5,199
Views
9
CrossRef citations to date
0
Altmetric
Review Article

Therapeutical properties of apigenin: a review on the experimental evidence and basic mechanisms

, , ORCID Icon, , ORCID Icon, , , , , ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 1914-1939 | Received 27 Feb 2023, Accepted 07 Jul 2023, Published online: 20 Jul 2023

References

  • Bhagwat, S.; Haytowitz, D. B.; Holden, J. M. USDA Database for the Flavonoid Content of Selected Foods Release 3.1. 2014. https://www.ars.usda.gov/ARSUserFiles/80400525/Data/Flav/Flav (Accessed 10 January 2021).
  • Lee, W.-J.; Chen, W.-K.; Wang, C.-J.; Lin, W.-L.; Tseng, T.-H. Apigenin Inhibits HGF-Promoted Invasive Growth and Metastasis Involving Blocking PI3K/Akt Pathway and β4 Integrin Function in MDA-MB-231 Breast Cancer Cells. Toxicol. Appl. Pharmacol. 2008, 226(2), 178–191. DOI: 10.1016/j.taap.2007.09.013.
  • Mullie, P.; Clarys, P.; Deriemaeker, P.; Hebbelinck, M. Estimation of Daily Human Intake of Food Flavonoids. Plant Foods Hum. Nutr. 2007, 62(3), 93–98. DOI: 10.1007/s11130-007-0047-7.
  • Villagómez-Rodríguez, A.; Pérez-Ramos, J.; Esquivel-Campos, A. L.; Pérez-González, C.; Soto-Peredo, C. A.; Pérez-Gutiérrez, S. Anti-Inflammatory Activity of Jefea Gnaphalioides (A. Gray), Astereaceae. BMC Compl. Alternative Med. 2019, 19(1), 1–8. DOI: 10.1186/s12906-019-2654-x.
  • Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget. 2018, 9(6), 7204. DOI: 10.18632/oncotarget.23208.
  • Capelari-Oliveira, P.; Paula, C. A. D.; Rezende, S. A.; Campos, F. T.; Grabe-Guimarães, A.; Lombardi, J. A.; Saúde-Guimarães, D. Anti-Inflammatory Activity of Lychnophora Passerina, Asteraceae (Brazilian “Arnica”). J. Ethnopharmacol. 2011, 135(2), 393–398. DOI: 10.1016/j.jep.2011.03.034.
  • Edwards, J. C.; Cambridge, G. B-Cell Targeting in Rheumatoid Arthritis and Other Autoimmune Diseases. Nat. Rev. Immunol. 2006, 6(5), 394–403. DOI: 10.1038/nri1838.
  • Kim, H. K.; Cheon, B. S.; Kim, Y. H.; Kim, S. Y.; Kim, H. P. Effects of Naturally Occurring Flavonoids on Nitric Oxide Production in the Macrophage Cell Line RAW 264.7 and Their Structure–Activity Relationships. Biochem. Pharmacol. 1999, 58(5), 759–765. DOI: 10.1016/S0006-2952(99)00160-4.
  • Liang, Y.-C.; Huang, Y.-T.; Tsai, S.-H.; Lin-Shiau, S.-Y.; Chen, C.-F.; Lin, J.-K. Suppression of Inducible Cyclooxygenase and Inducible Nitric Oxide Synthase by Apigenin and Related Flavonoids in Mouse Macrophages. Carcinogenesis. 1999, 20(10), 1945–1952. DOI: 10.1093/carcin/20.10.1945.
  • Surh, Y.-J.; Chun, K.-S.; Cha, H.-H.; Han, S. S.; Keum, Y.-S.; Park, K.-K.; Lee, S. S. Molecular Mechanisms Underlying Chemopreventive Activities of Anti-Inflammatory Phytochemicals: Down-Regulation of COX-2 and iNOS Through Suppression of NF-Κb Activation. Mutat. Res. 2001, 480, 243–268. DOI: 10.1016/S0027-5107(01)00183-X.
  • Bhattacharya, S.; Mondal, L.; Mukherjee, B.; Dutta, L.; Ehsan, I.; Debnath, M. C.; Gaonkar, R. H.; Pal, M. M.; Majumdar, S. Apigenin Loaded Nanoparticle Delayed Development of Hepatocellular Carcinoma in Rats. Nanomed. NBM. 2018, 14(6), 1905–1917. DOI: 10.1016/j.nano.2018.05.011.
  • Imran, M.; Aslam Gondal, T.; Atif, M.; Shahbaz, M.; Batool Qaisarani, T.; Hanif Mughal, M.; Salehi, B.; Martorell, M.; Sharifi‐Rad, J. Apigenin as an Anticancer Agent. Phytother. Res. 2020, 34(8), 1812–1828. DOI: 10.1002/ptr.6647.
  • Salmani, J. M. M.; Zhang, X.-P.; Jacob, J. A.; Bao-An, C. Apigenin’s Anticancer Properties and Molecular Mechanisms of Action: Recent Advances and Future Prospectives. Chin. J. Nat. Med. 2017, 15(5), 321–329. DOI: 10.1016/S1875-5364(17)30052-3.
  • Sharma, A.; Ghani, A.; Sak, K.; Tuli, H. S.; Sharma, A. K.; Setzer, W. N.; Sharma, S.; Das, A. K. Probing into Therapeutic Anti-Cancer Potential of Apigenin: Recent Trends and Future Directions. Recent Pat. Inflamm. Allergy Drug Discov. 2019, 13(2), 124–133. DOI: 10.2174/1872213X13666190816160240.
  • Singh, D.; Khan, M. A.; Siddique, H. R. Apigenin, a Plant Flavone Playing Noble Roles in Cancer Prevention via Modulation of Key Cell Signaling Networks. Recent Pat. Anticancer Drug Discov. 2019, 14(4), 298–311. DOI: 10.2174/1574892814666191026095728.
  • Şirin, N.; Elmas, L.; Seçme, M.; Dodurga, Y. Investigation of Possible Effects of Apigenin, Sorafenib and Combined Applications on Apoptosis and Cell Cycle in Hepatocellular Cancer Cells. Gene. 2020, 737, 144428. DOI: 10.1016/j.gene.2020.144428.
  • Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E. B.; Novellino, E., et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20(6), 1305. DOI: 10.3390/ijms20061305.
  • Meyer, H.; Bolarinwa, A.; Wolfram, G.; Linseisen, J. Bioavailability of Apigenin from Apiin-Rich Parsley in Humans. Ann. Nutr. Metab. 2006, 50(3), 167–172. DOI: 10.1159/000090736.
  • Tang, D.; Chen, K.; Huang, L.; Li, J. Pharmacokinetic Properties and Drug Interactions of Apigenin, a Natural Flavone. Expert. Opin. Drug. Metab Toxicol. 2017, 13(3), 323–330. DOI: 10.1080/17425255.2017.1251903.
  • Wang, M.; Firrman, J.; Liu, L.; Yam, K. A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut Microbiota. Biomed Res. Int. 2019, 2019, 1–18. DOI: 10.1155/2019/7010467.
  • Shankar, E.; Goel, A.; Gupta, K.; Gupta, S. Plant Flavone Apigenin: An Emerging Anticancer Agent. Curr. Pharmacol. Rep. 2017, 3(6), 423–446. DOI: 10.1007/s40495-017-0113-2.
  • Thomas, S. D.; Jha, N. K.; Jha, S. K.; Sadek, B.; Ojha, S. Pharmacological and Molecular Insight on the Cardioprotective Role of Apigenin. Nutrients. 2023, 15(2), 385. DOI: 10.3390/nu15020385.
  • Patel, D.; Shukla, S.; Gupta, S. Apigenin and Cancer Chemoprevention: Progress, Potential and Promise. Int. J. Oncol. 2007, 30(1), 233–245. DOI: 10.3892/ijo.30.1.233.
  • Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F. J.; Queipo-Ortuño, M. I. Benefits of Polyphenols on Gut Microbiota and Implications in Human Health. J. Nutr Biochem. 2013, 24(8), 1415–1422. DOI: 10.1016/j.jnutbio.2013.05.001.
  • Chen, T.; Li, L.-P.; Lu, X.-Y.; Jiang, H.-D.; Zeng, S. Absorption and Excretion of Luteolin and Apigenin in Rats After Oral Administration of Chrysanthemum Morifolium Extract. J. Agric. Food. Chem. 2007, 55(2), 273–277. DOI: 10.1021/jf062088r.
  • Gradolatto, A.; Basly, J.-P.; Berges, R.; Teyssier, C.; Chagnon, M.-C.; Siess, M.-H.; Canivenc-Lavier, M.-C. Pharmacokinetics and Metabolism of Apigenin in Female and Male Rats After a Single Oral Administration. Drug Metab. Dispos. 2005, 33(1), 49–54. DOI: 10.1124/dmd.104.000893.
  • Andlauer, W.; Kolb, J.; Fürst, P. Absorption and Metabolism of Genistin in the Isolated Rat Small Intestine. FEBS. Lett. 2000, 475(2), 127–130. DOI: 10.1016/S0014-5793(00)01642-2.
  • Kool, M.; de Haas, M.; Scheffer, G. L.; Scheper, R. J.; van Eijk, M. J.; Juijn, J. A.; Baas, F.; Borst, P. Analysis of Expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, Homologues of the Multidrug Resistance-Associated Protein Gene (MRP1), in Human Cancer Cell Lines. Cancer. Res. 1997, 57(16), 3537–3547.
  • Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79(5), 727–747. DOI: 10.1093/ajcn/79.5.727.
  • Ng, S. P.; Wong, K. Y.; Zhang, L.; Zuo, Z.; Lin, G. Evaluation of the First-Pass Glucuronidation of Selected Flavones in Gut by Caco-2 Monolayer Model. J. Pharm. Pharm. Sci. 2004, 8(1), 1–9.
  • Chen, Z.; Kong, S.; Song, F.; Li, L.; Jiang, H. Pharmacokinetic Study of Luteolin, Apigenin, Chrysoeriol and Diosmetin After Oral Administration of Flos Chrysanthemi Extract in Rats. Fitoterapia. 2012, 83(8), 1616–1622. DOI: 10.1016/j.fitote.2012.09.011.
  • Hao, X.; Cheng, G.; Yu, J.; He, Y.; An, F.; Sun, J.; Cui, F. Study on the Role of Hepatic First-Pass Elimination in the Low Oral Bioavailability of Scutellarin in Rats. Pharmazie. 2005, 60(6), 477–478.
  • Cai, H.; Boocock, D. J.; Steward, W. P.; Gescher, A. J. Tissue Distribution in Mice and Metabolism in Murine and Human Liver of Apigenin and Tricin, Flavones with Putative Cancer Chemopreventive Properties. Cancer Chemother. Pharmacol. 2007, 60(2), 257–266. DOI: 10.1007/s00280-006-0368-5.
  • Das, S.; Rosazza, J. P. Microbial and Enzymatic Transformations of Flavonoids. J. Nat. Prod. 2006, 69(3), 499–508. DOI: 10.1021/np0504659.
  • Wang, S. W.; Kulkarni, K. H.; Tang, L.; Wang, J. R.; Yin, T.; Daidoji, T.; Yokota, H.; Hu, M. Disposition of Flavonoids via Enteric Recycling: UDP-Glucuronosyltransferase (UGT) 1As Deficiency in Gunn Rats is Compensated by Increases in UGT2Bs Activities. J. Pharmacol. Exp. Ther. 2009, 329(3), 1023–1031. DOI: 10.1124/jpet.108.147371.
  • Scalbert, A.; Williamson, G. Dietary Intake and Bioavailability of Polyphenols. J. Nutr. 2000, 130(8), 2073S–2085S. DOI: 10.1093/jn/130.8.2073S.
  • Gradolatto, A.; Canivenc-Lavier, M.-C.; Basly, J.-P.; Siess, M.-H.; Teyssier, C. Metabolism of Apigenin by Rat Liver Phase I and Phase II Enzymes and by Isolated Perfused Rat Liver. Drug Metab. Dispos. 2004, 32(1), 58–65. DOI: 10.1124/dmd.32.1.58.
  • Nielsen, S.; Young, J.; Daneshvar, B.; Lauridsen, S.; Knuthsen, P.; Sandström, B.; Dragsted, L. O. Effect of Parsley (Petroselinum Crispum) Intake on Urinary Apigenin Excretion, Blood Antioxidant Enzymes and Biomarkers for Oxidative Stress in Human Subjects. Br. J. Nutr. 1999, 81(6), 447–455. DOI: 10.1017/S000711459900080X.
  • Bauer, D.; Mazzio, E.; Soliman, K. F. Whole Transcriptomic Analysis of Apigenin on TNFα Immuno-Activated MDA-MB-231 Breast Cancer Cells. Cancer Genom. Proteom. 2019, 16(6), 421–431. DOI: 10.21873/cgp.20146.
  • Hamadou, M. H.; Kerkatou, M.; Gatto, P.; Pancher, M.; Bisio, A.; Inga, A.; Menad, A.; Benayache, S.; Benayache, F.; Ameddah, S. Apigenin Rich-Limonium Duriusculum (de Girard) Kuntze Promotes Apoptosis in HCT116 Cancer Cells. Nat. Prod. Res. 2019, 35(17), 1–5. DOI: 10.1080/14786419.2019.1672070.
  • Qiu, J.-G.; Wang, L.; Liu, W.-J.; Wang, J.-F.; Zhao, E.-J.; Zhou, F.-M.; Ji, X.-B.; Wang, L.-H.; Xia, Z.-K.; Wang, W. Apigenin Inhibits IL-6 Transcription and Suppresses Esophageal Carcinogenesis. Front. Pharmacol. 2019, 10, 1002. DOI: 10.3389/fphar.2019.01002.
  • Coelho, P. L.; Amparo, J. A.; da Silva, A. B.; da Silva, K. C.; Braga‐de‐Souza, S.; Barbosa, P. R.; Lopes, G. P. D. F.; Costa, S. L. Apigenin from Croton Betulaster Müll Restores the Immune Profile of Microglia Against Glioma Cells. Phytother. Res. 2019, 33(12), 3191–3202. DOI: 10.1002/ptr.6491.
  • Zohreh, B.; Masoumeh, V.; Fakhraddin, N.; Omrani, G. H. Apigenin-Mediated Alterations in Viability and Senescence of SW480 Colorectal Cancer Cells Persist in the Presence of L-Thyroxine. Anti Cancer Agents Med. Chem. 2019, 19(12), 1535–1542. DOI: 10.2174/1871520619666190704102708.
  • Lee, H. H.; Jung, J.; Moon, A.; Kang, H.; Cho, H. Antitumor and Anti-Invasive Effect of Apigenin on Human Breast Carcinoma Through Suppression of IL-6 Expression. Int. J. Mol. Sci. 2019, 20(13), 3143. DOI: 10.3390/ijms20133143.
  • Chien, M.-H.; Lin, Y.-W.; Wen, Y.-C.; Yang, Y.-C.; Hsiao, M.; Chang, J.-L.; Huang, H.-C.; Lee, W.-J. Targeting the SPOCK1-Snail/slug Axis-Mediated Epithelial-To-Mesenchymal Transition by Apigenin Contributes to Repression of Prostate Cancer Metastasis. J. Exp. Clin. Cancer Res. 2019, 38(1), 1–17. DOI: 10.1186/s13046-019-1247-3.
  • Chen, X.; Xu, H.; Yu, X.; Wang, X.; Zhu, X.; Xu, X. Apigenin Inhibits in vitro and in vivo Tumorigenesis in Cisplatin-Resistant Colon Cancer Cells by Inducing Autophagy, Programmed Cell Death and Targeting M-TOR/PI3K/Akt Signalling Pathway. J. Buon. 2019, 24(2), 488–493.
  • Gilardini Montani, M. S.; Cecere, N.; Granato, M.; Romeo, M. A.; Falcinelli, L.; Ciciarelli, U.; D’orazi, G.; Faggioni, A.; Cirone, M. Mutant p53, Stabilized by Its Interplay with HSP90, Activates a Positive Feed-Back Loop Between NRF2 and p62 That Induces Chemo-Resistance to Apigenin in Pancreatic Cancer Cells. Cancers. 2019, 11(5), 703. DOI: 10.3390/cancers11050703.
  • Ittiudomrak, T.; Puthong, S.; Roytrakul, S.; Chanchao, C. α-Mangostin and Apigenin Induced Cell Cycle Arrest and Programmed Cell Death in SKOV-3 Ovarian Cancer Cells. Toxicol. Res. 2019, 35(2), 167–179. DOI: 10.5487/TR.2019.35.2.167.
  • Chen, Z.; Tian, D.; Liao, X.; Zhang, Y.; Xiao, J.; Chen, W.; Liu, Q.; Chen, Y.; Li, D.; Zhu, L. Apigenin Combined with Gefitinib Blocks Autophagy Flux and Induces Apoptotic Cell Death Through Inhibition of HIF-1α, C-Myc, P-EGFR, and Glucose Metabolism in EGFR L858R+ T790M-Mutated H1975 Cells. Front. Pharmacol. 2019, 10, 260. DOI: 10.3389/fphar.2019.00260.
  • Tong, J.; Shen, Y.; Zhang, Z.; Hu, Y.; Zhang, X.; Han, L. Apigenin Inhibits Epithelial-Mesenchymal Transition of Human Colon Cancer Cells Through NF-Κb/snail Signaling Pathway. Biosci. Rep. 2019, 39(5), 5. DOI: 10.1042/BSR20190452.
  • Qi, Y.; Ding, Z.; Yao, Y.; Ma, D.; Ren, F.; Yang, H.; Chen, A. Novel Triazole Analogs of Apigenin‑7‑Methyl Ether Exhibit Potent Antitumor Activity Against Ovarian Carcinoma Cells via the Induction of Mitochondrial‑Mediated Apoptosis. Exp. Ther. Med. 2019, 17(3), 1670–1676. DOI: 10.3892/etm.2018.7138.
  • Li, Y.-W.; Xu, J.; Zhu, G.-Y.; Huang, Z.-J.; Lu, Y.; Li, X.-Q.; Wang, N.; Zhang, F.-X. Apigenin Suppresses the Stem Cell-Like Properties of Triple-Negative Breast Cancer Cells by Inhibiting YAP/TAZ Activity. Cell. Death Discov. 2018, 4(1), 1–9. DOI: 10.1038/s41420-018-0124-8.
  • Xu, L.; Zhang, Y.; Tian, K.; Chen, X.; Zhang, R.; Mu, X.; Wu, Y.; Wang, D.; Wang, S.; Liu, F. Apigenin Suppresses PD-L1 Expression in Melanoma and Host Dendritic Cells to Elicit Synergistic Therapeutic Effects. J. Exp. Clin. Cancer Res. 2018, 37(1), 1–15. DOI: 10.1186/s13046-018-0929-6.
  • Ozbey, U.; Attar, R.; Romero, M. A.; Alhewairini, S. S.; Afshar, B.; Sabitaliyevich, U. Y.; Hanna‐Wakim, L.; Ozcelik, B.; Farooqi, A. A. Apigenin as an Effective Anticancer Natural Product: Spotlight on TRAIL, WNT/β‐Catenin, JAK‐STAT Pathways, and microRnas. J. Cell. Biochem. 2019, 120(2), 1060–1067. DOI: 10.1002/jcb.27575.
  • Yang, M.; Jiang, Z.-H.; Li, C.-G.; Zhu, Y.-J.; Li, Z.; Tang, Y.-Z.; Ni, C.-L. Apigenin Prevents Metabolic Syndrome in High-Fructose Diet-Fed Mice by Keap1-Nrf2 Pathway. Biomed. Pharmacother. 2018, 105, 1283–1290. DOI: 10.1016/j.biopha.2018.06.108.
  • Malik, S.; Suchal, K.; Khan, S. I.; Bhatia, J.; Kishore, K.; Dinda, A. K.; Arya, D. S. Apigenin Ameliorates Streptozotocin-Induced Diabetic Nephropathy in Rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-Fibronectin Pathways. Am. J. Physiol. Renal Physiol. 2017, 313(2), F414–F422. DOI: 10.1152/ajprenal.00393.2016.
  • Zeng, L.; Zhang, G.; Lin, S.; Gong, D. Inhibitory Mechanism of Apigenin on α-Glucosidase and Synergy Analysis of Flavonoids. J. Agric. Food. Chem. 2016, 64(37), 6939–6949. DOI: 10.1021/acs.jafc.6b02314.
  • Jung, U. J.; Cho, Y.-Y.; Choi, M.-S. Apigenin Ameliorates Dyslipidemia, Hepatic Steatosis and Insulin Resistance by Modulating Metabolic and Transcriptional Profiles in the Liver of High-Fat Diet-Induced Obese Mice. Nutrients. 2016, 8(5), 305. DOI: 10.3390/nu8050305.
  • Ren, B.; Qin, W.; Wu, F.; Wang, S.; Pan, C.; Wang, L.; Zeng, B.; Ma, S.; Liang, J. Apigenin and Naringenin Regulate Glucose and Lipid Metabolism, and Ameliorate Vascular Dysfunction in Type 2 Diabetic Rats. Eur. J. Pharmacol. 2016, 773, 13–23. DOI: 10.1016/j.ejphar.2016.01.002.
  • Cazarolli, L. H.; Folador, P.; Moresco, H. H.; Brighente, I. M. C.; Pizzolatti, M. G.; Silva, F. R. M. B. Stimulatory Effect of Apigenin-6-C-β-L-Fucopyranoside on Insulin Secretion and Glycogen Synthesis. Eur. J. Med. Chem. 2009, 44(11), 4668–4673. DOI: 10.1016/j.ejmech.2009.07.001.
  • Panda, S.; Kar, A. Apigenin (4 ‘, 5, 7‐Trihydroxyflavone) Regulates Hyperglycaemia, Thyroid Dysfunction and Lipid Peroxidation in Alloxan‐Induced Diabetic Mice. J. Pharm. Pharmacol. 2007, 59(11), 1543–1548. DOI: 10.1211/jpp.59.11.0012.
  • Su, T.; Huang, C.; Yang, C.; Jiang, T.; Su, J.; Chen, M.; Fatima, S.; Gong, R.; Hu, X.; Bian, Z. Apigenin Inhibits STAT3/CD36 Signaling Axis and Reduces Visceral Obesity. Pharmacol. Res. 2020, 152, 104586. DOI: 10.1016/j.phrs.2019.104586.
  • Okla, M.; Al Madani, J. O.; Chung, S.; Alfayez, M. Apigenin Reverses Interleukin‐1β‐Induced Suppression of Adipocyte Browning via COX2/PGE2 Signaling Pathway in Human Adipocytes. Mol. Nutr Food Res. 2020, 64(1), 1900925. DOI: 10.1002/mnfr.201900925.
  • Gomez-Zorita, S.; Lasa, A.; Abendaño, N.; Fernandez-Quintela, A.; Mosqueda-Solís, A.; Garcia-Sobreviela, M. P.; Arbonés-Mainar, J. M.; Portillo, M. P. Phenolic Compounds Apigenin, Hesperidin and Kaempferol Reduce in vitro Lipid Accumulation in Human Adipocytes. J. Transl. Med. 2017, 15(1), 1–10. DOI: 10.1186/s12967-017-1343-0.
  • Choi, W. H.; Son, H. J.; Jang, Y. J.; Ahn, J.; Jung, C. H.; Ha, T. Y. Apigenin Ameliorates the Obesity‐Induced Skeletal Muscle Atrophy by Attenuating Mitochondrial Dysfunction in the Muscle of Obese Mice. Mol. Nutr Food Res. 2017, 61(12), 1700218. DOI: 10.1002/mnfr.201700218.
  • Kim, M.-A.; Kang, K.; Lee, H.-J.; Kim, M.; Kim, C. Y.; Nho, C. W. Apigenin Isolated from Daphne Genkwa Siebold Et Zucc. Inhibits 3T3-L1 Preadipocyte Differentiation Through a Modulation of Mitotic Clonal Expansion. Life. sci. 2014, 101(1–2), 64–72. DOI: 10.1016/j.lfs.2014.02.012.
  • Lv, Y.; Gao, X.; Shen, W.; Fan, T.; Yao, C.; Ding, M.; Yan, S.; Song, L.; Yan, L. Apigenin Ameliorates HFD-Induced NAFLD Through Regulation of the XO/NLRP3 Pathways. J. Nutr Biochem. 2019, 71, 110–121. DOI: 10.1016/j.jnutbio.2019.05.015.
  • Moharram, F. A.; El Dib, R. A. E. M.; Marzouk, M. S.; El-Shenawy, S. M.; Ibrahim, H. A. New Apigenin Glycoside, Polyphenolic Constituents, Anti-Inflammatory and Hepatoprotective Activities of Gaillardia Grandiflora and Gaillardia pulchella Aerial Parts. Phcog. Mag. 2017, 13(Suppl 2), S244. DOI: 10.4103/pm.pm_344_16.
  • Yue, S.; Xue, N.; Li, H.; Huang, B.; Chen, Z.; Wang, X. Hepatoprotective Effect of Apigenin Against Liver Injury via the Non-Canonical NF-Κb Pathway in vivo and in vitro. Inflammation. 2020, 43(5), 1634–1648. DOI: 10.1007/s10753-020-01238-5.
  • Rašković, A.; Gigov, S.; Čapo, I.; Kusturica, M. P.; Milijašević, B.; Kojić-Damjanov, S.; Martić, N. Antioxidative and Protective Actions of Apigenin in a Paracetamol-Induced Hepatotoxicity Rat Model. Eur. J. Drug Metab. Pharmacokinet. 2017, 42(5), 849–856. DOI: 10.1007/s13318-017-0407-0.
  • Ali, F.; Jyoti, F.; Naz, S.; Siddique, Y. H.; Siddique, Y. H. Protective Effect of Apigenin Against N-Nitrosodiethylamine (NDEA)-Induced Hepatotoxicity in Albino Rats. Mutat. Res. 2014, 767, 13–20. DOI: 10.1016/j.mrgentox.2014.04.006.
  • Mohamed, W. R.; Kotb, A. S.; Abd El‐Raouf, O. M.; Mohammad Fikry, E. Apigenin Alleviated Acetaminophen‐Induced Hepatotoxicity in Low Protein‐Fed Rats: Targeting Oxidative Stress, STAT3, and Apoptosis Signals. J. Biochem. Mol. Toxicol. 2020, 34(5), e22472. DOI: 10.1002/jbt.22472.
  • Tsaroucha, A. K.; Tsiaousidou, A.; Ouzounidis, N.; Tsalkidou, E.; Lambropoulou, M.; Giakoustidis, D.; Chatzaki, E.; Simopoulos, C. Intraperitoneal Administration of Apigenin in Liver Ischemia/Reperfusion Injury Protective Effects. Saudi J. Gastroenterol. 2016, 22(6), 415. DOI: 10.4103/1319-3767.195556.
  • Zhou, R.-J.; Ye, H.; Wang, F.; Wang, J.-L.; Xie, M.-L. Apigenin Inhibits D-Galactosamine/lps-Induced Liver Injury Through Upregulation of Hepatic Nrf-2 and PPARγ Expressions in Mice. Biochem. Biophys. Res. Commun. 2017, 493(1), 625–630. DOI: 10.1016/j.bbrc.2017.08.141.
  • Wang, F.; Liu, J.-C.; Zhou, R.-J.; Zhao, X.; Liu, M.; Ye, H.; Xie, M.-L. Apigenin Protects Against Alcohol-Induced Liver Injury in Mice by Regulating Hepatic CYP2E1-Mediated Oxidative Stress and PPARα-Mediated Lipogenic Gene Expression. Chem. Biol. Interact. 2017, 275, 171–177. DOI: 10.1016/j.cbi.2017.08.006.
  • Feng, X.; Yu, W.; Li, X.; Zhou, F.; Zhang, W.; Shen, Q.; Li, J.; Zhang, C.; Shen, P. Apigenin, a Modulator of PPARγ, Attenuates HFD-Induced NAFLD by Regulating Hepatocyte Lipid Metabolism and Oxidative Stress via Nrf2 Activation. Biochem. Pharmacol. 2017, 136, 136–149. DOI: 10.1016/j.bcp.2017.04.014.
  • Shi, T.; Zhuang, R.; Zhou, H.; Wang, F.; Shao, Y.; Cai, Z. Effect of Apigenin on Protein Expressions of PPARs in Liver Tissues of Rats with Nonalcoholic Steatohepatitis. Zhonghua. gan zang bing za zhi. 2015, 23(2), 124–129. DOI: 10.3760/cma.j.issn.1007-3418.2015.02.010.
  • Zhong, Y.; Jin, C.; Wang, X.; Li, X.; Han, J.; Xue, W.; Wu, P.; Peng, X.; Xia, X. Protective Effects of Apigenin Against 3-MCPD-Induced Renal Injury in Rat. Chem. Biol. Interact. 2018, 296, 9–17. DOI: 10.1016/j.cbi.2018.08.005.
  • Tsalkidou, E. G.; Tsaroucha, A. K.; Chatzaki, E.; Lambropoulou, M.; Papachristou, F.; Trypsianis, G.; Pitiakoudis, M.; Vaos, G.; Simopoulos, C. The Effects of Apigenin on the Expression of Fas/FasL Apoptotic Pathway in Warm Liver Ischemia-Reperfusion Injury in Rats. Biomed Res. Int. 2014, 2014, 1–7. DOI: 10.1155/2014/157216.
  • Zhao, L.; Zhang, J.; Hu, C.; Wang, T.; Lu, J.; Wu, C.; Chen, L.; Jin, M.; Ji, G.; Cao, Q. Apigenin Prevents Acetaminophen-Induced Liver Injury by Activating the SIRT1 Pathway. Front. Pharmacol. 2020, 11, 11. DOI: 10.3389/fphar.2020.00514.
  • Zare, M. F. R.; Rakhshan, K.; Aboutaleb, N.; Nikbakht, F.; Naderi, N.; Bakhshesh, M.; Azizi, Y. Apigenin Attenuates Doxorubicin Induced Cardiotoxicity via Reducing Oxidative Stress and Apoptosis in Male Rats. Life. sci. 2019, 232, 116623. DOI: 10.1016/j.lfs.2019.116623.
  • Li, F.; Lang, F.; Zhang, H.; Xu, L.; Wang, Y.; Zhai, C.; Hao, E. Apigenin Alleviates Endotoxin-Induced Myocardial Toxicity by Modulating Inflammation, Oxidative Stress, and Autophagy. OXID. MED. CELL LONGEV. 2017, 2017, 1–10. DOI: 10.1155/2017/2302896.
  • Liu, H.-J.; Fan, Y.-L.; Liao, H.-H.; Liu, Y.; Chen, S.; Ma, Z.-G.; Zhang, N.; Yang, Z.; Deng, W.; Tang, Q.-Z. Apigenin Alleviates STZ-Induced Diabetic Cardiomyopathy. Mol. Cell. Biochem. 2017, 428(1–2), 9–21. DOI: 10.1007/s11010-016-2913-9.
  • Ren, K.; Jiang, T.; Zhou, H.-F.; Liang, Y.; Zhao, G.-J. Apigenin Retards Atherogenesis by Promoting ABCA1-Mediated Cholesterol Efflux and Suppressing Inflammation. Cell. Physiol. Biochem. 2018, 47(5), 2170–2184. DOI: 10.1159/000491528.
  • Zhou, Z.; Zhang, Y.; Lin, L.; Zhou, J. Apigenin Suppresses the Apoptosis of H9C2 Rat Cardiomyocytes Subjected to Myocardial Ischemia‑Reperfusion Injury via Upregulation of the PI3K/Akt Pathway. Mol. Med. Rep. 2018, 18(2), 1560–1570. DOI: 10.3892/mmr.2018.9115.
  • Gutiérrez-Venegas, G.; González-Rosas, Z. Apigenin Reduce Lipoteichoic Acid-Induced Inflammatory Response in Rat Cardiomyoblast Cells. Arch. Pharm. Res. 2017, 40(2), 240–249. DOI: 10.1007/s12272-016-0756-2.
  • Mahajan, U. B.; Chandrayan, G.; Patil, C. R.; Arya, D. S.; Suchal, K.; Agrawal, Y. O.; Ojha, S.; Goyal, S. N. The Protective Effect of Apigenin on Myocardial Injury in Diabetic Rats Mediating Activation of the PPAR-γ Pathway. Int. J. Mol. Sci. 2017, 18(4), 756. DOI: 10.3390/ijms18040756.
  • Feng, Y.; Lu, Y.; Liu, D.; Zhang, W.; Liu, J.; Tang, H.; Zhu, Y. Apigenin-7-O-β-D-(-6 ″-P-Coumaroyl)-Glucopyranoside Pretreatment Attenuates Myocardial Ischemia/Reperfusion Injury via Activating AMPK Signaling. Life. sci. 2018, 203, 246–254. DOI: 10.1016/j.lfs.2018.04.048.
  • Zeng, P.; Liu, B.; Wang, Q.; Fan, Q.; Diao, J.-X.; Tang, J.; Fu, X.-Q.; Sun, X.-G. Apigenin Attenuates Atherogenesis Through Inducing Macrophage Apoptosis via Inhibition of AKT Ser473 Phosphorylation and Downregulation of Plasminogen Activator Inhibitor-2. OXID. MED. CELL LONGEV. 2015, 2015, 1–12. DOI: 10.1155/2015/379538.
  • Wang, P.; Sun, J.; Lv, S.; Xie, T.; Wang, X. Apigenin Alleviates Myocardial Reperfusion Injury in Rats by Downregulating MiR-15b. Med. Sci. Monit. 2019, 25, 2764. DOI: 10.12659/MSM.912014.
  • He, Y.; Fang, X.; Shi, J.; Li, X.; Xie, M.; Liu, X. Apigenin Attenuates Pulmonary Hypertension by Inducing Mitochondria-Dependent Apoptosis of PASMCs via Inhibiting the Hypoxia Inducible Factor 1α–KV1. 5 Channel Pathway. Chem. Biol. Interact. 2020, 317, 108942. DOI: 10.1016/j.cbi.2020.108942.
  • Jing, Y.; Chen, R.; Dong, M.; Liu, Y.; Hou, X.; Guo, P.; Li, W.; Lv, J.; Zhang, M. Apigenin Relaxes Rat Intrarenal Arteries, Depresses Ca2±activated Cl− Currents and Augments Voltage-Dependent K+ Currents of the Arterial Smooth Muscle Cells. Biomed. Pharmacother. 2019, 115, 108926. DOI: 10.1016/j.biopha.2019.108926.
  • Yao, H.; Jia, Y.; Xue, Z.; Guo, M.; Lyu, J. Effects of Apigenin on Lipopolysaccharide Induced Proliferation of Rat Aortic Vascular Smooth Muscle Cells. Zhonghua. Xin Xue Guan Bing Za Zhi. 2017, 45(4), 323–328. DOI: 10.3760/cma.j.issn.0253-3758.2017.04.013.
  • Zhang, T.; Yan, T.; Du, J.; Wang, S.; Yang, H. Apigenin Attenuates Heart Injury in Lipopolysaccharide-Induced Endotoxemic Model by Suppressing Sphingosine Kinase 1/Sphingosine 1-Phosphate Signaling Pathway. Chem. Biol. Interact. 2015, 233, 46–55. DOI: 10.1016/j.cbi.2014.12.021.
  • Chen, C.; He, H.; Luo, Y.; Zhou, M.; Yin, D.; He, M. Involvement of Bcl-2 Signal Pathway in the Protective Effects of Apigenin on Anoxia/reoxygenation-Induced Myocardium Injury. J. Cardiovasc. Pharmacol. 2016, 67(2), 152–163. DOI: 10.1097/FJC.0000000000000331.
  • Yang, X.; Yang, J.; Hu, J.; Li, X.; Zhang, X.; Li, Z. Apigenin Attenuates Myocardial Ischemia/Reperfusion Injury via the Inactivation of p38 Mitogen‑Activated Protein Kinase. Mol. Med. Rep. 2015, 12(5), 6873–6878. DOI: 10.3892/mmr.2015.4293.
  • Li, W.; Chen, L.; Xiao, Y. Apigenin Protects Against Ischemia-/hypoxia-Induced Myocardial Injury by Mediating Pyroptosis and Apoptosis. Vitro Cell. Dev. Biol. Animal. 2020, 56(4), 307–312. DOI: 10.1007/s11626-020-00434-9.
  • Nayaka, H. B.; Londonkar, R. L.; Umesh, M. K.; Tukappa, A. Antibacterial Attributes of Apigenin, Isolated from Portulaca oleracea L. Int. J. Bacteriol. 2014, 2014, 175851. DOI: 10.1155/2014/175851.
  • Ollila, F.; Halling, K.; Vuorela, P.; Vuorela, H.; Slotte, J. P. Characterization of Flavonoid–Biomembrane Interactions. Arch. Biochem. Biophys. 2002, 399(1), 103–108. DOI: 10.1006/abbi.2001.2759.
  • Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochem. Rev. 2019, 18(1), 241–272. DOI: 10.1007/s11101-018-9591-z.
  • Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial Activities of Flavonoids: Structure-Activity Relationship and Mechanism. Curr. Med. Chem. 2015, 22(1), 132–149. DOI: 10.2174/0929867321666140916113443.
  • Lee, J.-H.; Regmi, S. C.; Kim, J.-A.; Cho, M. H.; Yun, H.; Lee, C.-S.; Lee, J. Apple Flavonoid Phloretin Inhibits Escherichia coli O157: H7 Biofilm Formation and Ameliorates Colon Inflammation in Rats. Infect. Immun. 2011, 79(12), 4819–4827. DOI: 10.1128/IAI.05580-11.
  • Banerjee, K.; Banerjee, S.; Das, S.; Mandal, M. Probing the Potential of Apigenin Liposomes in Enhancing Bacterial Membrane Perturbation and Integrity Loss. J. Colloid. Interface. Sci. 2015, 453, 48–59. DOI: 10.1016/j.jcis.2015.04.030.
  • Nabavi, S. F.; Khan, H.; D’onofrio, G.; Šamec, D.; Shirooie, S.; Dehpour, A. R.; Argüelles, S.; Habtemariam, S.; Sobarzo-Sanchez, E. Apigenin as Neuroprotective Agent: Of Mice and Men. Pharmacol. Res. 2018, 128, 359–365. DOI: 10.1016/j.phrs.2017.10.008.
  • Balez, R.; Steiner, N.; Engel, M.; Muñoz, S. S.; Lum, J. S.; Wu, Y.; Wang, D.; Vallotton, P.; Sachdev, P.; O’Connor, M. Neuroprotective Effects of Apigenin Against Inflammation, Neuronal Excitability and Apoptosis in an Induced Pluripotent Stem Cell Model of Alzheimer’s Disease. Sci. Rep. 2016, 6(1), 1–16. DOI: 10.1038/srep31450.
  • Sang, Z.; Wang, K.; Shi, J.; Cheng, X.; Zhu, G.; Wei, R.; Ma, Q.; Yu, L.; Zhao, Y.; Tan, Z. Apigenin-Rivastigmine Hybrids as Multi-Target-Directed Liagnds for the Treatment of Alzheimer’s Disease. Eur. J. Med. Chem. 2020, 187, 111958. DOI: 10.1016/j.ejmech.2019.111958.
  • Kim, M.; Jung, J.; Jeong, N. Y.; Chung, H.-J. The Natural Plant Flavonoid Apigenin is a Strong Antioxidant That Effectively Delays Peripheral Neurodegenerative Processes. Anat. Sci. Int. 2019, 94(4), 285–294. DOI: 10.1007/s12565-019-00486-2.
  • Zhao, F.; Dang, Y.; Zhang, R.; Jing, G.; Liang, W.; Xie, L.; Li, Z. Apigenin Attenuates Acrylonitrile-Induced Neuro-Inflammation in Rats: Involved of Inactivation of the TLR4/NF-Κb Signaling Pathway. Int. Immunopharmacol. 2019, 75, 105697. DOI: 10.1016/j.intimp.2019.105697.
  • Zhao, L.; Wang, J.-L.; Liu, R.; Li, X.-X.; Li, J.-F.; Zhang, L. Neuroprotective, Anti-Amyloidogenic and Neurotrophic Effects of Apigenin in an Alzheimer’s Disease Mouse Model. Molecules. 2013, 18(8), 9949–9965. DOI: 10.3390/molecules18089949.
  • Dourado, N. S.; dos Santos Souza, C.; de Almeida, M. M. A.; da Silva, A. B.; Dos Santos, B. L.; Silva, V. D. A.; De Assis, A. M.; da Silva, J. S.; Souza, D. O.; Costa, M. D. F. D. Neuroimmunomodulatory and Neuroprotective Effects of the Flavonoid Apigenin in in vitro Models of Neuroinflammation Associated with Alzheimer’s Disease. Front. Aging Neurosci. 2020, 12, 12. DOI: 10.3389/fnagi.2020.00119.
  • Nikbakht, F.; Khadem, Y.; Haghani, S.; Hoseininia, H.; Sadat, A. M.; Heshemi, P.; Jamali, N. Protective Role of Apigenin Against Aβ25-35 Toxicity via Inhibition of Mitochondrial Cytochrome C Release. Basic Clin. Neurosci. J. 2019, 10(6), 557. DOI: 10.32598/bcn.9.10.385.
  • Liu, W.; Kong, S.; Xie, Q.; Su, J.; Li, W.; Guo, H.; Li, S.; Feng, X.; Su, Z.; Xu, Y., et al. Protective Effects of Apigenin Against 1-Methyl-4-Phenylpyridinium Ion‑Induced Neurotoxicity in PC12 Cells. Int. J. Mol. Med. 2015, 35(3), 739–746. DOI: 10.3892/ijmm.2014.2056.
  • Anusha, C.; Sumathi, T.; Joseph, L. D. Protective Role of Apigenin on Rotenone Induced Rat Model of Parkinson’s Disease: Suppression of Neuroinflammation and Oxidative Stress Mediated Apoptosis. Chem. Biol. Interact. 2017, 269, 67–79. DOI: 10.1016/j.cbi.2017.03.016.
  • Patil, S. P.; Jain, P. D.; Sancheti, J. S.; Ghumatkar, P. J.; Tambe, R.; Sathaye, S. RETRACTED: Neuroprotective and Neurotrophic Effects of Apigenin and Luteolin in MPTP Induced Parkinsonism in Mice. Neuropharmacology. 2014, 86, 192–202. DOI: 10.1016/j.neuropharm.2014.07.012.
  • Izzi, V.; Masuelli, L.; Tresoldi, I.; Sacchetti, P.; Modesti, A.; Galvano, F.; Bei, R. The Effects of Dietary Flavonoids on the Regulation of Redox Inflammatory Networks. Front. Biosci. 2012, 17(7), 2396–2418. DOI: 10.2741/4061.
  • Kim, S.; Joo, Y.-E. Theaflavin Inhibits LPS-Induced IL-6, MCP-1, and ICAM-1 Expression in Bone Marrow-Derived Macrophages Through the Blockade of NF-Κb and MAPK Signaling Pathways. Chonnam Med. J. 2011, 47(2), 104. DOI: 10.4068/cmj.2011.47.2.104.
  • Nicholas, C.; Batra, S.; Vargo, M. A.; Voss, O. H.; Gavrilin, M. A.; Wewers, M. D.; Guttridge, D. C.; Grotewold, E.; Doseff, A. I. Apigenin Blocks Lipopolysaccharide-Induced Lethality in vivo and Proinflammatory Cytokines Expression by Inactivating NF-Κb Through the Suppression of p65 Phosphorylation. J. Immunol. 2007, 179(10), 7121–7127. DOI: 10.4049/jimmunol.179.10.7121.
  • Jeong, G.-S.; Lee, S.-H.; Jeong, S.-N.; Kim, Y.-C.; Kim, E.-C. Anti-Inflammatory Effects of Apigenin on Nicotine-And Lipopolysaccharide-Stimulated Human Periodontal Ligament Cells via Heme Oxygenase-1. Int. Immunopharmacol. 2009, 9(12), 1374–1380. DOI: 10.1016/j.intimp.2009.08.015.
  • Zhang, X.; Wang, G.; Gurley, E. C.; Zhou, H. Flavonoid Apigenin Inhibits Lipopolysaccharide-Induced Inflammatory Response Through Multiple Mechanisms in Macrophages. Plos One. 2014, 9(9), e107072. DOI: 10.1371/journal.pone.0107072.
  • Aggarwal, B. B.; Vijayalekshmi, R.; Sung, B. Targeting Inflammatory Pathways for Prevention and Therapy of Cancer: Short-Term Friend, Long-Term Foe. Clin. Cancer Res. 2009, 15(2), 425–430. DOI: 10.1158/1078-0432.CCR-08-0149.
  • Woo, E.-R.; Pokharel, Y. R.; Yang, J. W.; Lee, S. Y.; Kang, K. W. Inhibition of Nuclear Factor-Κb Activation by 2′, 8 ″-Biapigenin. Biol. Pharm. Bull. 2006, 29(5), 976–980. DOI: 10.1248/bpb.29.976.
  • Kowalski, J.; Samojedny, A.; Paul, M.; Pietsz, G.; Wilczok, T. Effect of Apigenin, Kaempferol and Resveratrol on the Expression of Interleukin-1beta and Tumor Necrosis Factor-Alpha Genes in J774. 2 Macrophages. Pharmacol. Rep. 2005, 57(3), 390–394.
  • Seo, H.-S.; Sikder, M. A.; Lee, H. J.; Ryu, J.; Lee, C. J. Apigenin Inhibits Tumor Necrosis Factor-α-Induced Production and Gene Expression of Mucin Through Regulating Nuclear Factor-Kappa B Signaling Pathway in Airway Epithelial Cells. Biomol. Ther. 2014, 22(6), 525. DOI: 10.4062/biomolther.2014.094.
  • Xu, C.; Shen, G.; Chen, C.; Gélinas, C.; Kong, A. N. Suppression of NF-kappaB and NF-kappaB-Regulated Gene Expression by Sulforaphane and PEITC Through IkappaBalpha, IKK Pathway in Human Prostate Cancer PC-3 Cells. Oncogene. 2005, 24(28), 4486–4495. DOI: 10.1038/sj.onc.1208656.
  • Pei, Y.; Yang, L.; Wu, L.; He, H.; Geng, G.; Xu, D.; Chen, H.; Li, Q. Combined Effect of Apigenin and Ferulic Acid on Frozen‐Thawed Boar Sperm Quality. Anim. Sci. J. 2018, 89(7), 956–965. DOI: 10.1111/asj.13009.
  • Dang, Y.; Li, Z.; Luo, B.; Pan, L.; Wei, Q.; Zhang, Y. Protective Effects of Apigenin Against Acrylonitrile-Induced Subchronic Sperm Injury in Rats. Food. Chem. Toxicol. 2017, 109, 517–525. DOI: 10.1016/j.fct.2017.09.025.
  • Shi, X.; Liu, S.; Chen, Y.; Li, F.; Xue, H.; Dang, Y.; Li, Z. Apigenin Affects Semen Parameters in Male Mice. Zhonghua. nan ke xue. 2010, 16(9), 778–782.
  • Pang, L.; Zou, S.; Shi, Y.; Mao, Q.; Chen, Y. Apigenin Attenuates PM2. 5-Induced Airway Hyperresponsiveness and Inflammation by Down-Regulating NF-Κb in Murine Model of Asthma. Int. J. Clin. Exp. Pathol. 2019, 12(10)), 3700.
  • Chen, L.; Zhao, W. Apigenin Protects Against Bleomycin‑Induced Lung Fibrosis in Rats. Exp. Ther. Med. 2016, 11(1), 230–234. DOI: 10.3892/etm.2015.2885.
  • Li, K.-C.; Ho, Y.-L.; Hsieh, W.-T.; Huang, S.-S.; Chang, Y.-S.; Huang, G.-J. Apigenin-7-Glycoside Prevents LPS-Induced Acute Lung Injury via Downregulation of Oxidative Enzyme Expression and Protein Activation Through Inhibition of MAPK Phosphorylation. Int. J. Mol. Sci. 2015, 16(1), 1736–1754. DOI: 10.3390/ijms16011736.
  • Li, R.-R.; Pang, L.-L.; Du, Q.; Shi, Y.; Dai, W.-J.; Yin, K.-S. Apigenin Inhibits Allergen-Induced Airway Inflammation and Switches Immune Response in a Murine Model of Asthma. Immunopharmacol. Immunotoxicol. 2010, 32(3), 364–370. DOI: 10.3109/08923970903420566.
  • Choi, J.-R.; Lee, C.-M.; Jung, I. D.; Lee, J. S.; Jeong, Y.-I.; Chang, J. H.; Park, H.-J.; Choi, I.-W.; Kim, J.-S.; Shin, Y. K., et al. Apigenin Protects Ovalbumin-Induced Asthma Through the Regulation of GATA-3 Gene. Int. Immunopharmacol. 2009, 9(7–8), 918–924. DOI: 10.1016/j.intimp.2009.03.018.
  • Pang, L.; Li, R.; Zhou, L. Inhibitory Effects of Apigenin on the Expression of GATA-3 and Th2 Cytokines in Asthmatic Mice. Zhongguo. Zhong Xi Yi Jie He Za Zhi. 2010, 30(4), 383–387.
  • Avallone, R.; Zanoli, P.; Puia, G.; Kleinschnitz, M.; Schreier, P.; Baraldi, M. Pharmacological Profile of Apigenin, a Flavonoid Isolated from Matricaria Chamomilla. Biochem. Pharmacol. 2000, 59(11), 1387–1394. DOI: 10.1016/S0006-2952(00)00264-1.
  • Weng, L.; Guo, X.; Li, Y.; Yang, X.; Han, Y. Apigenin Reverses Depression-Like Behavior Induced by Chronic Corticosterone Treatment in Mice. Eur. J. Pharmacol. 2016, 774, 50–54. DOI: 10.1016/j.ejphar.2016.01.015.
  • Nakazawa, T.; Yasuda, T.; Ueda, J.; Ohsawa, K. Antidepressant-Like Effects of Apigenin and 2, 4, 5-Trimethoxycinnamic Acid from Perilla Frutescens in the Forced Swimming Test. Biol. Pharm. Bull. 2003, 26(4), 474–480. DOI: 10.1248/bpb.26.474.
  • Han, X. H.; Hong, S. S.; Hwang, J. S.; Lee, M. K.; Hwang, B. Y.; Ro, J. S. Monoamine Oxidase Inhibitory Components from Cayratia Japonica. Arch. Pharm. Res. 2007, 30(1), 13–17. DOI: 10.1007/BF02977772.
  • Chaurasiya, N. D.; Ibrahim, M. A.; Muhammad, I.; Walker, L. A.; Tekwani, B. L. Monoamine Oxidase Inhibitory Constituents of Propolis: Kinetics and Mechanism of Inhibition of Recombinant Human MAO-A and MAO-B. Molecules. 2014, 19(11), 18936–18952. DOI: 10.3390/molecules191118936.
  • Yi, L.-T.; Li, J.-M.; Li, Y.-C.; Pan, Y.; Xu, Q.; Kong, L.-D. Antidepressant-Like Behavioral and Neurochemical Effects of the Citrus-Associated Chemical Apigenin. Life. sci. 2008, 82(13–14), 741–751. DOI: 10.1016/j.lfs.2008.01.007.
  • Li, R.; Zhao, D.; Qu, R.; Fu, Q.; Ma, S. The Effects of Apigenin on Lipopolysaccharide-Induced Depressive-Like Behavior in Mice. Neurosci. Lett. 2015, 594, 17–22. DOI: 10.1016/j.neulet.2015.03.040.
  • Leach, M. J.; Page, A. T. Herbal Medicine for Insomnia: A Systematic Review and Meta-Analysis. Sleep Med. Rev. 2015, 24, 1–12. DOI: 10.1016/j.smrv.2014.12.003.
  • Zick, S. M.; Wright, B. D.; Sen, A.; Arnedt, J. T. Preliminary Examination of the Efficacy and Safety of a Standardized Chamomile Extract for Chronic Primary Insomnia: A Randomized Placebo-Controlled Pilot Study. BMC Compl. Alternative Med. 2011, 11(1), 1–8. DOI: 10.1186/1472-6882-11-78.
  • Das, S.; Das, J.; Paul, A.; Samadder, A.; Khuda-Bukhsh, A. R. Apigenin, a Bioactive Flavonoid from Lycopodium Clavatum, Stimulates Nucleotide Excision Repair Genes to Protect Skin Keratinocytes from Ultraviolet B-Induced Reactive Oxygen Species and DNA Damage. J. Acupunct. Meridian Stud. 2013, 6(5), 252–262. DOI: 10.1016/j.jams.2013.07.002.
  • Choi, S.; Youn, J.; Kim, K.; Joo, D. H.; Shin, S.; Lee, J.; Lee, H. K.; An, I.-S.; Kwon, S.; Youn, H. J. Apigenin Inhibits UVA-Induced Cytotoxicity in vitro and Prevents Signs of Skin Aging in vivo. Int. J. Mol. Med. 2016, 38(2), 627–634. DOI: 10.3892/ijmm.2016.2626.
  • Tong, X.; Mirzoeva, S.; Veliceasa, D.; Bridgeman, B. B.; Fitchev, P.; Cornwell, M. L.; Crawford, S. E.; Pelling, J. C.; Volpert, O. V. Chemopreventive Apigenin Controls UVB-Induced Cutaneous Proliferation and Angiogenesis Through HuR and Thrombospondin-1. Oncotarget. 2014, 5(22), 11413. DOI: 10.18632/oncotarget.2551.
  • Sun, Y.-S.; Qu, W. Dietary Apigenin Promotes Lipid Catabolism, Thermogenesis, and Browning in Adipose Tissues of HFD-Fed Mice. Food. Chem. Toxicol. 2019, 133, 110780. DOI: 10.1016/j.fct.2019.110780.