157
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The triggering pathway, the metabolic amplifying pathway, and cellular transduction in regulation of glucose-dependent biphasic insulin secretion

ORCID Icon &
Received 07 Aug 2023, Accepted 16 Dec 2023, Published online: 09 Jan 2024

References

  • Alam, M.R., et al., 2012. Mitochondrial Ca+2 uptake 1 (MICU1) and mitochondrial ca+2 uniporter (MCU) contributes to metabolism-secretion coupling in clonal pancreatic β-cells. The journal of biological chemistry, 287 (41), 34445–34454. doi: 10.1074/jbc.M112.392084.
  • Amornphimoltham, P., et al., 2011. Intravital microscopy as a tool to study drug delivery in preclinical studies. Advanced drug delivery reviews, 63 (1-2), 119–128. doi: 10.1016/j.addr.2010.09.009.
  • Ashcroft, F.M., and Rorsman, P., 2013. K(ATP) channels and islet hormone secretion: new insights and controversies. Nature reviews. endocrinology, 9 (11), 660–669. https://doi.org/10.1038/nrendo.2013.166
  • Bailey, C.J., and Barnett, A.H., 2007. Why is Exubera being withdrawn? BMJ, 335 (7630), 1156–1156. doi: 10.1136/bmj.39409.507662.94.
  • Banting, F.G., et al., 1922. Pancreatic extracts in the treatment of diabetes mellitus. Canadian medical association journal., 12 (3), 141–146.
  • Bender, K., et al., 2006. The importance of redox shuttles to pancreatic beta-cell energy metabolism and function. Biochemical society transactions, 34 (Pt 5), 811–814. [PubMed] [Google Scholar] doi: 10.1042/BST0340811.
  • Berg, J.M., et al., 2015., Glycolysis. In: Biochemistry. 8th edn. New York: W. H. Freeman and Company;. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21154/
  • Berridge, M.J., 1995. Calcium signalling and cell proliferation. Bioessays: news and reviews in molecular, cellular and developmental biology, 17 (6), 491–500. doi: 10.1002/bies.950171207.PMID: 8537925.
  • Billaudel, B., et al., 1995. Regulatory effect of 1, 25-dihydroxyvitamin D 3 on insulin release and calcium handling via the phospholipid pathway in islets from vitamin D-deficient rats. Journal of endocrinological investigation, 18, 673-682.
  • Blumentrath, J., et al., 2001. Effects of retinoids and thiazolidinediones on proliferation, insulin release, insulin mRNA, GLUT 2 transporter protein and mRNA of INS-1 cells. Cell biochemistry and function, 19 (3), 159–169. doi: 10.1002/cbf.907.
  • Briscoe, C.P., et al., 2003. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. The journal of biological chemistry, 278 (13), 11303–11311. doi: 10.1074/jbc.M211495200.
  • Bourlon, P M., et al., 1997. Modulatory role of 1, 25 dihydroxyvitamin D3 on pancreatic islet insulin release via the cyclic AMP pathway in the rat. British journal of pharmacology, 121 (4), 751–758.
  • Cabrera-Valladares, G., et al., 1999. Effect of retinoic acid on glucokinase activity and gene expression and on insulin secretion in primary cultures of pancreatic islets. Endocrinology, 140 (7), 3091–3096. doi: 10.1210/endo.140.7.6765.
  • Chakrabarty, S., and Ghos, S., 2020. Physiology of insulin secretion. RSSDI’s Insulin Monograph (A Complete Guide to Insulin Therapy) by Sanjay Agarwal. New Delhi: Jaypee brothers’ medical publishers, 1st edn, 11–23.
  • Chang-Chen, K.J., et al., 2008. Beta-cell failure as a complication of diabetes. Reviews in endocrine & metabolic disorders, 9 (4), 329–343. https://doi.org/10.1007/s11154-008-9101-5
  • Cheviet, S., et al., 2006. Tomosyn-1 is involved in a post-docking event required for pancreatic beta-cell exocytosis. Journal of cell science, 119 (Pt 14), 2912–2920. [PubMed] [Google Scholar] doi: 10.1242/jcs.03037.
  • Czech, M.P., 2017. Insulin action and resistance in obesity and type 2 diabetes. Nature medicine, 23 (7), 804–814. doi: 10.1038/nm.4350.
  • Easom, R.A., 1999. CaM kinase II: a protein kinase with extraordinary talents germane to insulin exocytosis. Diabetes, 48 (4), 675–684. Vol. No. doi: 10.2337/diabetes.48.4.675.
  • Eliasson, L., et al., 2003. SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. The journal of general physiology, 121 (3), 181–197. [PMC free article]
  • Ferrari, F., et al., 2019. Biochemical and molecular mechanisms glucose uptake stimulated by physical exercise in insulin resistance state: role of inflammation. Arquivos brasileiros de cardiologia, 113 (6), 1139–1148. PMID: 31644699; PMCID: PMC7021273. doi: 10.5935/abc.20190224.
  • Ferry, R.J., et al., 2001. Dysregulation of insulin secretion in children with congenital hyperinsulinism due to sulfonylurea receptor mutations. Diabetes, 50 (2), 322–328. doi: 10.2337/diabetes.50.2.322.
  • Fu, Z., et al., 2013. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Current diabetes reviews, 9 (1), 25–53. doi: 10.2174/157339913804143225.
  • Gauthier, B.R., and Wollheim, C.B., 2008. Synaptotagmins bind calcium to release insulin. American journal of physiology. endocrinology and metabolism, 295 (6), E1279–86. [PubMed] [Google Scholar] doi: 10.1152/ajpendo.90568.2008.
  • Goldberg, T., and Wong, E., 2015. Afrezza (insulin human) inhalation powder: a new inhaled insulin for the management of type-1 or type-2 diabetes mellitus. P & T : a peer-reviewed journal for formulary management, 40 (11), 735–741.
  • Göpel, S.O., et al., 2000. Regulation of glucagon release in mouse -cells by KATP channels and inactivation of TTX-sensitive Na+ channels. The journal of physiology, 528 (Pt 3), 509–520. doi: 10.1111/j.1469-7793.2000.00509.x.
  • Gupta, A., 2022. Direct and indirect actions of insulin: role of insulin receptor, glucose transporters (GLUTs), and sodium-glucose linked transporters (SGLTs), Understanding Insulin and Insulin Resistance, Amsterdam, The Netherlands: Elsevier, p.p 179–201 doi: 10.1016/B978-0-12-820234-0.00003-2.
  • Heinemann, L., 2011. New ways of insulin delivery. International journal of clinical practice. supplement, 170 (170), 31–46. doi: 10.1111/j.1742-1241.2010.02577.x
  • Heinemann, L., et al., 2000. Time-action profile of the long-acting insulin analog insulin glargine (HOE901) in comparison with those of NPH insulin and placebo. Diabetes care, 23 (5), 644–649. doi: 10.2337/diacare.23.5.644.
  • Helmy, M., Smith, D., and Selvarajoo, K., 2020. Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering. Metabolic engineering communications, 11, e00149. doi: 10.1016/j.mec.2020.e00149.
  • Henquin, J.C., 2000. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes, 49 (11), 1751–1760. doi: 10.2337/diabetes.49.10.1751.PMID: 11078442.
  • Henquin, J.C., 2009. Regulation of insulin secretion: a matter o,f phase control and amplitude modulation. Diabetologia, 52 (5), 739–751. doi: 10.1007/s00125-009-1314-y.
  • Henquin, J.C., et al., 2006. In vivo and in vitro glucose-induced biphasic insulin secretion in the mouse: pattern and role of cytoplasmic Ca2+ and amplification signals in β-cells. Diabetes, 55 (2), 441–451. doi: 10.2337/diabetes.49.11.1751.
  • Henquin, J.C., et al., 2007. Signals and pools underlying biphasic insulin secretion. Diabetes, 51 Suppl 1, S60–S7. PMID: 11815460. doi: 10.2337/diabetes.51.2007.s60.
  • Hirsch, I.B., 2005. Insulin analogues. The new England journal of medicine, 352 (2), 174–183. doi: 10.1056/NEJMra040832.
  • Hu, C., and Jia, W., 2021. Multi-omics profiling: the way towards precision medicine in metabolic diseases. Journal of molecular cell biology, 13 (8), 576–593. 18 doi: 10.1093/jmcb/mjab051.
  • Insulin basics, American diabetes association. Available from: https://www.diabetes.org/healthy-living/medication-treatments/insulin-other-injectables/insulin-basics
  • Itoh, Y., et al., 2003. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature, 422 (6928), 173–176. https://doi.org/10.1038/nature01478
  • Jitrapakdee, S., et al., 2010. Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia, 53 (6), 1019–1032. Vol. No. doi: 10.1007/s00125-010-1685-0.
  • Johnston, N.R., et al., 2016. Beta Cell Hubs Dictate Pancreatic Islet Responses to Glucose. Cell metabolism, 24 (3), 389–401. 13 doi: 10.1016/j.cmet.2016.06.020.
  • Kahn, S.E., et al., 2014. Pathophysiology, and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet (London, England), 383 (9922), 1068–1083. doi: 10.1016/S0140-6736(13)62154-6.
  • Kaihara, K.A., et al., 2013. β-Cell-specific protein kinase A activation enhances the efficiency of glucose control by increasing acute-phase insulin secretion. Diabetes, 62 (5), 1527–1536. doi: 10.2337/db12-1013.
  • Kashyap, S., et al., 2003. A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes, 52 (10), 2461–2474. https://doi.org/10.2337/diabetes.52.10.2461
  • Khan, F.A., et al., 2001. Insulin activates ATP-sensitive K(+) channels in pancreatic beta-cells through a phosphatidylinositol 3-kinase-dependent pathway. Diabetes, 50 (10), 2192–2198. doi: 10.2337/diabetes.50.10.2192.
  • Klec, C., et al., 2019. Calcium signaling in ß-cell physiology and pathology: a revisit. International journal of molecular sciences, 20 (24), 6110. doi: 10.3390/ijms20246110.
  • Krueger, K.A., et al., 1997. Calcium-stimulated phosphorylation of MAP-2 in pancreatic betaTC3-cells is mediated by Ca2+/calmodulin-dependent kinase II. The journal of biological chemistry, 272 (43), 27464–27469. Vol. No. doi: 10.1074/jbc.272.43.27464.
  • Lakhtakia, R., 2013. The history of diabetes mellitus. Sultan Qaboos University Medical Journal, 13 (3), 368–370. doi: 10.12816/0003257.
  • Lindgren, O., et al., 2015. Incretin effect after oral amino acid ingestion in humans. The Journal of clinical endocrinology and metabolism, 100 (3), 1172–1176. doi: 10.1210/jc.2014-3865
  • MacDonald, P.E., et al., 2002. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes, 51 Suppl 3, S434–S42. PMID: 12475787. doi: 10.2337/diabetes.51.2007.s434.
  • Maechler, P., and Wollheim, C.B., 1999. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature, 402 (6762), 685–689. [PubMed] [Google Scholar] doi: 10.1038/45280.
  • Martins-de-Souza, D., 2014. Proteomics, metabolomics, and protein interactomics in the characterization of the molecular features of major depressive disorder. Dialogues in Clinical Neuroscience, 16 (1), 63–73. doi: 10.31887/DCNS.2014.16.1/dmartins.
  • Matschinsky, F.M., 1996. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes, 45 (2), 223–241. Vol. No. doi: 10.2337/diab.45.2.223.
  • Matsumoto, K., et al., 1995. Ca2+/calmodulin-dependent protein kinase II and synapsin I-like protein in mouse insulinoma MIN6 cells. Endocrinology, 136 (9), 3784–3793. Vol. No. doi: 10.1210/endo.136.9.7649085.
  • Mericq, V., et al., 2005. Longitudinal changes in insulin sensitivity and secretion from birth to age three years in small- and appropriate-for-gestational-age children. Diabetologia, 48 (12), 2609–2614. doi: 10.1007/s00125-005-0036-z.
  • Midkiff, D., and San-Miguel, A., 2019. Microfluidic technologies for high throughput screening through sorting and on-chip culture of C. elegans. Molecules (Basel, Switzerland), 24 (23), 4292. 25 doi: 10.3390/molecules24234292.
  • Mochly-Rosen, D., et al., 2012. Protein kinase C, an elusive therapeutic target? Nature reviews. drug discovery, 11 (12), 937–957. PMID: 22596225. doi: 10.1038/nrd3871.
  • Nelson, D.L., and Cox, M.M., Lehninger Principles of Biochemistry. 7th edn. New York: W. H. Freeman and Company; 2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK22363/
  • Newsholme, E.A., et al., 1985. The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Bioscience reports, 5 (5), 393–400. doi: 10.1007/BF01119535.PMID: 3893209.
  • Nielander, H.B., et al., 1995. Phosphorylation of VAMP/synaptobrevin in synaptic vesicles by endogenous protein kinases. Journal of neurochemistry, 65 (4), 1712–1720. Vol. No. doi: 10.1046/j.1471-4159.1995.65041712.x.
  • Nolan, C.J., et al., 2006. Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling. Diabetologia, 49 (9), 2120–2130. https://doi.org/10.1007/s00125-006-0305-5
  • Norman, A., et al., 2001. Different shapes of the steroid hormone 1α,25(OH)2-vitamin D3 act as agonists for two different receptors in the vitamin D endocrine system to mediate genomic and rapid responses★. Steroids, 66, 147–158.
  • Patzelt, C., et al., 1978. Detection and kinetic behavior of preproinsulin in pancreatic islets. Proceedings of the national academy of sciences of the United States of America, 75 (3), 1260–1264. https://doi.org/10.1073/pnas.75.3.1260
  • Peter, M., et al., 1998. Protein kinases, protein phosphorylation, and the regulation of insulin secretion from pancreatic β-cells. Endocrine reviews, 19 (4), 429–461. https://doi.org/10.1210/edrv.19.4.0339
  • Peter, M., et al., 2010. Persaud islet function and insulin secretion textbook of diabetes, In: R. Holt, C. Cockram, A. Flyvbjerg and B. Goldstein ,eds. 4th edn. © 2010 New Jersey: Blackwell, 87–103
  • Peterhoff, M., et al., 2003. Inhibition of insulin secretion via distinct signaling pathways in alpha2-adrenoceptor knockout mice. European journal of endocrinology, 149 (4), 343–350. doi: 10.1530/eje.0.1490343.
  • Pinu, F.R., et al., 2019. Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites. 18, 9 (4), 76. doi: 10.3390/metabo9040076.
  • Polonsky, K.S., 2012. The past 200 years in diabetes. The new England journal of medicine, 367 (14), 1332–1340. doi: 10.1056/nejmra1110560.
  • Rendell, M., 2014. Technosphere inhaled insulin (Afrezza). Drugs of today (Barcelona, Spain: 1998)), 50 (12), 813–827. doi: 10.1358/dot.2014.50.12.2233894.
  • Röder, P.V., et al., 2016. Pancreatic regulation of glucose homeostasis. Experimental and molecular medicine, 48 (3), e219–e219. doi: 10.1038/emm.2016.6.
  • Roduit, R., et al., 2004. A role for the malonyl-CoA/long-chain acyl-CoA pathway of lipid signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli. Diabetes, 53 (4), 1007–1019. doi: 10.2337/diabetes.53.4.1007.
  • Romero-Navarro, G., et al., 2006. Effect of dichlorvos on hepatic and pancreatic glucokinase activity and gene expression, and on insulin mRNA levels. Life sciences, 78(9), 1015–1020.
  • Rorsman, P., and Ashcroft, F.M., 2018. Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiological reviews, 98 (1), 117–214. doi: 10.1152/physrev.00008.2017.
  • Rorsman, P., and Braun, M., 2013. Regulation of insulin secretion in human pancreatic islets. Annual review of physiology, 75 (1), 155–179. PMID: 23190075. doi: 10.1146/annurev-physiol-030212-183754.
  • Russell, M.A., and Morgan, N., 2010. Expression and functional roles of guanylate cyclase isoforms in BRIN-BD11 beta-cells. Islets, 2 (6), 374–382. Vol. No. doi: 10.4161/isl.2.6.13917.
  • Saltiel, A.R., and Kahn, C.R., 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414 (6865), 799–806. doi: 10.1038/414799a.
  • Satoh, T., 2014. Molecular mechanisms for the regulation of insulin-stimulated glucose uptake by small guanosine triphosphatases in skeletal muscle and adipocytes. International journal of molecular sciences, 15 (10), 18677–18692. doi: 10.3390/ijms151018677.
  • Scheen, A.J., 2016. Insulinglargine 300 U/mL (Toujeo®) [INSULIN GLARGINE 300 U/mL (TOUJEO®)]. Rev Med Liege, 71 (2), 101–107.
  • Segerstolpe, Å., et al., 2016. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell metabolism, 24 (4), 593–607. doi: 10.1016/j.cmet.2016.08.020.
  • Sener, A., and Malaisse, W.J., 1980. L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature, 288 (5787), 187–189. doi: 10.1038/288187a0.
  • Siekmeier, R., and Scheuch, G., 2008. Inhaled insulin–does it become reality? Journal of physiology and pharmacology, 59 (Suppl6), 81–113.
  • Sperling, M.A., et al., 2014. Diabetes mellitus. In: M.A. Sperling, ed. Pediatric endocrinology, 4th ed. Elsevier Inc, 846–900.e1. doi: 10.1016/b978-1-4557-4858-7.00028-7.
  • Suckale, J., and Solimena, M., 2008. Pancreas islets in metabolic signaling–focus on the beta-cell. Frontiers in bioscience : a journal and virtual library, 13, 7156–7171. [PubMed] [Google Scholar] doi: 10.2741/3218.
  • Takahashi, N., et al., 1999. Post-priming actions of ATP on Ca -dependent exocytosis in pancreatic ß cells. Proceedings of the national academy of sciences of the United States of America, 96 (2), 760–765. doi: 10.1073/pnas.96.2.760.
  • Tang-Christensen, M., et al., 2001. Glucagonlignende peptid-2, en neurotransmitter med ennyopdagetrolleireguleringenaffødeindtagelsen [Glucagon-like peptide 2, a neurotransmitter with a newly discovered role in the regulation of food ingestion]. Ugeskrift for laeger, 163 (3), 287–291.
  • Thompson, B., and Satin, L.S., 2021. Beta-Cell Ion Channels and Their Role in Regulating Insulin Secretion. Comprehensive physiology, 2021 Oct 12 11 (4), 1–21. doi: 10.1002/cphy.c210004.
  • Thorens, B., 2015. Glutamate dehydrogenase in pancreatic islets: A mysterious enzyme of β-cell physiology. Diabetes, 64 (2), 364–366. doi: 10.2337/db14-1563.PMID: 25614677.
  • US food and Drug Administration 2005. Lantus. (online) available from. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/021-536_LevemirTOC.cfm
  • Vega-Monroy, L., de, M.-L. L., and Fernandez-Meji, C., 2011. Beta-cell function and failure in type 1 diabetes. Type 1 diabetes–- pathogenesis, genetics and immunotherapy. London, UK: InTech. doi: 10.5772/22089.
  • Vilches-Flores, A., et al., 2009. Biotin increases glucokinase expression via soluble guanylate cyclase/protein kinase G, adenosine triphosphate production and autocrine action of insulin in pancreatic rat islets. The journal of nutritional biochemistry,
  • Wen, P.J., et al., 2016. Phosphoinositide in neuroexocytosis and neuronal diseases. Biochimica et Biophysica Acta, Molecular and Cell Biology of Lipids., 1861 (8 Pt B), 1568–1579. doi: 10.1016/j.bbalip.2016.01.014.PMID: 26851097
  • Yang, S., et al., 2023. Organoids: The current status and biomedical applications. MedComm, 4 (3), e274. 2020. 17 doi: 10.1002/mco2.274.
  • Zhang, F., and Tzanakakis, E.S., 2017. Optogenetic regulation of insulin secretion in pancreatic β-cells. Scientific reports, 7 (1), 9357. doi: 10.1038/s41598-017-09937-0.
  • Zhang, X., et al., 2021. CRISPR/Cas9-mediated α-eNaC knockout in a murine pancreatic β-cell line. Frontiers in genetics, 12, 664799. 1 doi: 10.3389/fgene.2021.664799.
  • Zhao, Z., et al., 2022. Organoids. Nature Reviews Methods Primers, 2 (1), 94. https://doi.org/10.1038/s43586-022-00174-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.