39
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Hydrogen sulfide protects the endometrium in a rat model of type 1 diabetes via modulation of PPARγ/mTOR and Nrf-2/NF-κb pathways

ORCID Icon, & ORCID Icon
Received 17 Dec 2023, Accepted 19 Apr 2024, Published online: 29 Apr 2024

References

  • Abdel-Hamid, H.A., et al., 2023. Leptin alleviated ovarian ischemia-reperfusion injury in rats via modulation of Sirt-1/Nrf2 and TLR4/NF-kB/caspase-3 signaling pathways. Endocrine Regulations, 57 (1), 25–36. doi: 10.2478/enr-2023-0004.
  • Al-Jarrah, M., et al., 2010. Exercise training prevents endometrial hyperplasia and biomarkers for endometrial cancer in rat model of type 1 diabetes. Journal of Clinical Medicine Research, 2 (5), 207–214. doi: 10.4021/jocmr444e.
  • Aroca, A., and Gotor, C., 2022. Hydrogen sulfide: a key role in autophagy regulation from plants to mammalians. Antioxidants, 11 (2), 327. doi: 10.3390/antiox11020327.
  • Avula, L. 2014., Investigating the role of tumour derived hydrogen sulphide and its dynthases in endometrial cancer tumourigenesis. Master of Philosophy thesis, University of Liverpool.
  • Bahadoran, Z., et al., 2022. Association between serum hydrogen sulfide concentrations and dysglycemia: a population-based study. BMC Endocrine Disorders, 22 (1), 79. doi: 10.1186/s12902-022-00995-8.
  • Binmahfouz, L.S., et al., 2022. Piceatannol SNEDDS attenuates estradiol-induced endometrial hyperplasia in rats by modulation of NF-κB and Nrf2/HO-1 axes. Nutrients, 14 (9), 1891. doi: 10.3390/nu14091891.
  • Buchwalow, I. B., and Böcker, W., 2010. Immunohistochemistry: basics and methods. Berlin, Heidelberg: Springer Science & Business Media.
  • Byrne, F.L., et al., 2020. The role of hyperglycemia in endometrial cancer pathogenesis. Cancers, 12 (5), 1191. doi: 10.3390/cancers12051191.
  • Cheng, Z., and Kishore, R., 2020. Potential role of hydrogen sulfide in diabetes-impaired angiogenesis and ischemic tissue repair. Redox Biology, 37, 101704. doi: 10.1016/j.redox.2020.101704.
  • Cirino, G., Szabo, C., and Papapetropoulos, A., 2023. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiological Reviews, 103 (1), 31–276. doi: 10.1152/physrev.00028.2021.
  • Citi, V., et al., 2021. Role of hydrogen sulfide in endothelial dysfunction: pathophysiology and therapeutic approaches. Journal of Advanced Research, 27, 99–113. doi: 10.1016/j.jare.2020.05.015.
  • Driva, T.S., et al., 2022. The role of mTOR and eIF signaling in benign endometrial diseases. International Journal of Molecular Sciences, 23 (7), 3416. doi: 10.3390/ijms23073416.
  • Dugbartey, G.J., et al., 2022. Activation of renal CSE/H2S pathway by alpha-lipoic acid protects against histological and functional changes in the diabetic kidney. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 153, 113386. doi: 10.1016/j.biopha.2022.113386.
  • Han, J., et al., 2015. Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signaling. Gynecologic Oncology, 138 (3), 668–675. doi: 10.1016/j.ygyno.2015.06.036.
  • Hussain Lodhi, A., et al., 2021. Role of oxidative stress and reduced endogenous hydrogen sulfide in diabetic nephropathy. Drug Design, Development and Therapy, 15, 1031–1043. doi: 10.2147/DDDT.S291591.
  • Ibrahim, M.F.G., and Allam, F.A.F.A., 2022. Potential stem cell-conditioned medium and their derived exosomes versus omeprazole in treatment of experimental model of gastric ulcer. Acta Histochemica, 124 (4), 151896. doi: 10.1016/j.acthis.2022.151896.
  • Jia, Q., et al., 2018. Effects of hydrogen sulfide on renal fibrosis in diabetic rats and its mechanism. Zhongguo Ying Yong Sheng li Xue za Zhi = Zhongguo Yingyong Shenglixue Zazhi = Chinese Journal of Applied Physiology, 34 (6), 572–576.
  • Kaziród, K., et al., 2022. Hydrogen sulfide as a therapeutic option for the treatment of Duchenne muscular dystrophy and other muscle-related diseases. Cellular and Molecular Life Sciences: CMLS, 79 (12), 608. doi: 10.1007/s00018-022-04636-0.
  • Kökény, G., Calvier, L., and Hansmann, G. 2021. PPARγ and TGFβ-major regulators of metabolism, inflammation, and fibrosis in the lungs and kidneys. International Journal of Molecular Sciences, 22 (19), 10431. doi: 10.3390/ijms221910431.
  • Lei, S., et al., 2018. H2S promotes proliferation of endometrial stromal cells via activating the NF-κB pathway in endometriosis. American Journal of Translational Research, 10 (12), 4247.
  • Li, H., et al., 2022. The DR1-CSE/H 2 S system inhibits renal fibrosis by downregulating the ERK1/2 signaling pathway in diabetic mice. International Journal of Molecular Medicine, 49 (1), 1–10. doi: 10.3892/ijmm.2021.5062.
  • Li, Y., et al., 2020. Exogenous hydrogen sulfide ameliorates diabetic myocardial fibrosis by inhibiting cell aging through SIRT6/AMPK autophagy. Frontiers in Pharmacology, 11, 1150. doi: 10.3389/fphar.2020.01150.
  • Ling, S., et al., 2023. Inequalities in cancer mortality trends in people with type 2 diabetes: 20 year population-based study in England. Diabetologia, 66 (4), 657–673. doi: 10.1007/s00125-022-05854-8.
  • Liu, M.-H., Lin, X.-L., and Xiao, L.-L., 2023. Hydrogen sulfide attenuates TMAO-induced macrophage inflammation through increased SIRT1 sulfhydration. Molecular Medicine Reports, 28 (1), 1–11. doi: 10.3892/mmr.2023.13016.
  • Liu, Y., Wang, J., and Zhang, X., 2022. An update on the multifaceted role of NF-kappaB in endometriosis. International Journal of Biological Sciences, 18 (11), 4400–4413. doi: 10.7150/ijbs.72707.
  • Mello, A.H. d., et al., 2022. Hydrogen sulfide donor GYY4137 rescues NRF2 activation in respiratory syncytial virus infection. Antioxidants, 11 (7), 1410. doi: 10.3390/antiox11071410.
  • Mohammad, G., Radhakrishnan, R., and Kowluru, R.A., 2020. Hydrogen sulfide: a potential therapeutic target in the development of diabetic retinopathy. Investigative Ophthalmology & Visual Science, 61 (14), 35. doi: 10.1167/iovs.61.14.35.
  • Morsy, M.A., et al., 2021. Protective effects of irbesartan, an angiotensin receptor blocker with PPARγ agonistic activity, against estradiol benzoate-induced endometrial hyperplasia and atypia in female rats via modulation of TNFα/survivin pathway. Pharmaceuticals, 14 (7), 649. doi: 10.3390/ph14070649.
  • Ngowi, E.E., et al., 2021. Role of hydrogen sulfide donors in cancer development and progression. International Journal of Biological Sciences, 17 (1), 73–88. doi: 10.7150/ijbs.47850.
  • Pérez-Martín, A.R., et al., 2022. Impact of metabolic syndrome on the risk of endometrial cancer and the role of lifestyle in prevention. Bosnian Journal of Basic Medical Sciences, 22 (4), 499–510. doi: 10.17305/bjbms.2021.6963.
  • Qi, Q.-R., et al., 2020. Enhanced stromal cell CBS-H2S production promotes estrogen-stimulated human endometrial angiogenesis. Endocrinology, 161 (11), 1–14. doi: 10.1210/endocr/bqaa176.
  • Roberti, S.L., et al., 2018. Critical role of mTOR, PPARγ and PPARδ signaling in regulating early pregnancy decidual function, embryo viability and feto-placental growth. Molecular Human Reproduction, 24 (6), 327–340. doi: 10.1093/molehr/gay013.
  • Suvarna, K. S., Layton, C., and Bancroft, J. D., 2018. Bancroft’s theory and practice of histological techniques. Amsterdam, The Netherlands: Elsevier health sciences.
  • Suzuki, K., et al., 2011. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America, 108 (33), 13829–13834. doi: 10.1073/pnas.1105121108.
  • Taniguchi, S., et al., 2011. Hydrogen sulphide protects mouse pancreatic β-cells from cell death induced by oxidative stress, but not by endoplasmic reticulum stress. British Journal of Pharmacology, 162 (5), 1171–1178. doi: 10.1111/j.1476-5381.2010.01119.x.
  • VanGuilder, H.D., Vrana, K.E., and Freeman, W.M., 2008. Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques, 44 (5), 619–626. doi: 10.2144/000112776.
  • Wang, Y., et al., 2022. Diabetes mellitus and endometrial carcinoma: risk factors and etiological links. Medicine, 101 (34), e30299. doi: 10.1097/MD.0000000000030299.
  • Yadav, J.P., et al., 2022. Cucumis melo Var. agrestis Naudin as a potent antidiabetic: investigation via experimental methods. Phytomedicine Plus, 2 (4), 100340. doi: 10.1016/j.phyplu.2022.100340.
  • Yıldırım, E., et al., 2021. The relationship between oxidative stress markers and endometrial hyperplasia: a case-control study. Turkish Journal of Obstetrics and Gynecology, 18 (4), 298–303. doi: 10.4274/tjod.galenos.2021.16132.
  • Yu, K., et al., 2022. Estrogen receptor function: impact on the human endometrium. Frontiers in Endocrinology, 13, 827724. doi: 10.3389/fendo.2022.827724.
  • Zhang, S., et al., 2021. PPARγ induces the paroxysm of endometriosis by regulating the transcription of MAT2A gene. American Journal of Translational Research, 13 (3), 1377.
  • Zhang, G., Hou, X., and Gao, S., 2015. Stimulation of peroxisome proliferator-activated receptor γ inhibits estrogen receptor α transcriptional activity in endometrial carcinoma cells. Oncology Reports, 33 (3), 1227–1234. doi: 10.3892/or.2015.3729.
  • Zhao, S., et al., 2021. Hydrogen sulfide plays an important role in diabetic cardiomyopathy. Frontiers in Cell and Developmental Biology, 9, 627336. doi: 10.3389/fcell.2021.627336.
  • Zhou, X., et al., 2020. Type 2 diabetes mellitus facilitates endometrial hyperplasia progression by activating the proliferative function of mucin O-glycosylating enzyme GALNT2. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 131, 110764. doi: 10.1016/j.biopha.2020.110764.
  • Zhou, X., et al., 2023. Natural products modulate cell apoptosis: a promising way for treating endometrial cancer. Frontiers in Pharmacology, 14, 1209412. doi: 10.3389/fphar.2023.1209412.
  • Zhu, L., et al., 2020. Hydrogen sulfide, adipose tissue and diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity: targets and Therapy, 13, 1873–1886. doi: 10.2147/DMSO.S249605.
  • Zhu, B., and Qu, S., 2022. The relationship between diabetes mellitus and cancers and its underlying mechanisms. Frontiers in Endocrinology, 13, 800995. doi: 10.3389/fendo.2022.800995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.