83
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Isorhamnetin as a potential therapeutic agent for diabetes mellitus through PGK1/AKT activation

, , , , &
Received 15 Sep 2023, Accepted 20 Feb 2024, Published online: 06 Mar 2024

References

  • Akinlade, O.M., Owoyele, B.V., and Soladoye, A.O., 2021. Streptozotocin-induced type 1 and 2 diabetes in rodents: a model for studying diabetic cardiac autonomic neuropathy. African health sciences, 21 (2), 719–727. doi: 10.4314/ahs.v21i2.30.
  • Al-Ghaithi, F., et al., 2004. Biochemical effects of Citrullus colocynthis in normal and diabetic rats. Molecular and cellular biochemistry, 261 (1–2), 143–149. doi: 10.1023/B:MCBI.0000028749.63101.cc.
  • Alqudah, A., et al., 2023. Isorhamnetin reduces glucose level, inflammation, and oxidative stress in high-fat diet/streptozotocin diabetic mice model. Molecules, 28 (2), 502. doi: 10.3390/MOLECULES28020502.
  • Andrikopoulos, S., et al., 2008. Evaluating the glucose tolerance test in mice. American journal of physiology. Endocrinology and metabolism, 295 (6), E1323–E1332. doi: 10.1152/AJPENDO.90617.2008/ASSET/IMAGES/LARGE/ZH10120854970008.JPEG.
  • Ayala, J.E., et al., 2010. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Disease models & mechanisms, 3 (9–10), 525–534. doi: 10.1242/DMM.006239.
  • BU ASC Guidelines, 2023. Carbon dioxide Euthanasia for rats and mice (BU ASC Guidelines). Office of Research. Available from: https://www.bu.edu/research/ethics-compliance/animal-subjects/animal-care/euthanasia/carbon-dioxide-euthanasia-for-rats-and-mice/ [Accessed 23 October 2023].
  • Cai, R., et al., 2019. Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. Journal of clinical investigation, 129 (10), 4539–4549. doi: 10.1172/JCI129987.
  • Chabot, G.G., et al., 2010. Flavonoids in cancer prevention and therapy: chemistry, pharmacology, mechanisms of action, and perspectives for cancer drug discovery. Alternative and complementary therapies for cancer, 2010, 583. doi: 10.1007/978-1-4419-0020-3_23.
  • Cheang, W.S., et al., 2019. Resveratrol ameliorates endothelial dysfunction in diabetic and obese mice through sirtuin 1 and peroxisome proliferator-activated receptor δ. Pharmacological research, 139, 384–394. doi: 10.1016/j.phrs.2018.11.041.
  • Chen, X., et al., 2014. Terazosin activates Pgk1 and Hsp90 to promote stress resistance. Nature chemical biology, 11 (1), 19–25. doi: 10.1038/nchembio.1657.
  • Dong, G.Z., et al., 2014. AMPK activation by isorhamnetin protects hepatocytes against oxidative stress and mitochondrial dysfunction. European journal of pharmacology, 740, 634–640. doi: 10.1016/J.EJPHAR.2014.06.017.
  • Ganbold, M., et al., 2019. Isorhamnetin alleviates steatosis and fibrosis in mice with nonalcoholic steatohepatitis. Scientific reports, 9 (1), 16210. doi: 10.1038/s41598-019-52736-y.
  • Haissaguerre, M., Saucisse, N., and Cota, D., 2014. Influence of mTOR in energy and metabolic homeostasis. Molecular and cellular endocrinology, 397 (1–2), 67–77. doi: 10.1016/J.MCE.2014.07.015.
  • Haythorne, E., et al., 2019. Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells. Nature communications, 10 (1), 2474. doi: 10.1038/s41467-019-10189-x.
  • Heim, M.H., 1996. The Jak–STAT pathway: specific signal transduction from the cell membrane to the nucleus. European journal of clinical investigation, 26 (1), 1–12. doi: 10.1046/J.1365-2362.1996.103248.X.
  • Hu, W., et al., 2022. Hirsutine ameliorates hepatic and cardiac insulin resistance in high-fat diet-induced diabetic mice and in vitro models. Pharmacological research, 177, 105917. doi: 10.1016/J.PHRS.2021.105917.
  • IDF Diabetes Atlas 2022 Reports, 2023.IDF Diabetes Atlas. Available from: https://diabetesatlas.org/2022-reports/ [Accessed 6 September 2023].
  • Jamali-Raeufy, N., et al., 2019. Isorhamnetin exerts neuroprotective effects in STZ-induced diabetic rats via attenuation of oxidative stress, inflammation and apoptosis. Journal of chemical neuroanatomy, 102, 101709. doi: 10.1016/J.JCHEMNEU.2019.101709.
  • Jiang, H., et al., 2019. Quercetin and its metabolite isorhamnetin promote glucose uptake through different signalling pathways in myotubes. Scientific reports, 9 (1), 2690. doi: 10.1038/s41598-019-38711-7.
  • Kolb, H. and Martin, S., 2017. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC medicine, 15 (1), 131. doi: 10.1186/S12916-017-0901-X.
  • Lertpatipanpong, P., et al., 2021. The anti-diabetic effects of NAG-1/GDF15 on HFD/STZ-induced mice. Scientific reports, 11 (1), 15027. doi: 10.1038/s41598-021-94581-y.
  • Li, H., et al., 2019a. Ameliorating methylglyoxal-induced progenitor cell dysfunction for tissue repair in diabetes. Diabetes, 68 (6), 1287–1302. doi: 10.2337/DB18-0933.
  • Li, X., et al., 2019b. Gadofullerene nanoparticles reverse dysfunctions of pancreas and improve hepatic insulin resistance for type 2 diabetes mellitus treatment. ACS nano, 13 (8), 8597–8608. doi: 10.1021/ACSNANO.9B02050/SUPPL_FILE/NN9B02050_SI_001.PDF.
  • Liu, J., et al., 2022. Terazosin stimulates pgk1 to remedy gastrointestinal disorders. International journal of molecular sciences, 23 (1), 416. doi: 10.3390/IJMS23010416/S1.
  • Matboli, M., et al., 2021. New insight into the role of isorhamnetin as a regulator of insulin signaling pathway in type 2 diabetes mellitus rat model: molecular and computational approach. Biomedicine & pharmacotherapy = biomedecine & pharmacotherapie, 135, 111176. doi: 10.1016/J.BIOPHA.2020.111176.
  • Mohiuddin, M.S., et al., 2021. Glucagon prevents cytotoxicity induced by methylglyoxal in a rat neuronal cell line model. Biomolecules, 11 (2), 287. doi: 10.3390/BIOM11020287.
  • Morales, M. and Munné-Bosch, S., 2019. Malondialdehyde: facts and artifacts. Plant physiology, 180 (3), 1246–1250. doi: 10.1104/pp.19.00405.
  • Mosser, R.E., et al., 2015. High-fat diet-induced β-cell proliferation occurs prior to insulin resistance in C57Bl/6J male mice. American journal of physiology. Endocrinology and metabolism, 308 (7), E573–E582. doi: 10.1152/AJPENDO.00460.2014/ASSET/IMAGES/LARGE/ZH10071573230008.JPEG.
  • Odegaard, A.O., et al., 2016. Oxidative stress, inflammation, endothelial dysfunction and incidence of type 2 diabetes. Cardiovascular diabetology, 15 (1), 51. doi: 10.1186/S12933-016-0369-6/FIGURES/1.
  • Oguntibeju, O.O., 2019. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. International journal of physiology, pathophysiology and pharmacology, 11 (3), 45–63.
  • Qiu, S., et al., 2016. Involvement of the NF-κB signaling pathway in the renoprotective effects of isorhamnetin in a type 2 diabetic rat model. Biomedical reports, 4 (5), 628–634. doi: 10.3892/BR.2016.636/HTML.
  • Sajid, M., et al., 2013. Cellular biochemistry. Journal of cellular biochemistry, 114 (3), 525–531. doi: 10.1002/jcb.24402.
  • Saltiel, A.R. and Kahn, C.R., 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414 (6865), 799–806. doi: 10.1038/414799a.
  • Scott, P.H., et al., 1998. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proceedings of the national academy of sciences of the United States of America, 95 (13), 7772–7777. doi: 10.1073/PNAS.95.13.7772.
  • Simmering, J.E., et al., 2021. Association of glycolysis-enhancing α-1 blockers with risk of developing Parkinson disease. JAMA neurology, 78 (4), 407–413. doi: 10.1001/JAMANEUROL.2020.5157.
  • Song, F. and Schmidt, A.M., 2012. Glycation and insulin resistance: novel mechanisms and unique targets? Arteriosclerosis, thrombosis, and vascular biology, 32 (8), 1760–1765. doi: 10.1161/ATVBAHA.111.241877.
  • Tahrani, A.A., Barnett, A.H., and Bailey, C.J., 2016. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nature reviews. Endocrinology, 12 (10), 566–592. doi: 10.1038/nrendo.2016.86.
  • Tang, W.X., et al., 2014. Peroxisome proliferator-activated receptor-α activation protects against endoplasmic reticulum stress-induced HepG2 cell apoptosis. Molecular and cellular biochemistry, 385 (1–2), 179–190. doi: 10.1007/S11010-013-1826-0/FIGURES/6.
  • Tarry-Adkins, J.L., et al., 2021. Efficacy and side effect profile of different formulations of metformin: a systematic review and meta-analysis. Diabetes therapy, 12 (7), 1901–1914. doi: 10.1007/S13300-021-01058-2/TABLES/3.
  • Thornalley, P.J., 2003. The enzymatic defence against glycation in health, disease and therapeutics: a symposium to examine the concept. Biochemical society transactions, 31 (Pt 6), 1341–1342. doi: 10.1042/BST0311341.
  • Valko, M., et al., 2007. Free radicals and antioxidants in normal physiological functions and human disease. International journal of biochemistry & cell biology, 39 (1), 44–84. doi: 10.1016/J.BIOCEL.2006.07.001.
  • Vinayagam, R. and Xu, B., 2015. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutrition & metabolism, 12 (1), 60. doi: 10.1186/S12986-015-0057-7.
  • Vlavcheski, F., et al., 2020. Amelioration of high-insulin-induced skeletal muscle cell insulin resistance by resveratrol is linked to activation of AMPK and restoration of GLUT4 translocation. Nutrients, 12 (4), 914. doi: 10.3390/NU12040914.
  • Wang, S., et al., 2015. Insulin and mTOR pathway regulate HDAC3-mediated deacetylation and activation of PGK1. PLoS biology, 13 (9), e1002243. doi: 10.1371/JOURNAL.PBIO.1002243.
  • Wu, Y., et al., 2016. Lactate, a neglected factor for diabetes and cancer interaction. Mediators of inflammation, 2016, 6456018. doi: 10.1155/2016/6456018.
  • Xu, M., et al., 2022a. Rutaecarpine attenuates oxidative stress-induced traumatic brain injury and reduces secondary injury via the PGK1/KEAP1/NRF2 signaling pathway. Frontiers in pharmacology, 13, 807125. doi: 10.3389/FPHAR.2022.807125/BIBTEX.
  • Xu, M., et al., 2022b. Evodiamine prevents traumatic brain injury through inhibiting oxidative stress via PGK1/NRF2 pathway. Biomedicine & pharmacotherapy = biomedecine & pharmacotherapie, 153, 113435. doi: 10.1016/J.BIOPHA.2022.113435.
  • Yan, J., et al., 2018. Catalpol ameliorates hepatic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/PI3K/AKT pathway. Pharmacological research, 130, 466–480. doi: 10.1016/J.PHRS.2017.12.026.
  • Yang, H., et al., 2011. Oxidative stress and diabetes mellitus. Clinical chemistry and laboratory medicine, 49 (11), 1773–1782. doi: 10.1515/CCLM.2011.250.
  • Yang, J.H., et al., 2013. O-methylated flavonol isorhamnetin prevents acute inflammation through blocking of NF-κB activation. Food and chemical toxicology, 59, 362–372. doi: 10.1016/J.FCT.2013.05.049.
  • Yang, J.H., et al., 2014a. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes. Toxicology and applied pharmacology, 274 (2), 293–301. doi: 10.1016/J.TAAP.2013.10.026.
  • Yang, Y., et al., 2014b. Dietary Lycium barbarum polysaccharide induces Nrf2/ARE pathway and ameliorates insulin resistance induced by high-fat via activation of PI3K/AKT signaling. Oxidative medicine and cellular longevity, 2014, 145641. doi: 10.1155/2014/145641.
  • Zheng, Y., Ley, S.H., and Hu, F.B., 2017. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature reviews. Endocrinology, 14 (2), 88–98. doi: 10.1038/nrendo.2017.151.
  • Zhou, J., et al., 2023. Alfuzosin ameliorates diabetes by boosting PGK1 activity in diabetic mice. Life sciences, 321 (2022), 121622. doi: 10.1016/j.lfs.2023.121491.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.