459
Views
21
CrossRef citations to date
0
Altmetric
Review

Genetic factors influencing the reduction of central corneal thickness in disorders affecting the eye

&
Pages 501-510 | Received 02 Sep 2016, Accepted 19 Mar 2017, Published online: 28 Apr 2017

References

  • Toh T, Liew SHM, MacKinnon JR, et al. Central corneal thickness is highly heritable: the twin eye studies. Invest Ophthalmol Vis Sci 2005;46(10):3718–3722.
  • Landers JA, Hewitt AW, Dimasi DP, et al. Heritability of central corneal thickness in nuclear families. Invest Ophthalmol Vis Sci 2009;50(9):4087–4090.
  • Galgauskas S, Juodkaite G, Tutkuvienė J. Age-related changes in central corneal thickness in normal eyes among the adult Lithuanian population. Clin Interv Aging 2014;9:1145–1151.
  • Doughty MJ, Zaman ML. Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Surv Ophthalmol 2000;44(5):367–408.
  • Ortiz S, Mena L, Rio-San Cristobal A, et al. Relationships between central and peripheral corneal thickness in different degrees of myopia. J Optom 2014;7(1):44–50.
  • Herndon LW, Weizer JS, Stinnett SS. Central corneal thickness as a risk factor for advanced glaucoma damage. Arch Ophthalmol 2004;122(1):17–21.
  • Aghaian E, Choe JE, Lin S, et al. Central corneal thickness of Caucasians, Chinese, Hispanics, Filipinos, African Americans, and Japanese in a glaucoma clinic. Ophthalmology 2004;111(12):2211–2219.
  • Leske MC, Heijl A, Hyman L, et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 2007;114(11):1965–1972.
  • Burkitt Wright EMM, Porter LF, Spencer HL, et al. Brittle cornea syndrome: recognition, molecular diagnosis and management. Orphanet J Rare Dis 2013;8:68.
  • Rabinowitz YS. Keratoconus. Surv Ophthalmol 1998;42(4):297–319.
  • Segev F, Héon E, Cole WG, et al. Structural abnormalities of the cornea and lid resulting from collagen V mutations. Invest Ophthalmol Vis Sci 2006;47(2):565–573.
  • Evereklioglu C, Madenci E, Bayazit YA, et al. Central corneal thickness is lower in osteogenesis imperfecta and negatively correlates with the presence of blue sclera. Ophthalmic Physiol Opt 2002;22(6):511–515.
  • Sanchis-Gimeno J, Casanova L, Alonso S, et al. Assessment of central corneal thickness in extreme myopic eyes. Eur J Anat 2003;7(1):15–18.
  • Al-Mezaine HS, Al-Obeidan S, Kangave D, et al. The relationship between central corneal thickness and degree of myopia among Saudi adults. Int Ophthalmol 2009;29(5):373–378.
  • Chang SW, Tsai IL, Hu FR, et al. The cornea in young myopic adults. Br J Ophthalmol 2001;85(8):916–920.
  • Kim KE, Kim MJ, Park KH, et al. Prevalence, Awareness, and Risk Factors of Primary Open-Angle Glaucoma: Korea National Health and Nutrition Examination Survey 2008-2011. Ophthalmology 2016;123(3):532–541.
  • Naderan M, Rajabi MT, Zarrinbakhsh P, et al. Effect of Allergic Diseases on Keratoconus Severity [published online March 25 2016]. Ocul Immunol Inflamm. March 2016:1–6.
  • Jafri B, Lichter H, Stulting RD. Asymmetric keratoconus attributed to eye rubbing. Cornea 2004;23(6):560–564.
  • Lin Z, Vasudevan B, Jhanji V, et al. Near work, outdoor activity, and their association with refractive error. Optom Vis Sci 2014;91(4):376–382.
  • Czepita D, Gosławski W, Mojsa A, et al., Role of light emitted by incandescent or fluorescent lamps in the development of myopia and astigmatism. Med Sci Monit 2004;10(4):CR168–171.
  • Verhoeven VJM, Buitendijk GHS, Consortium for Refractive Error and Myopia (CREAM), et al. Education influences the role of genetics in myopia. Eur J Epidemiol 2013;28(12):973–980.
  • Patwardhan AA, Khan M, Mollan SP, et al. The importance of central corneal thickness measurements and decision making in general ophthalmology clinics: a masked observational study. BMC Ophthalmol 2008;8:1.
  • Swartz MK. The PRISMA statement: a guideline for systematic reviews and meta-analyses. J Pediatr Health Care 2011;25(1):1–2.
  • Wolfs RC, Klaver CC, Vingerling JR, et al. Distribution of central corneal thickness and its association with intraocular pressure: the Rotterdam Study. Am J Ophthalmol 1997;123(6):767–772.
  • Bechmann M, Thiel MJ, Roesen B, et al. Central corneal thickness determined with optical coherence tomography in various types of glaucoma. Br J Ophthalmol 2000;84(11):1233–1237.
  • Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):714–720 discussion 829-830.
  • Day AC, Machin D, Aung T, et al. Central corneal thickness and glaucoma in East Asian people. Invest Ophthalmol Vis Sci. 2011;52(11):8407–8412.
  • Fernandez-Bahamonde JL, Roman-Rodriguez C, Fernandez-Ruiz MC. Central corneal thickness as a predictor of visual field loss in primary open angle glaucoma for a Hispanic population. Semin Ophthalmol 2011;26(1):28–32.
  • Friedman DS, Wolfs RCW, O’Colmain BJ, et al., Prevalence of open-angle glaucoma among adults in the United States. Arch Ophthalmol 2004;122(4):532–538.
  • Mushawiahti M, Syed Zulkifli SZ, Aida Zairani MZ, et al. Relationship between central corneal thickness and severity of open angle glaucoma using optical coherence tomography. Med Health 2011;6(2):107–113.
  • Shah S, Chatterjee A, Mathai M, et al. Relationship between corneal thickness and measured intraocular pressure in a general ophthalmology clinic. Ophthalmology 1999;106(11):2154–2160.
  • Wu LL, Suzuki Y, Ideta R, et al. Central corneal thickness of normal tension glaucoma patients in Japan. Jpn J Ophthalmol 2000;44(6):643–647.
  • Charlesworth J, Kramer PL, Dyer T, et al. The path to open-angle glaucoma gene discovery: endophenotypic status of intraocular pressure, cup-to-disc ratio, and central corneal thickness. Invest Ophthalmol Vis Sci 2010;51(7):3509–3514.
  • Adhikari P, Chettry P, Thapa M. Central Corneal Thickness in Nepalese Glaucoma Patients and Glaucoma Suspects. J Clin Res Ophthalmol 2015;2(1):003–006.
  • Yazdani S, Doozandeh A, Haghighat M, et al. Intrasubject Difference in CCT among POAG versus Normal Individuals. Optom Vis Sci 2015;92(8):879–883.
  • Haque S, Simpson T, Jones L. Corneal and epithelial thickness in keratoconus: a comparison of ultrasonic pachymetry, Orbscan II, and optical coherence tomography. J Refract Surg 2006;22(5):486–493.
  • Grewal DS, Brar GS, Grewal SPS. Assessment of central corneal thickness in normal, keratoconus, and post-laser in situ keratomileusis eyes using Scheimpflug imaging, spectral domain optical coherence tomography, and ultrasound pachymetry. J Cataract Refract Surg 2010;36(6):954–964.
  • Mashige KP, Oduntan OA, Gcabashe NM. Short-term variation of central corneal thickness measurements in keratoconus using the Tono-Pachymeter NT530P (TonopachyTM). S Afr Optom 2012;71(3):102–108.
  • Demir S, Ortak H, Yeter V, et al. Mapping corneal thickness using dual-scheimpflug imaging at different stages of keratoconus. Cornea 2013;32(11):1470–1474.
  • Pedersen U, Bramsen T. Central corneal thickness in osteogenesis imperfecta and otosclerosis. ORL J Otorhinolaryngol Relat Spec 1984;46(1):38–41.
  • Dimasi DP, Chen JY, Hewitt AW, et al. Novel quantitative trait loci for central corneal thickness identified by candidate gene analysis of osteogenesis imperfecta genes. Hum Genet 2010;127(1):33–44.
  • Mietz H, Kasner L, Green WR. Histopathologic and electron-microscopic features of corneal and scleral collagen fibers in osteogenesis imperfecta type III. Graefes Arch Clin Exp Ophthalmol 1997;235(7):405–410.
  • Desronvil T, Logan-Wyatt D, Abdrabou W, et al. Distribution of COL8A2 and COL8A1 gene variants in Caucasian primary open angle glaucoma patients with thin central corneal thickness. Mol Vis 2010;16:2185–2191.
  • Vithana EN, Aung T, Khor CC, et al. Collagen-related genes influence the glaucoma risk factor, central corneal thickness. Hum Mol Genet 2011;20(4):649–658.
  • Zhao Y, Jia L, Mao X, et al. siRNA-targeted COL8A1 inhibits proliferation, reduces invasion and enhances sensitivity to D-limonence treatment in hepatocarcinoma cells. IUBMB Life 2009;61(1):74–79.
  • Hopfer U, Fukai N, Hopfer H, et al. Targeted disruption of Col8a1 and Col8a2 genes in mice leads to anterior segment abnormalities in the eye. Faseb J 2005;19(10):1232–1244.
  • Puk O, Dalke C, Calzada-Wack J, et al. Reduced corneal thickness and enlarged anterior chamber in a novel ColVIIIa2G257D mutant mouse. Invest Ophthalmol Vis Sci 2009;50(12):5653–5661.
  • Williams SEI, Carmichael TR, Allingham RR, et al. The genetics of POAG in black South Africans: a candidate gene association study. Sci Rep 2015;5:8378.
  • Al-Owain M, Al-Dosari MS, Sunker A, et al. Identification of a novel ZNF469 mutation in a large family with Ehlers-Danlos phenotype. Gene 2012;511(2):447–450.
  • Rohrbach M, Spencer HL, Porter LF, et al. ZNF469 frequently mutated in the brittle cornea syndrome (BCS) is a single exon gene possibly regulating the expression of several extracellular matrix components. Mol Genet Metab 2013;109(3):289–295.
  • Abu A, Frydman M, Marek D, et al. Mapping of a gene causing brittle cornea syndrome in Tunisian jews to 16q24. Invest Ophthalmol Vis Sci 2006;47(12):5283–5287.
  • Abu A, Frydman M, Marek D, et al. Deleterious mutations in the Zinc-Finger 469 gene cause brittle cornea syndrome. Am J Hum Genet 2008;82(5):1217–1222.
  • Vitart V, Bencić G, Hayward C, et al. New loci associated with central cornea thickness include COL5A1, AKAP13 and AVGR8. Hum Mol Genet 2010;19(21):4304–4311.
  • Lu Y, Dimasi DP, Hysi PG, et al. Common genetic variants near the Brittle Cornea Syndrome locus ZNF469 influence the blinding disease risk factor central corneal thickness. Plos Genet 2010;6(5):e1000947.
  • Hoehn R, Zeller T, Verhoeven VJM, et al. Population-based meta-analysis in Caucasians confirms association with COL5A1 and ZNF469 but not COL8A2 with central corneal thickness. Hum Genet 2012;131(11):1783–1793.
  • Lu Y, Vitart V, Burdon KP, et al. Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nat Genet 2013;45(2):155–163.
  • Burkitt Wright EMM, Spencer HL, Daly SB, et al. Mutations in PRDM5 in brittle cornea syndrome identify a pathway regulating extracellular matrix development and maintenance. Am J Hum Genet 2011;88(6):767–777.
  • Karolak JA, Polakowski P, Szaflik J, et al. Molecular Screening of Keratoconus Susceptibility Sequence Variants in VSX1, TGFBI, DOCK9, STK24, and IPO5 Genes in Polish Patients and Novel TGFBI Variant Identification. Ophthalmic Genet 2016;37(1):37–43.
  • Karolak JA, Rydzanicz M, Ginter-Matuszewska B, et al. Variant c.2262A>C in DOCK9 Leads to Exon Skipping in Keratoconus Family. Invest Ophthalmol Vis Sci 2015;56(13):7687–7690.
  • Lechner J, Dash DP, Muszynska D, et al., Mutational spectrum of the ZEB1 gene in corneal dystrophies supports a genotype-phenotype correlation. Invest Ophthalmol Vis Sci 2013;54(5):3215–3223.
  • Moschos MM, Kokolakis N, Gazouli M, et al. Polymorphism Analysis of VSX1 and SOD1 Genes in Greek Patients with Keratoconus. Ophthalmic Genet 2015;36(3):213–217.
  • Li X, Bykhovskaya Y, Canedo ALC, et al. Genetic association of COL5A1 variants in keratoconus patients suggests a complex connection between corneal thinning and keratoconus. Invest Ophthalmol Vis Sci 2013;54(4):2696–2704.
  • Abu-Amero KK, Helwa I, Al-Muammar A, et al. Case-control association between CCT-associated variants and keratoconus in a Saudi Arabian population. J Negat Results Biomed 2015;14:10.
  • Malfait F, Wenstrup RJ, De Paepe A. Clinical and genetic aspects of Ehlers-Danlos syndrome, classic type. Genet Med 2010;12(10):597–605.
  • Sahebjada S, Schache M, Richardson AJ, et al. Evaluating the association between keratoconus and the corneal thickness genes in an independent Australian population. Invest Ophthalmol Vis Sci 2013;54(13):8224–8228.
  • Lechner J, Porter LF, Rice A, et al. Enrichment of pathogenic alleles in the brittle cornea gene, ZNF469, in keratoconus. Hum Mol Genet 2014;23(20):5527–5535.
  • Vincent AL, Jordan CA, Cadzow MJ, et al. Mutations in the zinc finger protein gene, ZNF469, contribute to the pathogenesis of keratoconus. Invest Ophthalmol Vis Sci 2014;55(9):5629–5635.
  • Davidson AE, Borasio E, Liskova P, et al. Brittle cornea syndrome ZNF469 mutation carrier phenotype and segregation analysis of rare ZNF469 variants in familial keratoconus. Invest Ophthalmol Vis Sci 2015;56(1):578–586.
  • Karolak JA, Gambin T, Rydzanicz M, et al. Evidence against ZNF469 being causative for keratoconus in Polish patients. Acta Ophthalmol Scand 2016;94(3):289–294.
  • Park AC, Phillips CL, Pfeiffer FM, et al. Homozygosity and Heterozygosity for Null Col5a2 Alleles Produce Embryonic Lethality and a Novel Classic Ehlers-Danlos Syndrome-Related Phenotype. Am J Pathol 2015;185(7):2000–2011.
  • Symoens S, Syx D, Malfait F, et al. Comprehensive molecular analysis demonstrates type V collagen mutations in over 90% of patients with classic EDS and allows to refine diagnostic criteria. Hum Mutat 2012;33(10):1485–1493.
  • Sykes B, Ogilvie D, Wordsworth P, et al. Consistent linkage of dominantly inherited osteogenesis imperfecta to the type I collagen loci: COL1A1 and COL1A2. Am J Hum Genet 1990;46(2):293–307.
  • Zhang X, Zhou X, Qu X. Association between COL1A1 polymorphisms and high myopia: a meta-analysis. Int J Clin Exp Med 2015;8(4):5862–5868.
  • Metlapally R, Li Y-J, Tran-Viet K-N, et al. COL1A1 and COL2A1 genes and myopia susceptibility: evidence of association and suggestive linkage to the COL2A1 locus. Invest Ophthalmol Vis Sci 2009;50(9):4080–4086.
  • Rydzanicz M, Nath SK, Sun C, et al. Identification of novel suggestive loci for high-grade myopia in Polish families. Mol Vis 2011;17:2028–2039.
  • Rydzanicz M, Nowak DM, Karolak JA, et al. IGF-1 gene polymorphisms in Polish families with high-grade myopia. Mol Vis 2011;17:2428–2439.
  • Tham Y-C, Liao J, Vithana EN, et al. Aggregate Effects of Intraocular Pressure and Cup-to-Disc Ratio Genetic Variants on Glaucoma in a Multiethnic Asian Population. Ophthalmology 2015;122(6):1149–1157.
  • Srivannaboon S. Relationship between corneal thickness and level of myopia. J Med Assoc Thail 2002;85(2):162–166.
  • Chen Y-C, Kasuga T, Lee H-J, et al. Correlation between central corneal thickness and myopia in Taiwan. Kaohsiung J Med Sci 2014;30(1):20–24.
  • Karolak JA, Kulinska K, Nowak DM, et al. Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian families with keratoconus. Mol Vis 2011;17:827–843.
  • Aldave AJ, Bourla N, Yellore VS, et al. Keratoconus is not associated with mutations in COL8A1 and COL8A2. Cornea 2007;26(8):963–965.
  • Wallace DJ, Chau FY, Santiago-Turla C, et al. Osteogenesis imperfecta and primary open angle glaucoma: genotypic analysis of a new phenotypic association. Mol Vis 2014;20:1174–1181.
  • Perera SA, Wong TY, Tay W-T, et al. Refractive error, axial dimensions, and primary open-angle glaucoma: the Singapore Malay Eye Study. Arch Ophthalmol 2010;128(7):900–905.
  • Tham Y-C, Aung T, Fan Q, et al. Joint effects of intraocular pressure and myopia on risk of primary open-angle glaucoma: the Singapore epidemiology of eye diseases study. Sci Rep 2016;6:19320.
  • Chen S-J, Lu P, Zhang W-F, et al. High myopia as a risk factor in primary open angle glaucoma. Int J Ophthalmol 2012;5(6):750–753.
  • Yoshino T, Fukuchi T, Togano T, et al. Rate of progression of total, upper, and lower visual field defects in patients with open-angle glaucoma and high myopia. Jpn J Ophthalmol 2016;60(2):78–85.
  • Malfait F, Symoens S, Coucke P, et al. Total absence of the alpha2(I) chain of collagen type I causes a rare form of Ehlers-Danlos syndrome with hypermobility and propensity to cardiac valvular problems. J Med Genet 2006;43(7):e36.
  • Suzuki S, Suzuki Y, Iwase A, et al. Corneal thickness in an ophthalmologically normal Japanese population. Ophthalmology 2005;112(8):1327–1336.
  • Casson RJ, Abraham LM, Newland HS, et al. Corneal thickness and intraocular pressure in a nonglaucomatous Burmese population: the Meiktila Eye Study. Arch Ophthalmol 2008;126(7):981–985.
  • Vijaya L, George R, Baskaran M, et al. Prevalence of primary open-angle glaucoma in an urban south Indian population and comparison with a rural population. The Chennai Glaucoma Study. Ophthalmology 2008;115(4):648–654.
  • Chua J, Tham YC, Liao J, et al. Ethnic differences of intraocular pressure and central corneal thickness: the Singapore Epidemiology of Eye Diseases study. Ophthalmology 2014;121(10):2013–2022.
  • Tayyab A, Masrur A, Afzal F, et al. Central Corneal Thickness and its Relationship to Intra-Ocular and Epidmiological Determinants. J Coll Physicians Surg Pak 2016;26(6):494–497.
  • Eysteinsson T, Jonasson F, Sasaki H, et al. Central corneal thickness, radius of the corneal curvature and intraocular pressure in normal subjects using non-contact techniques: Reykjavik Eye Study. Acta Ophthalmol Scand 2002;80(1):11–15.
  • Hahn S, Azen S, Ying-Lai M, et al. Central corneal thickness in Latinos. Invest Ophthalmol Vis Sci 2003;44(4):1508–1512.
  • Iyamu E, Osuobeni E. Age, gender, corneal diameter, corneal curvature and central corneal thickness in Nigerians with normal intra ocular pressure. J Optom 2012;5(2):87–97.
  • Sardiwalla Z, Moodley D, Ndawonde T, et al. A comparative study of central corneal thickness (CCT) and intraocular pressure (IOP) in University of KwaZulu-Natal students of Black and Indian ethnicity. Afr Vis Eye Health 2012;71(4):171–177.
  • Ventura AC, Böhnke M, Mojon DS. Central corneal thickness measurements in patients with normal tension glaucoma, primary open angle glaucoma, pseudoexfoliation glaucoma, or ocular hypertension. Br J Ophthalmol 2001;85(7):792–795.
  • Chauhan BC, Hutchison DM, LeBlanc RP, et al. Central corneal thickness and progression of the visual field and optic disc in glaucoma. Br J Ophthalmol 2005;89(8):1008–1012.
  • Jonas JB, Stroux A, Velten I, et al. Central corneal thickness correlated with glaucoma damage and rate of progression. Invest Ophthalmol Vis Sci 2005;46(4):1269–1274.
  • Papadia M, Sofianos C, Iester M, et al. Corneal thickness and visual field damage in glaucoma patients. Eye 2007;21(7):943–947.
  • Tomais G, Georgopoulos G, Koutsandrea C, et al. Correlation of central corneal thickness and axial length to the optic disc and peripapillary atrophy among healthy individuals, glaucoma and ocular hypertension patients. Clin Ophthalmol 2008;2(4):981–988.
  • Furlanetto RL, Facio AC, Hatanaka M, et al. Correlation between central corneal thickness and intraocular pressure peak and fluctuation during the water drinking test in glaucoma patients. Clinics 2010;65(10):967–970.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.