B. F.; Kong, K. W.; Leong, K. H.; Sun, J.; He, X.; Wang, Z.; Ismail, A.; Ling, T. C.; Ismail, A. Banana Inflorescence: Its bio-prospects as an Ingredient for Functional Foods. Trends Food Sci. Technol. 2020, 97, 14–28. DOI: 10.1016/j.tifs.2019.12.023.
  • Borges, C. V.; Belin, M. A. F.; Amorim, E. P.; Minatel, I. O.; Monteiro, G. C.; Gomez, H. A. G.; Lima, G. P. P.; Lima, G. P. P. Bioactive Amines Changes during the Ripening and Thermal Processes of Bananas and Plantains. Food Chem. 2019, 298, 125020. DOI: 10.1016/j.foodchem.2019.125020.
  • Nayak, J.; Basak, U. C. Analysis of Some Nutritional Properties in Eight Wild Edible Fruits of Odisha, India. Trends Food Sci. Technol. 2015, 14, 55–62.
  • Mbabazi, R.; Harding, R.; Khanna, H.; Namanya, P.; Arinaitwe, G.; Tushemereirwe, W.; Paul, J. Y.; Paul, J.-Y. Pro-vitamin A Carotenoids in East African Highland Banana and Other Musa Cultivars Grown in Uganda. Food Sci. Nutr. 2020, 8(1), 311–321. DOI: 10.1002/fsn3.1308.
  • Englberger, L.; Schierle, J.; Aalbersberg, W.; Hofmann, P.; Humphries, J.; Huang, A.; Fitzgerald, M. H.; Levendusky, A.; Daniells, J.; Marks, G. C. Carotenoid and Vitamin Content of Karat and Other Micronesian Banana Cultivars. Int. J. Food Sci. Nutr. 2006, 57(5–6), 399–418. DOI: 10.1080/09637480600872010.
  • He, F. J.; MacGregor, G. A. Beneficial Effects of Potassium on Human Health. Physiol. Plant. 2008, 133(4), 725–735. DOI: 10.1111/j.1399-3054.2007.01033.x.
  • Sidhu, J. S.; Zafar, T. A. Bioactive Compounds in Banana Fruits and Their Health Benefits. Food Qual. Saf. 2018, 2(4), 183–188. DOI: 10.1093/fqsafe/fyy019.
  • Rungratanawanich, W.; Memo, M.; Uberti, D. Redox Homeostasis and Natural Dietary Compounds: Focusing on Antioxidants of Rice (Oryza Sativa L.). Nutrients. 2018, 10(11), 1605. DOI: 10.3390/nu10111605.
  • Tsamo, C. V. P.; Herent, M. F.; Tomekpe, K.; Emaga, T. H.; Quetin-Leclercq, J.; Rogez, H.; Andre, C.; Andre, C. Phenolic Profiling in the Pulp and Peel of Nine Plantain Cultivars (Musa Sp.). Food Chem. 2015, 167, 197–204. DOI: 10.1016/j.foodchem.2014.06.095.
  • Bashmil, Y. M.; Ali, A.; Bk, A.; Dunshea, F. R.; Suleria, H. A. Screening and Characterization of Phenolic Compounds from Australian Grown Bananas and Their Antioxidant Capacity. Antioxidants. 2021, 10(10), 1521. DOI: 10.3390/antiox10101521.
  • Martuscelli, M.; Esposito, L.; Mastrocola, D. Biogenic Amines’ Content in Safe and Quality Food. Foods. 2021, 10(1), 100. DOI: 10.3390/foods10010100.
  • Mengstu, A.; Bachheti, A.; Abate, L.; Bachheti, R. K.; Husen, A. Health-Promoting Benefits, Value-Added Products, and Other Uses of Banana. In Non-Timber Forest Products; Springer, Cham, 2021; pp 339–364.
  • Buckley, E. H. Further Studies on the Biosynthesis of 3-hydroxytyramine in the Peel of the Banana. Plant Physiol 1961, 36, 315–320.
  • Maoka, T. Carotenoids as Natural Functional Pigments. J. Nat. Med 2020, 74(1), 1–16. DOI: 10.1007/s11418-019-01364-x.
  • Lopes, S.; Borges, C. V.; de Sousa Cardoso, S. M.; de Almeida Pereira da Rocha, M. F.; Maraschin, M. Banana (Musa Spp.) as a Source of Bioactive Compounds for Health Promotion. In Handbook of Banana Production, Postharvest Science, Processing Technology, and Nutrition, 2020; pp 227–244.
  • Davey, M. W.; Saeys, W.; Hof, E.; Ramon, H.; Swennen, R. L.; Keulemans, J. Application of Visible and near-infrared Reflectance Spectroscopy (Vis/NIRS) to Determine Carotenoid Contents in Banana (Musa Spp.) Fruit Pulp. J. Agric. Food Chem. 2009, 57(5), 1742–1751. DOI: 10.1021/jf803137d.
  • Dhandapani, R.; Singh, V. P.; Arora, A.; Bhattacharya, R. C.; Rajendran, A. Differential Accumulation of β-carotene and Tissue Specific Expression of Phytoene Synthase (Mapsy) Gene in Banana (Musa Sp) Cultivars. J. Food Technol. 2017, 54(13), 4416–4426. DOI: 10.1007/s13197-017-2918-8.
  • Samtiya, M.; Aluko, R. E.; Dhewa, T.; Moreno-Rojas, J. M. Potential Health Benefits of Plant food-derived Bioactive Components: An Overview. Foods. 2021, 10(4), 839. DOI: 10.3390/foods10040839.
  • Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N.; Raghavan, V. Plant Carotenoids Evolution during Cultivation, Postharvest Storage, and Food Processing: A Review. Comp. Rev. Food Sci. Food Saf. 2020, 19(4), 1561–1604. DOI: 10.1111/1541-4337.12564.
  • Sunandar, A.; Kurniasih, D. Fruit Morphological Characteristics and Î2-carotene Content of Three Indonesian Dessert and Cooking Banana Cultivars. Biosaintifika. Int J Biol Educ 2019, 11(1), 171–177.
  • Jesch, E. D.; Carr, T. P. Food Ingredients that Inhibit Cholesterol Absorption. Prev. Nutr. Food Sci. 2017, 22(2), 67. DOI: 10.3746/pnf.2017.22.2.67.
  • Mondal, A.; Banerjee, S.; Bose, S.; Das, P. P.; Sandberg, E. N.; Atanasov, A. G.; Bishayee, A. Cancer Preventive and Therapeutic Potential of Banana and Its Bioactive Constituents: A Systematic, Comprehensive, and Mechanistic Review. Front. Oncol. 2021, 11. DOI: 10.3389/fonc.2021.697143.
  • Dahham, S. S.; Mohamad, T. A.; Tabana, Y. M.; Majid, A. M. S. A. Antioxidant Activities and Anticancer Screening of Extracts from Banana Fruit (Musa Sapientum). Cancer Res. 2015, 8(2), 28–34.
  • Villaverde, J. J.; Oliveira, L.; Vilela, C.; Domingues, R. M.; Freitas, N.; Cordeiro, N.; Silvestre, A. J.; Silvestre, A. J. D. High Valuable Compounds from the Unripe Peel of Several Musa Species Cultivated in Madeira Island (Portugal). Ind. Crops Prod. 2013, 42, 507–512. DOI: 10.1016/j.indcrop.2012.06.037.
  • Yousef, M. I.; Khalil, D. K.; Abdou, H. M. Neuro-and Nephroprotective Effect of Grape Seed Proanthocyanidin Extract against Carboplatin and Thalidomide through Modulation of Inflammation, Tumor Suppressor Protein p53, Neurotransmitters, Oxidative Stress and Histology. Toxicol. Rep. 2018, 5, 568–578. DOI: 10.1016/j.toxrep.2018.04.006.
  • Sakakibara, H. Mental Health Curriculum Project for First Grade Students (Doctoral dissertation, California State Polytechnic University, Pomona). 2021.
  • Rojas-Garbanzo, C.; Pérez, A. M.; Bustos-Carmona, J.; Vaillant, F. Identification and Quantification of Carotenoids by HPLC-DAD during the Process of Peach Palm (Bactris Gasipaes HBK) Flour. Int. Food Res. J. 2011, 44(7), 2377–2384. DOI: 10.1016/j.foodres.2011.02.045.
  • Gul, K.; Tak, A.; Singh, A. K.; Singh, P.; Yousuf, B.; Wani, A. A.; Yildiz, F. Chemistry, Encapsulation, and Health Benefits of β-carotene-A Review. Cogent Food Agric. 2015, 1(1), 1018696. DOI: 10.1080/23311932.2015.1018696.
  • Chaphalkar, R.; Apte, K. G.; Talekar, Y.; Ojha, S. K.; Nandave, M. Antioxidants of Phyllanthus Emblica L. Bark Extract Provide Hepatoprotection against Ethanol-Induced Hepatic Damage: A Comparison with Silymarin. Oxid. Med. Cell. Longev. 2017, 2017, 1–10. DOI: 10.1155/2017/3876040.
  • de Sousa Leal, A.; de Carvalho Leal, L. H.; da Silva, D.; Nunes, L. C. C.; Lopes, J. A. D. Incorporation of Tannic Acid in Formulations for Topical Use in Wound Healing: A Technological Prospecting. Afr. J. Pharm. Pharmacol. 2015, 9(26), 662–674. DOI: 10.5897/AJPP2015.4361.
  • Ohmori, R.; Iwamoto, T.; Tago, M.; Takeo, T.; Unno, T.; Itakura, H.; Kondo, K. Antioxidant Activity of Various Teas against Free Radicals and LDL Oxidation. Lipids. 2005, 40(8), 849–853. DOI: 10.1007/s11745-005-1447-4.
  • Deng, Q.; Li, X. X.; Fang, Y.; Chen, X.; Xue, J. Therapeutic Potential of Quercetin as an Antiatherosclerotic Agent in Atherosclerotic Cardiovascular Disease: A Review. Evid. Based Complementary Altern. Med. 2020, 2020, 1–12. DOI: 10.1155/2020/5926381.
  • Ahmad, F.; Khan, S. T. Potential Industrial Use of Compounds from by-products of Fruits and Vegetables. In Health and Safety Aspects of Food Processing Technologies. Springer, Cham, 2019: 273–307.
  • Jang, M. G.; Ko, H. C.; Kim, S. J. Effects of p-coumaric Acid on microRNA Expression Profiles in SNU-16 Human Gastric Cancer Cells. Genes Genom 2020, 42(7), 817–825. DOI: 10.1007/s13258-020-00944-6.
  • Kwon, Y. Use of Saw Palmetto (Serenoa Repens) Extract for Benign Prostatic Hyperplasia. Food Sci Biotechnol 2019, 28(6), 1599–1606. DOI: 10.1007/s10068-019-00605-9.
  • Alemany, L.; Cilla, A.; Garcia-Llatas, G.; Rodriguez-Estrada, M. T.; Cardenia, V.; Alegría, A. Effect of Simulated Gastrointestinal Digestion on Plant Sterols and Their Oxides in Enriched Beverages. Int. Food Res. J. 2013, 52(1), 1–7. DOI: 10.1016/j.foodres.2013.02.024.
  • Susanti, A.; Resti, F. E. Effect of Musa Acuminata Cavendish Subgroup (Ambon Banana) in Reducing Blood Pressure. Proc Int Conf 2019, 1, 973–977.
  • Singh, R.; Kaushik, R.; Gosewade, S. Bananas as Underutilized Fruit Having Huge Potential as Raw Materials for Food and non-food Processing Industries: A Brief Review. Pharm Innov J 2018, 7, 574–580.
  • Kumar, K. S.; Bhowmik, D.; Duraivel, S.; Umadevi, M. Traditional and Medicinal Uses of Banana. J. Pharmacogn. Phytochem. 2012, 1(3), 51–63.
  • Amah, D.; van Biljon, A.; Brown, A.; Perkins-Veazie, P.; Swennen, R.; Labuschagne, M. Recent Advances in Banana (Musa Spp.) Biofortification to Alleviate Vitamin A Deficiency. Crit. Rev. Food Sci. Nutr. 2019, 59(21), 3498–3510.
  • Hikal, W. M.; Said-Al Ahl, H. A. Banana Peels as Possible Antioxidant and Antimicrobial Agents. Asian J Res Rev Agri 2021, 335–45.
  • Mathew, N. S.; Negi, P. S. Traditional Uses, Phytochemistry and Pharmacology of Wild Banana (Musa Acuminata Colla): A Review. J. Ethnopharmacol. 2017, 196, 124–140. DOI: 10.1016/j.jep.2016.12.009.
  • Raigond, P.; Ezekiel, R.; Raigond, B. Resistant Starch in Food: A Review. J. Sci. Food Agric. 2015, 95(10), 1968–1978. DOI: 10.1002/jsfa.6966.
  • Ashwar, B. A.; Gani, A.; Shah, A.; Wani, I. A.; Masoodi, F. A. Preparation, Health Benefits and Applications of Resistant starch—A Review. Starch‐Stärke. 2016, 68(3–4), 287–301. DOI: 10.1002/star.201500064.
  • Abdel Aziz, S. M.; Ahmed, O. M.; Abd EL-Twab, S. M.; Al-Muzafar, H. M.; Amin, K. A.; Abdel-Gabbar, M. Antihyperglycemic Effects and Mode of Actions of Musa Paradisiaca Leaf and Fruit Peel Hydroethanolic Extracts in Nicotinamide/Streptozotocin-Induced Diabetic Rats. Evid. Based Complementary Altern. Med. 2020, 2020, 1–15. DOI: 10.1155/2020/9276343.
  • Santhi, V. P.; Masilamani, P.; Sriramavaratharajan, V.; Murugan, R.; Gurav, S. S.; Sarasu, V. P.; Ayyanar, M. Therapeutic Potential of Phytoconstituents of Edible Fruits in Combating Emerging Viral Infections. J. Food Biochem. 2021, 45(8), e13851. DOI: 10.1111/jfbc.13851.
  • Loganayaki, N.; Rajendrakumaran, D.; Manian, S. Antioxidant Capacity and Phenolic Content of Different Solvent Extracts from Banana (Musa Paradisiaca) and Mustai (Rivea Hypocrateriformis). Food Sci. Biotechnol. 2010, 19(5), 1251–1258. DOI: 10.1007/s10068-010-0179-7.
  • Ahmad, S. R.; Gokulakrishnan, P.; Giriprasad, R.; Yatoo, M. A. Fruit-based Natural Antioxidants in Meat and Meat Products: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55(11), 1503–1513. DOI: 10.1080/10408398.2012.701674.
  • Bhatt, T.; Patel, K. Carotenoids: Potent to Prevent Diseases Review. Nat Prod Bioprospecting 2020, 10, 109–117. DOI: 10.1007/s13659-020-00244-2.
  • Vu, H. T.; Scarlett, C. J.; Vuong, Q. V. Changes of Phytochemicals and Antioxidant Capacity of Banana Peel during the Ripening Process; with and without Ethylene Treatment. Sci. Hortic. 2019, 253, 255–262. DOI: 10.1016/j.scienta.2019.04.043.
  • Nieman, D. C.; Mitmesser, S. H. Potential Impact of Nutrition on Immune System Recovery from Heavy Exertion: A Metabolomics Perspective. Nutrients. 2017, 9(5), 513. DOI: 10.3390/nu9050513.
  • Kumari, S.; Katare, P. B.; Elancheran, R.; Nizami, H. L.; Paramesha, B.; Arava, S.; Banerjee, S. K.; Kumar, R.; Mahajan, D.; Kumar, Y. Musa Balbisiana Fruit Rich in Polyphenols Attenuates Isoproterenol-Induced Cardiac Hypertrophy in Rats via Inhibition of Inflammation and Oxidative Stress. Oxid. Med. Cell. Longev. 2020, 2020, 1–14. DOI: 10.1155/2020/7147498.
  • Oresanya, I. O.; Sonibare, M. A.; Gueye, B.; Balogun, F. O.; Adebayo, S.; Ashafa, A. O. T.; Morlock, G. Isolation of Flavonoids from Musa Acuminata Colla (Simili Radjah, ABB) and the in Vitro Inhibitory Effects of Its Leaf and Fruit Fractions on Free Radicals, Acetylcholinesterase, 15‐lipoxygenase, and Carbohydrate Hydrolyzing Enzymes. J. Food Biochem. 2020, 44(3), e13137. DOI: 10.1111/jfbc.13137.
  • Nadumane, V. K.; Timsina, B. Anticancer Potential of Banana Flower Extract: An in Vitro Study. Bangladesh J Pharmacol 2014, 9, 628–635.
  • Praveena, M.; Prabha, M. S.; Ravi, I.; Vaganan, M. M. Anti-colorectal Cancer Properties of Hill Banana (Cv. Virupakshi AAB) Fruits: An in Vitro Assay. 2018.
  • Elekofehinti, O. O.; Iwaloye, O.; Olawale, F.; Ariyo, E. O. Saponins in Cancer Treatment: Current Progress and Future Prospects. Pathophysiology. 2021, 28(2), 250–272. DOI: 10.3390/pathophysiology28020017.
  • Iwasawa, H.; Yamazaki, M. Differences in Biological Response modifier-like Activities according to the Strain and Maturity of Bananas. Food Sci. Technol. Res. 2009, 15(3), 275–282. DOI: 10.3136/fstr.15.275.
  • Agarwal, P. K.; Singh, A.; Gaurav, K.; Goel, S.; Khanna, H. D.; Goel, R. K. Evaluation of Wound Healing Activity of Extracts of Plantain Banana (Musa Sapientum Var. Paradisiaca) in Rats. Indian J. Exp. Biol. 2009, 47, 32–40.
  • Zaini, H. B. M.; Sintang, M. D. B.; Pindi, W. The Roles of Banana Peel Powders to Alter Technological Functionality, Sensory and Nutritional Quality of Chicken Sausage. Nutr. Food Sci. 2020, 8(10), 5497–5507. DOI: 10.1002/fsn3.1847.
  • Kraithong, S.; Issara, U. A Strategic Review on Plant by-product from Banana Harvesting: A Potentially bio-based Ingredient for Approaching Novel Food and agro-industry Sustainability. J Saudi Soc Agric Sci 2021, 20(8), 530–543.
  • Arun, K. B.; Persia, F.; Aswathy, P. S.; Chandran, J.; Sajeev, M. S.; Jayamurthy, P.; Nisha, P. Plantain peel-a Potential Source of Antioxidant Dietary Fibre for Developing Functional Cookies. J Food Sci Technol 2015, 52(10), 6355–6364. DOI: 10.1007/s13197-015-1727-1.
  • Vishala, J.; Singh, G. A Review on Product Development through Pulp and Peel of Banana. Plant Archives. 2021, 21(Suppliment–1), 693–698. DOI: 10.51470/PLANTARCHIVES.2021.v21.S1.104.
  • Culetu, A.; Duta, D. E.; Papageorgiou, M.; Varzakas, T. British Food Journal Varzakas, T. The Role of Hydrocolloids in Gluten-Free Bread and Pasta; Rheology, Characteristics, Staling and Glycemic Index. Foods. 2020, 10(12), 3121. DOI: 10.3390/foods10123121.
  • Amini Khoozani, A.; Birch, J.; Bekhit, A. E. D. A. Production, Application and Health Effects of Banana Pulp and Peel Flour in the Food Industry. J. Food Sci. Technol. 2019, 56(2), 548–559. DOI: 10.1007/s13197-018-03562-z.
  • Borges, A. D. M.; Pereira, J.; Silva Júnior, A.; Lucena, E. M. P. D.; Sales, J. C. D. Stability of Cake pre-mixture Made with 60% of Green Banana Flour. Cienc. Agrotec. 2010, 34(1), 173–181. DOI: 10.1590/S1413-70542010000100022.
  • Pandey, S. Nutritional Aspects and Health Implications of Gluten-Free Products. In Challenges and Potential Solutions in Gluten Free Product Development. Springer, Cham, 2022; 17–34.
  • Martínez-Castaño, M.; Lopera-Idarraga, J.; Pazmiño-Arteaga, J.; Gallardo-Cabrera, C. Evaluation of the Behaviour of Unripe Banana Flour with non-conventional Flours in the Production of gluten-free Bread. Int. J. Food Sci. Technol. 2020, 26(2), 160–172. DOI: 10.1177/1082013219873246.
  • Capurso, A.; Capurso, C. The Mediterranean Way: Why Elderly People Should Eat Wholewheat Sourdough Bread -A Little Known Component of the Mediterranean Diet and Healthy Food for Elderly Adults. Aging Clin Exp Res 2020, 32(1), 1–5. DOI: 10.1007/s40520-019-01392-3.
  • Kiumarsi, M.; Shahbazi, M.; Yeganehzad, S.; Majchrzak, D.; Lieleg, O.; Winkeljann, B. Relation between Structural, Mechanical and Sensory Properties of gluten-free Bread as Affected by Modified Dietary Fibers. Food Chem. 2019, 277, 664–673. DOI: 10.1016/j.foodchem.2018.11.015.
  • Cho, D.; Jeong, H. W.; Kim, J. K.; Kim, A. Y.; Hong, Y. D.; Lee, J. H.; Seo, D. B.; Seo, D. B. Gallocatechin Gallate-containing Fermented Green Tea Extract Ameliorates Obesity and Hypertriglyceridemia through the Modulation of Lipid Metabolism in Adipocytes and Myocytes. J. Med. Food. 2019, 22(8), 779–788. DOI: 10.1089/jmf.2018.4327.
  • Someya, S.; Yoshiki, Y.; Okubo, K. Antioxidant Compounds from Bananas (Musa Cavendish). Food Chem. 2002, 79(3), 351–354. DOI: 10.1016/S0308-8146(02)00186-3.
  • Aremu, A. O.; Bairu, M. W.; Szüčová, L.; Doležal, K.; Finnie, J. F.; Van Staden, J. Assessment of the Role of meta-topolins on in Vitro Produced Phenolics and Acclimatization Competence of Micropropagated ‘Williams’ Banana. Acta Physiol. Plant. 2012, 34(6), 2265–2273. DOI: 10.1007/s11738-012-1027-6.
  • Ahmed, Z. F.; Taha, E. M.; Abdelkareem, N. A.; Mohamed, W. M. Postharvest Properties of Unripe Bananas and the Potential of Producing Economic Nutritious Products. Int. J. Fruit Sci. 2020, 20(sup2), 995–1014. DOI: 10.1080/15538362.2020.1774469.
  • Tadakittisarn, S.; Haruthaithanasan, V.; Chompreeda, P.; Suwonsichon, T. Optimization of Pectinase Enzyme Liquefaction of Banana ‘Gros Michel’for Banana Syrup Production. Agric. Nat. Resour. 2007, 41(4), 740–750.
  • Kidoń, M.; Uwineza, P. A. New Smoothie Products Based on Pumpkin, Banana, and Purple Carrot as a Source of Bioactive Compounds. Molecules. 2022, 27(10), 3049. DOI: 10.3390/molecules27103049.