267
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Cascade of interactions between candidate genes reveals convergent mechanisms in keratoconus disease pathogenesis

Pages 114-131 | Received 06 Oct 2020, Accepted 19 Dec 2020, Published online: 08 Feb 2021

References

  • Zadnik K, Barr JT, Edrington TB, Everett DF, Jameson M, McMahon TT, Shin JA, Sterling JL, Wagner H, Gordon MO, et al. Baseline findings in the collaborative longitudinal evaluation of keratoconus (CLEK) study. Invest Ophthalmol Vis Sci 1998;39:2537–46.
  • Rabinowitz YS.Keratoconus. Surv Ophthalmol. 1998;42(4):297–319. doi:10.1016/S0039-6257(97)00119-7.
  • Kennedy RH, Bourne WM, Dyer JA.A 48-year clinical and epidemiologic study of keratoconus. Am J Ophthalmol. 1986;101(3):267–73. doi:10.1016/0002-9394(86)90817-2.
  • Romero-Jimenez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: a review. Cont Lens Anterior Eye. 2010;33(4):157–66. quiz 205. doi:10.1016/j.clae.2010.04.006.
  • Godefrooij DA, de Wit GA, Uiterwaal CS, Imhof SM, Wisse RP. Age-specific incidence and prevalence of keratoconus: a nationwide registration study. Am J Ophthalmol. 2017;175:169–72. doi:10.1016/j.ajo.2016.12.015.
  • Jonas JB, Nangia V, Matin A, Kulkarni M, Bhojwani K.Prevalence and associations of keratoconus in rural maharashtra in central India: the central India eye and medical study. Am J Ophthalmol. 2009;148(5):760–65. doi:10.1016/j.ajo.2009.06.024.
  • Maurice DM.The structure and transparency of the cornea. J Physiol. 1957;136(2):263–86. doi:10.1113/jphysiol.1957.sp005758.
  • Utsunomiya T, Hanada K, Muramatsu O, Ishibazawa A, Nishikawa N, Yoshida A.Wound healing process after corneal stromal thinning observed with anterior segment optical coherence tomography. Cornea. 2014;33(10):1056–60. doi:10.1097/ICO.0000000000000223.
  • McCally RL, Bonney-Ray J, de la Cruz Z, Green WR.Corneal endothelial injury thresholds for exposures to 1.54 micro m radiation. Health Phys. 2007;92(3):205–11. doi:10.1097/01.HP.0000248146.90949.0d.
  • Cintron C, Hong BS, Covington HI, Macarak EJ.Heterogeneity of collagens in rabbit cornea: type III collagen. Invest Ophthalmol Vis Sci. 1988;29(5):767–75.
  • Naderan M, Jahanrad A, Balali S.Histopathologic findings of keratoconus corneas underwent penetrating keratoplasty according to topographic measurements and keratoconus severity. Int J Ophthalmol. 2017;10(11):1640–46. doi:10.18240/ijo.2017.11.02.
  • Hollingsworth JG, Efron N.Observations of banding patterns (Vogt striae) in keratoconus: a confocal microscopy study. Cornea. 2005;24(2):162–66. doi:10.1097/01.ico.0000141231.03225.d8.
  • Hollingsworth JG, Bonshek RE, Efron N.Correlation of the appearance of the keratoconic cornea in vivo by confocal microscopy and in vitro by light microscopy. Cornea. 2005;24(4):397–405. doi:10.1097/01.ico.0000151548.46231.27.
  • Fullwood NJ, Meek KM, Malik NS, Tuft SJ.A comparison of proteoglycan arrangement in normal and keratoconus human corneas. Biochem Soc Trans. 1990;18(5):961–62. doi:10.1042/bst0180961.
  • Fullwood NJ, Tuft SJ, Malik NS, Meek KM, Ridgway AE, Harrison RJ.Synchrotron x-ray diffraction studies of keratoconus corneal stroma. Invest Ophthalmol Vis Sci. 1992;33(5):1734–41.
  • Tuft SJ, Hassan H, George S, Frazer DG, Willoughby CE, Liskova P.Keratoconus in 18 pairs of twins. Acta Ophthalmol. 2012;90(6):e482–6. doi:10.1111/j.1755-3768.2012.02448.x.
  • McMahon TT, Shin JA, Newlin A, Edrington TB, Sugar J, Zadnik K.Discordance for keratoconus in two pairs of monozygotic twins. Cornea. 1999;18(4):444–51. doi:10.1097/00003226-199907000-00010.
  • Weed KH, MacEwen CJ, McGhee CN.The variable expression of keratoconus within monozygotic twins: dundee University Scottish Keratoconus Study (DUSKS). Cont Lens Anterior Eye. 2006;29(3):123–26. doi:10.1016/j.clae.2006.03.003.
  • Bechara SJ, Waring GO 3rd, Insler MS.Keratoconus in two pairs of identical twins. Cornea. 1996;15(1):90–93. doi:10.1097/00003226-199601000-00016.
  • Bawazeer AM, Hodge WG, Lorimer B.Atopy and keratoconus: a multivariate analysis. Br J Ophthalmol. 2000;84(8):834–36. doi:10.1136/bjo.84.8.834.
  • McMonnies CW, Boneham GC.Keratoconus, allergy, itch, eye-rubbing and hand-dominance. Clin Exp Optom. 2003;86(6):376–84. doi:10.1111/j.1444-0938.2003.tb03082.x.
  • Khor WB, Wei RH, Lim L, Chan CM, Tan DT.Keratoconus in Asians: demographics, clinical characteristics and visual function in a hospital-based population. Clin Exp Ophthalmol. 2011;39(4):299–307. doi:10.1111/j.1442-9071.2010.02458.x.
  • Wei RH, Zhao SZ, Lim L, Tan DT.Incidence and characteristics of unilateral keratoconus classified on corneal topography. J Refract Surg. 2011;27(10):745–51. doi:10.3928/1081597X-20110426-01.
  • Gordon-Shaag A, Millodot M, Ifrah R, Shneor E.Aberrations and topography in normal, keratoconus-suspect, and keratoconic eyes. Optom Vis Sci. 2012;89(4):411–18. doi:10.1097/OPX.0b013e318249d727.
  • Nemet AY, Vinker S, Bahar I, Kaiserman I.The association of keratoconus with immune disorders. Cornea. 2010;29(11):1261–64. doi:10.1097/ICO.0b013e3181cb410b.
  • Shneor E, Millodot M, Blumberg S, Ortenberg I, Behrman S, Gordon-Shaag A.Characteristics of 244 patients with keratoconus seen in an optometric contact lens practice. Clin Exp Optom. 2013;96(2):219–24. doi:10.1111/cxo.12005.
  • Crews MJ, Driebe WT Jr., Stern GA.The clinical management of keratoconus: a 6 year retrospective study. Clao J. 1994;20(3):194–97. doi:10.1097/00140068-199407000-00013.
  • Kaya V, Karakaya M, Utine CA, Albayrak S, Oge OF, Yilmaz OF.Evaluation of the corneal topographic characteristics of keratoconus with orbscan II in patients with and without atopy. Cornea. 2007;26(8):945–48. doi:10.1097/ICO.0b013e3180de1e04.
  • Gondhowiardjo TD, van Haeringen NJ.Corneal aldehyde dehydrogenase, glutathione reductase, and glutathione S-transferase in pathologic corneas. Cornea. 1993;12(4):310–14. doi:10.1097/00003226-199307000-00006.
  • Cristina Kenney M, Brown DJ.The cascade hypothesis of keratoconus. Cont Lens Anterior Eye. 2003;26(3):139–46. doi:10.1016/S1367-0484(03)00022-5.
  • Vitart V, Bencic G, Hayward C, Skunca Herman J, Huffman J, Campbell S, Bućan K, Navarro P, Gunjaca G, Marin J, et al. New loci associated with central cornea thickness include COL5A1, AKAP13 and AVGR8. Hum Mol Genet. 2010;19(21):4304–11. doi:10.1093/hmg/ddq349.
  • Vithana EN, Aung T, Khor CC, Cornes BK, Tay WT, Sim X, Lavanya R, Wu R, Zheng Y, Hibberd ML, et al. Collagen-related genes influence the glaucoma risk factor, central corneal thickness. Hum Mol Genet. 2011;20(4):649–58. doi:10.1093/hmg/ddq511.
  • EMM BW, Spencer HL, Daly SB, Manson FDC, Zeef LAH, Urquhart J, Zoppi N, Bonshek R, Tosounidis I, Mohan M, et al. Mutations in PRDM5 in brittle cornea syndrome identify a pathway regulating extracellular matrix development and maintenance. Am J Hum Genet. 2011;88(6):767–77. doi:10.1016/j.ajhg.2011.05.007.
  • Hoehn R, Zeller T, Verhoeven VJ, Grus F, Adler M, Wolfs RC, Uitterlinden AG, Castagne R, Schillert A, Klaver CCW, et al. Population-based meta-analysis in Caucasians confirms association with COL5A1 and ZNF469 but not COL8A2 with central corneal thickness. Hum Genet. 2012;131(11):1783–93. doi:10.1007/s00439-012-1201-3.
  • Gao X, Gauderman WJ, Liu Y, Marjoram P, Torres M, Haritunians T, Kuo JZ, Chen Y-DI, Allingham RR, Hauser MA, et al. A genome-wide association study of central corneal thickness in Latinos. Invest Ophthalmol Vis Sci. 2013;54(4):2435–43. doi:10.1167/iovs.13-11692.
  • Rohrbach M, Spencer HL, Porter LF, Burkitt-Wright EM, Burer C, Janecke A, Bakshi M, Sillence D, Al-Hussain H, Baumgartner M, et al. ZNF469 frequently mutated in the brittle cornea syndrome (BCS) is a single exon gene possibly regulating the expression of several extracellular matrix components. Mol Genet Metab. 2013;109(3):289–95. doi:10.1016/j.ymgme.2013.04.014.
  • Gao X, Nannini DR, Corrao K, Torres M, Chen YI, Fan BJ, Wiggs JL, International Glaucoma Genetics C, Taylor KD, Gauderman WJ, et al. Genome-wide association study identifies WNT7B as a novel locus for central corneal thickness in Latinos. Hum Mol Genet. 2016;25(22):5035–45. doi:10.1093/hmg/ddw319.
  • Swierkowska J, Gajecka M.Genetic factors influencing the reduction of central corneal thickness in disorders affecting the eye. Ophthalmic Genet. 2017;38(6):501–10. doi:10.1080/13816810.2017.1313993.
  • Sahebjada S, Schache M, Richardson AJ, Snibson G, MacGregor S, Daniell M, Baird PN. Evaluating the association between keratoconus and the corneal thickness genes in an independent Australian population. Invest Ophthalmol Vis Sci. 2013;54(13):8224–28. doi:10.1167/iovs.13-12982.
  • Yildiz E, Bardak H, Gunay M, Bardak Y, Imamoglu S, Ozbas H, Bagci O. Novel zinc finger protein gene 469 (ZNF469) variants in advanced keratoconus. Curr Eye Res. 2017;42(10):1396–400. doi:10.1080/02713683.2017.1325910.
  • Liskova P, Dudakova L, Krepelova A, Klema J, Hysi PG.Replication of SNP associations with keratoconus in a Czech cohort. PLoS One. 2017;12(2):e0172365. doi:10.1371/journal.pone.0172365.
  • Vincent AL, Jordan CA, Cadzow MJ, Merriman TR, McGhee CN.Mutations in the zinc finger protein gene, ZNF469, contribute to the pathogenesis of keratoconus. Invest Ophthalmol Vis Sci. 2014;55(9):5629–35. doi:10.1167/iovs.14-14532.
  • Lechner J, Porter LF, Rice A, Vitart V, Armstrong DJ, Schorderet DF, Munier FL, Wright AF, Inglehearn CF, Black GC, et al. Enrichment of pathogenic alleles in the brittle cornea gene, ZNF469, in keratoconus. Hum Mol Genet. 2014;23(20):5527–35. doi:10.1093/hmg/ddu253.
  • Yu X, Chen B, Zhang X, Shentu X. Identification of seven novel ZNF469 mutations in keratoconus patients in a Han Chinese population. Mol Vis. 2017;23:296–305.
  • Okada M, Yamamoto S, Tsujikawa M, Watanabe H, Inoue Y, Maeda N, Shimomura Y, Nishida K, Quantock AJ, Kinoshita S, et al. Two distinct kerato-epithelin mutations in Reis-Bucklers corneal dystrophy. Am J Ophthalmol. 1998;126(4):535–42. doi:10.1016/S0002-9394(98)00135-4.
  • Rozzo C, Fossarello M, Galleri G, Sole G, Serru A, Orzalesi N, Serra A, Pirastu M. A common beta ig-h3 gene mutation (delta f540) in a large cohort of Sardinian Reis Bucklers corneal dystrophy patients. Mutations in brief no. 180. Online. Hum Mutat 1998;12:215–16.
  • Chakravarthi SV, Kannabiran C, Sridhar MS, Vemuganti GK.TGFBI gene mutations causing lattice and granular corneal dystrophies in Indian patients. Invest Ophthalmol Vis Sci. 2005;46(1):121–25. doi:10.1167/iovs.04-0440.
  • Fujiki K, Hotta Y, Nakayasu K, Yokoyama T, Takano T, Yamaguchi T, Kanai A. A new L527R mutation of the betaIGH3 gene in patients with lattice corneal dystrophy with deep stromal opacities. Hum Genet. 1998;103(3):286–89. doi:10.1007/s004390050818.
  • Hirano K, Hotta Y, Fujiki K, Kanai A.Corneal amyloidosis caused by Leu518Pro mutation of betaig-h3 gene. Br J Ophthalmol. 2000;84(6):583–85. doi:10.1136/bjo.84.6.583.
  • Hirano K, Hotta Y, Nakamura M, Fujiki K, Kanai A, Yamamoto N.Late-onset form of lattice corneal dystrophy caused by leu527Arg mutation of the TGFBI gene. Cornea. 2001;20(5):525–29. doi:10.1097/00003226-200107000-00017.
  • Warren JF, Abbott RL, Yoon MK, Crawford JB, Spencer WH, Margolis TP.A new mutation (Leu569Arg) within exon 13 of the TGFBI (BIGH3) gene causes lattice corneal dystrophy type I. Am J Ophthalmol. 2003;136(5):872–78. doi:10.1016/S0002-9394(03)00541-5.
  • Aldave AJ, Gutmark JG, Yellore VS, Affeldt JA, Meallet MA, Udar N, Rao NA, Small KW, Klintworth GK. Lattice corneal dystrophy associated with the Ala546Asp and Pro551Gln missense changes in the TGFBI gene. Am J Ophthalmol. 2004;138(5):772–81. doi:10.1016/j.ajo.2004.06.021.
  • Tian X, Fujiki K, Wang W, Murakami A, Xie P, Kanai A, Liu Z. Novel mutation (V505D) of the TGFBI gene found in a Chinese family with lattice corneal dystrophy, type I. Jpn J Ophthalmol. 2005;49(2):84–88. doi:10.1007/s10384-004-0167-7.
  • Atchaneeyasakul LO, Appukuttan B, Pingsuthiwong S, Yenchitsomanus PT, Trinavarat A, Srisawat C, Study G. A novel H572R mutation in the transforming growth factor-beta-induced gene in a Thai family with lattice corneal dystrophy type I. Jpn J Ophthalmol. 2006;50(5):403–08. doi:10.1007/s10384-006-0357-6.
  • Aldave AJ, Yellore VS, Salem AK, Yoo GL, Rayner SA, Yang H, Tang GY, Piconell Y, Rabinowitz YS. No VSX1 gene mutations associated with keratoconus. Invest Ophthalmol Vis Sci. 2006;47(7):2820–22. doi:10.1167/iovs.05-1530.
  • Yaylacioglu Tuncay F, Kayman Kurekci G, Guntekin Ergun S, Pasaoglu OT, Akata RF, Dincer PR. Genetic analysis of CHST6 and TGFBI in Turkish patients with corneal dystrophies: five novel variations in CHST6. Mol Vis. 2016;22:1267–79.
  • Boutboul S, Black GC, Moore JE, Sinton J, Menasche M, Munier FL, Laroche L, Abitbol M, Schorderet DF. A subset of patients with epithelial basement membrane corneal dystrophy have mutations in TGFBI/BIGH3. Hum Mutat. 2006;27(6):553–57. doi:10.1002/humu.20331.
  • Yamamoto S, Okada M, Tsujikawa M, Shimomura Y, Nishida K, Inoue Y, Watanabe H, Maeda N, Kurahashi H, Kinoshita S, et al. A kerato-epithelin (betaig-h3) mutation in lattice corneal dystrophy type IIIA. Am J Hum Genet. 1998;62(3):719–22. doi:10.1086/301765.
  • Stix B, Leber M, Bingemer P, Gross C, Ruschoff J, Fandrich M, Schorderet DF, Vorwerk CK, Zacharias M, Roessner A, et al. Hereditary lattice corneal dystrophy is associated with corneal amyloid deposits enclosing C-terminal fragments of keratoepithelin. Invest Ophthalmol Vis Sci. 2005;46(4):1133–39. doi:10.1167/iovs.04-1319.
  • Tai TY, Damani MR, Vo R, Rayner SA, Glasgow BJ, Hofbauer JD, Casey R, Aldave AJ. Keratoconus associated with corneal stromal amyloid deposition containing TGFBIp. Cornea. 2009;28(5):589–93. doi:10.1097/ICO.0b013e31818c9003.
  • Guan T, Ma ZW, Ding SP.[Analyses of coding sequence point mutation and polymorphism of TGFBI gene in Chinese patients with keratoconus]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2011;28(2):152–55. doi:10.3760/cma.j..1003-9406.2011.02.007.
  • Guan T, Liu C, Ma Z, Ding S.The point mutation and polymorphism in keratoconus candidate gene TGFBI in Chinese population. Gene. 2012;503(1):137–39. doi:10.1016/j.gene.2012.04.061.
  • Karolak JA, Polakowski P, Szaflik J, Szaflik JP, Gajecka M.Molecular screening of keratoconus susceptibility sequence variants in VSX1, TGFBI, DOCK9, STK24, and IPO5 genes in polish patients and novel TGFBI variant identification. Ophthalmic Genet. 2016;37(1):37–43. doi:10.3109/13816810.2014.926375.
  • Du X, Chen P, Sun D.Mutation analysis of TGFBI and KRT12 in a case of concomitant keratoconus and granular corneal dystrophy. Graefes Arch Clin Exp Ophthalmol. 2017;255(9):1779–86. doi:10.1007/s00417-017-3699-5.
  • Rong SS, Ma STU, Yu XT, Ma L, Chu WK, Chan TCY, Wang YM, Young AL, Pang CP, Jhanji V, et al. Genetic associations for keratoconus: a systematic review and meta-analysis. Sci Rep. 2017;7(1):4620. doi:10.1038/s41598-017-04393-2.
  • Li X, Bykhovskaya Y, Tang YG, Picornell Y, Haritunians T, Aldave AJ, Szczotka-Flynn L, Iyengar SK, Rotter JI, Taylor KD, et al. An association between the calpastatin (CAST) gene and keratoconus. Cornea. 2013;32(5):696–701. doi:10.1097/ICO.0b013e3182821c1c.
  • Stabuc-Silih M, Ravnik-Glavac M, Glavac D, Hawlina M, Strazisar M. Polymorphisms in COL4A3 and COL4A4 genes associated with keratoconus. Mol Vis. 2009;15:2848–60.
  • Saravani R, Yari D, Saravani S, Hasanian-Langroudi F.Correlation between the COL4A3, MMP-9, and TIMP-1 polymorphisms and risk of keratoconus. Jpn J Ophthalmol. 2017;61(3):218–22. doi:10.1007/s10384-017-0503-3.
  • Stabuc-Silih M, Strazisar M, Ravnik-Glavac M, Hawlina M, Glavac D.Genetics and clinical characteristics of keratoconus. Acta Dermatovenerol Alp Pannonica Adriat. 2010;19(2):3–10.
  • Bykhovskaya Y, Li X, Epifantseva I, Haritunians T, Siscovick D, Aldave A, Szczotka-Flynn L, Iyengar SK, Taylor KD, Rotter JI, et al. Variation in the lysyl oxidase (LOX) gene is associated with keratoconus in family-based and case-control studies. Invest Ophthalmol Vis Sci. 2012;53(7):4152–57. doi:10.1167/iovs.11-9268.
  • Hasanian-Langroudi F, Saravani R, Validad MH, Bahari G, Yari D.Association of Lysyl oxidase (LOX) Polymorphisms with the Risk of Keratoconus in an Iranian Population. Ophthalmic Genet. 2015;36(4):309–14. doi:10.3109/13816810.2014.881507.
  • Dudakova L, Palos M, Jirsova K, Stranecky V, Krepelova A, Hysi PG, Liskova P. Validation of rs2956540:G>C and rs3735520:G>A association with keratoconus in a population of European descent. Eur J Hum Genet. 2015;23(11):1581–83. doi:10.1038/ejhg.2015.28.
  • Zhang J, Zhang L, Hong J, Wu D, Xu J.Association of Common Variants in LOX with Keratoconus: A Meta-Analysis. PLoS One. 2015;10(12):e0145815. doi:10.1371/journal.pone.0145815.
  • Hughes AE, Bradley DT, Campbell M, Lechner J, Dash DP, Simpson DA, Willoughby CE. Mutation altering the miR-184 seed region causes familial keratoconus with cataract. Am J Hum Genet. 2011;89(5):628–33. doi:10.1016/j.ajhg.2011.09.014.
  • Iliff BW, Riazuddin SA, Gottsch JD.A single-base substitution in the seed region of miR-184 causes EDICT syndrome. Invest Ophthalmol Vis Sci. 2012;53(1):348–53. doi:10.1167/iovs.11-8783.
  • Lechner J, Dash DP, Muszynska D, Hosseini M, Segev F, George S, Frazer DG, Moore JE, Kaye SB, Young T, et al. Mutational spectrum of the ZEB1 gene in corneal dystrophies supports a genotype–phenotype correlation. Invest Ophthalmol Vis Sci. 2013;54(5):3215–23. doi:10.1167/iovs.13-11781.
  • Tang YG, Rabinowitz YS, Taylor KD, Li X, Hu M, Picornell Y, Yang H. Genomewide linkage scan in a multigeneration Caucasian pedigree identifies a novel locus for keratoconus on chromosome 5q14.3-q21.1. Genet Med. 2005;7(6):397–405. doi:10.1097/01.GIM.0000170772.41860.54.
  • Bykhovskaya Y, Li X, Taylor KD, Haritunians T, Rotter JI, Rabinowitz YS.Linkage Analysis of High-density SNPs Confirms Keratoconus Locus at 5q Chromosomal Region. Ophthalmic Genet. 2016;37(1):109–10. doi:10.3109/13816810.2014.889172.
  • Zhang J, Wu D, Li Y, Fan Y, Chen H, Xu J. Evaluating the association between calpastatin (CAST) gene and keratoconus in the Han Chinese population. Gene. 2018;653:10–13. doi:10.1016/j.gene.2018.02.016.
  • Gajecka M, Radhakrishna U, Winters D, Nath SK, Rydzanicz M, Ratnamala U, Ewing K, Molinari A, Pitarque JA, Lee K, et al. Localization of a gene for keratoconus to a 5.6-Mb interval on 13q32. Invest Ophthalmol Vis Sci. 2009;50(4):1531–39. doi:10.1167/iovs.08-2173.
  • Czugala M, Karolak JA, Nowak DM, Polakowski P, Pitarque J, Molinari A, Rydzanicz M, Bejjani BA, Yue BYJT, Szaflik JP, et al. Novel mutation and three other sequence variants segregating with phenotype at keratoconus 13q32 susceptibility locus. Eur J Hum Genet. 2012;20(4):389–97. doi:10.1038/ejhg.2011.203.
  • Burdon KP, Macgregor S, Bykhovskaya Y, Javadiyan S, Li X, Laurie KJ, Muszynska D, Lindsay R, Lechner J, Haritunians T, et al. Association of polymorphisms in the hepatocyte growth factor gene promoter with keratoconus. Invest Ophthalmol Vis Sci. 2011;52(11):8514–19. doi:10.1167/iovs.11-8261.
  • Sahebjada S, Schache M, Richardson AJ, Snibson G, Daniell M, Baird PN.Association of the hepatocyte growth factor gene with keratoconus in an Australian population. PLoS One. 2014;9(1):e84067. doi:10.1371/journal.pone.0084067.
  • Udar N, Atilano SR, Brown DJ, Holguin B, Small K, Nesburn AB, Kenney MC. SOD1: a candidate gene for keratoconus. Invest Ophthalmol Vis Sci. 2006;47(8):3345–51. doi:10.1167/iovs.05-1500.
  • De Bonis P, Laborante A, Pizzicoli C, Stallone R, Barbano R, Longo C, Mazzilli E, Zelante L, Bisceglia L. Mutational screening of VSX1, SPARC, SOD1, LOX, and TIMP3 in keratoconus. Mol Vis. 2011;17:2482–94.
  • Saee-Rad S, Hashemi H, Miraftab M, Noori-Daloii MR, Chaleshtori MH, Raoofian R, Jafari F, Greene W, Fakhraie G, Rezvan F, et al. Mutation analysis of VSX1 and SOD1 in Iranian patients with keratoconus. Mol Vis. 2011;17:3128–36.
  • Moschos MM, Kokolakis N, Gazouli M, Chatziralli IP, Droutsas D, Anagnou NP, Ladas ID. Polymorphism analysis of VSX1 and SOD1 genes in Greek patients with keratoconus. Ophthalmic Genet. 2015;36(3):213–17. doi:10.3109/13816810.2013.843712.
  • Heon E, Greenberg A, Kopp KK, Rootman D, Vincent AL, Billingsley G, Priston M, Dorval KM, Chow RL, McInnes RR, et al. VSX1: a gene for posterior polymorphous dystrophy and keratoconus. Hum Mol Genet. 2002;11(9):1029–36. doi:10.1093/hmg/11.9.1029.
  • Bisceglia L, Ciaschetti M, De Bonis P, Campo PA, Pizzicoli C, Scala C, Grifa M, Ciavarella P, Noci ND, Vaira F, et al. VSX1 mutational analysis in a series of italian patients affected by keratoconus: detection of a novel mutation. Invest Ophthalmol Vis Sci. 2005;46(1):39–45. doi:10.1167/iovs.04-0533.
  • Mok JW, Baek SJ, Joo CK.VSX1 gene variants are associated with keratoconus in unrelated Korean patients. J Hum Genet. 2008;53(9):842–49. doi:10.1007/s10038-008-0319-6.
  • Eran P, Almogit A, David Z, Wolf HR, Hana G, Yaniv B, Elon P, Isaac A. The D144E substitution in the VSX1 gene: a non-pathogenic variant or a disease causing mutation? Ophthalmic Genet. 2008;29(2):53–59. doi:10.1080/13816810802008242.
  • Paliwal P, Singh A, Tandon R, Titiyal JS, Sharma A. A novel VSX1 mutation identified in an individual with keratoconus in India. Mol Vis. 2009;15:2475–79.
  • Dash DP, George S, O’Prey D, Burns D, Nabili S, Donnelly U, Hughes AE, Silvestri G, Jackson J, Frazer D, et al. Mutational screening of VSX1 in keratoconus patients from the European population. Eye (Lond). 2010;24(6):1085–92. doi:10.1038/eye.2009.217.
  • Stabuc-Silih M, Strazisar M, Hawlina M, Glavac D.Absence of pathogenic mutations in VSX1 and SOD1 genes in patients with keratoconus. Cornea. 2010;29(2):172–76. doi:10.1097/ICO.0b013e3181aebf7a.
  • Paliwal P, Tandon R, Dube D, Kaur P, Sharma A. Familial segregation of a VSX1 mutation adds a new dimension to its role in the causation of keratoconus. Mol Vis. 2011;17:481–85.
  • Dehkordi FA, Rashki A, Bagheri N, Chaleshtori MH, Memarzadeh E, Salehi A, Ghatreh H, Zandi F, Yazdanpanahi N, Tabatabaiefar MA, et al. Study of VSX1 mutations in patients with keratoconus in Southwest Iran using PCR-single-strand conformation polymorphism/heteroduplex analysis and sequencing method. Acta Cytol. 2013;57(6):646–51. doi:10.1159/000353297.
  • Vincent AL, Jordan C, Sheck L, Niederer R, Patel DV, McGhee CN. Screening the visual system homeobox 1 gene in keratoconus and posterior polymorphous dystrophy cohorts identifies a novel variant. Mol Vis. 2013;19:852–60.
  • Wang Y, Jin T, Zhang X, Wei W, Cui Y, Geng T, Liu Q, Gao J, Liu M, Chen C, et al. Common single nucleotide polymorphisms and keratoconus in the Han Chinese population. Ophthalmic Genet. 2013;34(3):160–66. doi:10.3109/13816810.2012.743569.
  • Tang YG, Picornell Y, Su X, Li X, Yang H, Rabinowitz YS.Three VSX1 gene mutations, L159M, R166W, and H244R, are not associated with keratoconus. Cornea. 2008;27(2):189–92. doi:10.1097/ICO.0b013e31815a50e7.
  • Shetty R, Sathyanarayanamoorthy A, Ramachandra RA, Arora V, Ghosh A, Srivatsa PR, Pahuja N, Nuijts RMMA, Sinha-Roy A, Mohan RR, et al. Attenuation of lysyl oxidase and collagen gene expression in keratoconus patient corneal epithelium corresponds to disease severity. Mol Vis. 2015;21:12–25.
  • Bardak H, Gunay M, Yildiz E, Bardak Y, Gunay B, Ozbas H, Bagci O. Novel visual system homeobox 1 gene mutations in Turkish patients with keratoconus. Genet Mol Res. 2016;15:4.
  • Guan T, Wang X, Zheng LB, Wu HJ, Yao YF.Analysis of the VSX1 gene in sporadic keratoconus patients from China. BMC Ophthalmol. 2017;17(1):173. doi:10.1186/s12886-017-0567-3.
  • Guan T, Wu HJ, Zhang LJ, Xu DJ, Zheng LB, Yao YF.[A novel VSX1 gene mutation identified in a sporadic keratoconus patient from China]. Zhonghua Yan Ke Za Zhi. 2018;54(3):212–17. doi:10.3760/cma.j..0412-4081.2018.03.012.
  • Aligianis IA, Johnson CA, Gissen P, Chen D, Hampshire D, Hoffmann K, Maina EN, Morgan NV, Tee L, Morton J, et al. Mutations of the catalytic subunit of RAB3GAP cause Warburg micro syndrome. Nat Genet. 2005;37(3):221–23. doi:10.1038/ng1517.
  • Morris-Rosendahl DJ, Segel R, Born AP, Conrad C, Loeys B, Brooks SS, Müller L, Zeschnigk C, Botti C, Rabinowitz R, et al. New RAB3GAP1 mutations in patients with Warburg micro syndrome from different ethnic backgrounds and a possible founder effect in the Danish. Eur J Hum Genet. 2010;18(10):1100–06. doi:10.1038/ejhg.2010.79.
  • Li X, Bykhovskaya Y, Haritunians T, Siscovick D, Aldave A, Szczotka-Flynn L, Iyengar SK, Rotter JI, Taylor KD, Rabinowitz YS. A genome-wide association study identifies a potential novel gene locus for keratoconus, one of the commonest causes for corneal transplantation in developed countries. Hum Mol Genet. 2012;21(2):421–29. doi:10.1093/hmg/ddr460.
  • Bae HA, Mills RA, Lindsay RG, Phillips T, Coster DJ, Mitchell P, Wang JJ, Craig JE, Burdon KP. Replication and meta-analysis of candidate loci identified variation at RAB3GAP1 associated with keratoconus. Invest Ophthalmol Vis Sci. 2013;54(7):5132–35. doi:10.1167/iovs.13-12377.
  • Kim B, Sarangi PP, Azkur AK, Kaistha SD, Rouse BT.Enhanced viral immunoinflammatory lesions in mice lacking IL-23 responses. Microbes Infect. 2008;10(3):302–12. doi:10.1016/j.micinf.2007.12.007.
  • Wang Y, Wei W, Zhang C, Zhang X, Liu M, Zhu X, Xu K. Association of Interleukin-1 Gene Single Nucleotide Polymorphisms with Keratoconus in Chinese Han Population. Curr Eye Res. 2016;41(5):630–35. doi:10.3109/02713683.2015.1045083.
  • Mikami T, Meguro A, Teshigawara T, Takeuchi M, Uemoto R, Kawagoe T, Nomura E, Asukata Y, Ishioka M, Iwasaki M, et al. Interleukin 1 beta promoter polymorphism is associated with keratoconus in a Japanese population. Mol Vis. 2013;19:845–51.
  • Lu Y, Vitart V, Burdon KP, Khor CC, Bykhovskaya Y, Mirshahi A, Hewitt AW, Koehn D, Hysi PG, Ramdas WD, et al. Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nat Genet. 2013;45(2):155–63. doi:10.1038/ng.2506.
  • Hao XD, Chen P, Chen ZL, Li SX, Wang Y.Evaluating the association between keratoconus and reported genetic loci in a Han Chinese population. Ophthalmic Genet. 2015;36(2):132–36. doi:10.3109/13816810.2015.1005317.
  • Hao X-D, Chen P, Zhang -Y-Y, Li S-X, Shi W-Y, Gao H.De novo mutations of TUBA3D are associated with keratoconus. Sci Rep. 2017;7(1):13570. doi:10.1038/s41598-017-13162-0.
  • Bykhovskaya Y, Fardaei M, Khaled ML, Nejabat M, Salouti R, Dastsooz H, Liu Y, Inaloo S, Rabinowitz YS. TSC1 mutations in keratoconus patients with or without tuberous sclerosis. Invest Ophthalmol Vis Sci. 2017;58(14):6462–69. doi:10.1167/iovs.17-22819.
  • Nowak DM, Karolak JA, Kubiak J, Gut M, Pitarque JA, Molinari A, Bejjani BA, Gajecka M. Substitution at IL1RN and deletion at SLC4A11 segregating with phenotype in familial keratoconus. Invest Ophthalmol Vis Sci. 2013;54(3):2207–15. doi:10.1167/iovs.13-11592.
  • Cuellar-Partida G, Springelkamp H, Lucas SE, Yazar S, Hewitt AW, Iglesias AI, Montgomery GW, Martin NG, Pennell CE, van Leeuwen EM, et al. WNT10A exonic variant increases the risk of keratoconus by decreasing corneal thickness. Hum Mol Genet. 2015;24(17):5060–68. doi:10.1093/hmg/ddv211.
  • Karolak JA, Gambin T, Pitarque JA, Molinari A, Jhangiani S, Stankiewicz P, Lupski JR, Gajecka M. Variants in SKP1, PROB1, and IL17B genes at keratoconus 5q31.1-q35.3 susceptibility locus identified by whole-exome sequencing. Eur J Hum Genet. 2016;25(1):73–78. doi:10.1038/ejhg.2016.130.
  • Viana MM, Frasson M, Leao LL, Stofanko M, Goncalves-Dornelas H, Cunha Pda S, de Aguiar MJ. A new case of keratoconus associated with Williams-Beuren syndrome. Ophthalmic Genet. 2013;34(3):174–77. doi:10.3109/13816810.2012.739257.
  • Dorval KM, Bobechko BP, Ahmad KF, Bremner R.Transcriptional activity of the paired-like homeodomain proteins CHX10 and VSX1. J Biol Chem. 2005;280(11):10100–08. doi:10.1074/jbc.M412676200.
  • Liskova P, Ebenezer ND, Hysi PG, Gwilliam R, El-Ashry MF, Moodaley LC, Hau S, Twa M, Tuft SJ, Bhatacharya SS, et al. Molecular analysis of the VSX1 gene in familial keratoconus. Mol Vis. 2007;13:1887–91.
  • Verma A, Das M, Srinivasan M, Prajna NV, Sundaresan P. Investigation of VSX1 sequence variants in South Indian patients with sporadic cases of keratoconus. BMC Res Notes. 2013;6:103. doi:10.1186/1756-0500-6-103.
  • Tanwar M, Kumar M, Nayak B, Pathak D, Sharma N, Titiyal JS, Dada R. VSX1 gene analysis in keratoconus. Mol Vis. 2010;16:2395–401.
  • Nejabat M, Naghash P, Dastsooz H, Mohammadi S, Alipour M, Fardaei M.VSX1 and SOD1 mutation screening in patients with keratoconus in the South of Iran. J Ophthalmic Vis Res. 2017;12(2):135–40. doi:10.4103/jovr.jovr_97_16.
  • Lam HY, Wiggs JL, Jurkunas UV.Unusual presentation of presumed posterior polymorphous dystrophy associated with iris heterochromia, band keratopathy, and keratoconus. Cornea. 2010;29(10):1180–85. doi:10.1097/ICO.0b013e3181d007e1.
  • Jeoung JW, Kim MK, Park SS, Kim SY, Ko HS, Wee WR, Lee JH. VSX1 gene and keratoconus: genetic analysis in Korean patients. Cornea. 2012;31(7):746–50. doi:10.1097/ICO.0b013e3181e16dd0.
  • Hosseini SM, Herd S, Vincent AL, Heon E. Genetic analysis of chromosome 20-related posterior polymorphous corneal dystrophy: genetic heterogeneity and exclusion of three candidate genes. Mol Vis. 2008;14:71–80.
  • Abu-Amero KK, Kalantan H, Al-Muammar AM. Analysis of the VSX1 gene in keratoconus patients from Saudi Arabia. Mol Vis. 2011;17:667–72.
  • Gadea G, Blangy A.Dock-family exchange factors in cell migration and disease. Eur J Cell Biol. 2014;93(10–12):466–77. doi:10.1016/j.ejcb.2014.06.003.
  • Dudakova L, Jirsova K.The impairment of lysyl oxidase in keratoconus and in keratoconus-associated disorders. J Neural Transm (Vienna). 2013;120(6):977–82. doi:10.1007/s00702-013-0993-1.
  • Dudakova L, Sasaki T, Liskova P, Palos M, Jirsova K.The presence of lysyl oxidase-like enzymes in human control and keratoconic corneas. Histol Histopathol. 2016;31(1):63–71. doi:10.14670/HH-11-649.
  • Nielsen K, Birkenkamp-Demtroder K, Ehlers N, Orntoft TF.Identification of differentially expressed genes in keratoconus epithelium analyzed on microarrays. Invest Ophthalmol Vis Sci. 2003;44(6):2466–76. doi:10.1167/iovs.02-0671.
  • Gadelha DNB, Feitosa AFB, da Silva RG, Antunes LT, Muniz MC, de Oliveira MA, Andrade DDO, da Paz Silva NM, Cronemberger S, Schamber-Reis BLF, et al. Screening for novel LOX and SOD1 variants in keratoconus patients from Brazil. J Ophthalmic Vis Res. 2020;15(2):138–48. doi:10.18502/jovr.v15i2.6730.
  • Dudakova L, Liskova P, Trojek T, Palos M, Kalasova S, Jirsova K. Changes in lysyl oxidase (LOX) distribution and its decreased activity in keratoconus corneas. Exp Eye Res. 2012;104:74–81. doi:10.1016/j.exer.2012.09.005.
  • Bykhovskaya Y, Caiado Canedo AL, Wright KW, Rabinowitz YS.C.57 C > T mutation in MIR 184 is responsible for congenital cataracts and corneal abnormalities in a five-generation family from Galicia, Spain. Ophthalmic Genet. 2015;36(3):244–47. doi:10.3109/13816810.2013.848908.
  • Bykhovskaya Y, Seldin MF, Liu Y, Ransom M, Li X, Rabinowitz YS.Independent origin of c.57 C > T mutation in MIR184 associated with inherited corneal and lens abnormalities. Ophthalmic Genet. 2015;36(1):95–97. doi:10.3109/13816810.2014.977491.
  • Abu-Amero KK, Helwa I, Al-Muammar A, Strickland S, Hauser MA, Allingham RR, Liu Y. Screening of the seed region of MIR184 in keratoconus patients from Saudi Arabia. Biomed Res Int. 2015;2015:604508.
  • Farzadfard A, Nassiri N, Moghadam TN, Paylakhi SH, Elahi E.Screening for MIR184 Mutations in Iranian Patients with Keratoconus. J Ophthalmic Vis Res. 2016;11(1):3–7. doi:10.4103/2008-322X.180715.
  • De Baere E.Heterozygous coding ZNF469 variants enriched in New Zealand patients with isolated keratoconus. Invest Ophthalmol Vis Sci. 2014;55(9):5636. doi:10.1167/iovs.14-15486.
  • Menzel-Severing J, Meiller R, Kraus C, Trollmann R, Atalay D. Brittle cornea syndrome type 1 caused by compound heterozygosity of two mutations in the ZNF469 gene. Ophthalmologe. 2018;116:780–H84.
  • Davidson AE, Borasio E, Liskova P, Khan AO, Hassan H, Cheetham ME, Plagnol V, Alkuraya FS, Tuft SJ, Hardcastle AJ, et al. Brittle cornea syndrome ZNF469 mutation carrier phenotype and segregation analysis of rare ZNF469 variants in familial keratoconus. Invest Ophthalmol Vis Sci. 2015;56(1):578–86. doi:10.1167/iovs.14-15792.
  • Kalantan H, Kondkar AA, Sultan T, Azad TA, Alsabaani NA, AlQahtani MA, Almummar A, Liu Y, Abu-Amero KK. Polymorphism rs13334190 in zinc finger protein 469 (ZNF469) is not a risk factor for keratoconus in a Saudi cohort. BMC Res Notes. 2017;10(1):652. doi:10.1186/s13104-017-2996-8.
  • Lucas SEM, Zhou T, Blackburn NB, Mills RA, Ellis J, Leo P, Souzeau E, Ridge B, Charlesworth JC, Brown MA, et al. Rare, potentially pathogenic variants in ZNF469 are not enriched in keratoconus in a large australian cohort of European descent. Invest Ophthalmol Vis Sci. 2017;58(14):6248–56. doi:10.1167/iovs.17-22417.
  • Udar N, Kenney MC, Chalukya M, Anderson T, Morales L, Brown D, Nesburn A, Small K. Keratoconus–no association with the transforming growth factor beta-induced gene in a cohort of American patients. Cornea. 2004;23(1):13–17. doi:10.1097/00003226-200401000-00003.
  • Poulsen ET, Runager K, Nielsen NS, Lukassen MV, Thomsen K, Snider P, Simmons O, Vorum H, Conway SJ, Enghild JJ, et al. Proteomic profiling of TGFBI null mouse corneas reveals only minor changes in matrix composition supportive of TGFBI knockdown as therapy against TGFBI -linked corneal dystrophies. Febs J. 2018;285(1):101–14. doi:10.1111/febs.14321.
  • Abu-Amero KK, Helwa I, Al-Muammar A, Strickland S, Hauser MA, Allingham RR, Liu Y. Case-control association between CCT-associated variants and keratoconus in a Saudi Arabian population. J Negat Results Biomed. 2015;14:10.
  • Fichard A, Kleman JP, Ruggiero F.Another look at collagen V and XI molecules. Matrix Biol. 1995;14(7):515–31. doi:10.1016/S0945-053X(05)80001-0.
  • Burger M, de Wet H, The CM.COL5A1 gene is associated with increased risk of carpal tunnel syndrome. Clin Rheumatol. 2015;34(4):767–74. doi:10.1007/s10067-014-2727-7.
  • Chen CP, Chen CY, Wu YH, Chen CY. Oxidative stress reduces trophoblast FOXO1 and integrin beta3 expression that inhibits cell motility. Free Radic Biol Med. 2018;124:189–98. doi:10.1016/j.freeradbiomed.2018.06.006.
  • Kendall GC, Watson S, Xu L, LaVigne CA, Murchison W, Rakheja D, Skapek SX, Tirode F, Delattre O, Amatruda JF. PAX3-FOXO1 transgenic zebrafish models identify HES3 as a mediator of rhabdomyosarcoma tumorigenesis. Elife. 2018;7. doi:10.7554/eLife.33800.
  • Chiefari E, Arcidiacono B, Palmieri C, Corigliano DM, Morittu VM, Britti D, Armoni M, Foti DP, Brunetti A. Cross-talk among HMGA1 and FoxO1 in control of nuclear insulin signaling. Sci Rep. 2018;8(1):8540. doi:10.1038/s41598-018-26968-3.
  • Tao R, Wang C, Stohr O, Qiu W, Hu Y, Miao J, Dong XC, Leng S, Stefater M, Stylopoulos N, et al. Inactivating hepatic follistatin alleviates hyperglycemia. Nat Med. 2018;24(7):1058–69. doi:10.1038/s41591-018-0048-0.
  • Tersey SA, Levasseur EM, Syed F, Farb TB, Orr KS, Nelson JB, Shaw JL, Bokvist K, Mather KJ, Mirmira RG. Episodic beta-cell death and dedifferentiation during diet-induced obesity and dysglycemia in male mice. Faseb J. 2018;fj201800150RR. doi:10.1096/fj.201800150RR.
  • Malik S, Awasthi A. Transcriptional control of th9 cells: role of Foxo1 in interleukin-9 induction. Front Immunol. 2018;9:995. doi:10.3389/fimmu.2018.00995.
  • Yang X, Chen GT, Wang YQ, Xian S, Zhang L, Zhu SM, Pan F, Cheng YX. TLR4 promotes the expression of HIF-1alpha by triggering reactive oxygen species in cervical cancer cells in vitro-implications for therapeutic intervention. Mol Med Rep. 2018;17(2):2229–38. doi:10.3892/mmr.2017.8108.
  • ROSS AT DW. TUBEROUS SCLEROSIS. Arch NeurPsych. 1943;50(30):233–57. doi:10.1001/archneurpsyc.1943.02290210011001.
  • Wong R, Rajendram R, Poole TR.Keratoconus in tuberous sclerosis. Eye (Lond). 2007;21(2):287–88. doi:10.1038/sj.eye.6702536.
  • Lyall DA, Tobias ES, Srinivasan S, Willoughby C.Bilateral keratoconus in tuberous sclerosis: is there a molecular link? Can J Ophthalmol. 2012;47(6):e41–2. doi:10.1016/j.jcjo.2012.03.018.
  • Lopes AG, de Almeida Junior GC, Teixeira RM, de Mattos LC, Brandao de Mattos CC, Castiglioni L.Absence of the c.169+50delTAAACAG mutation of SOD1 gene in a sample of keratoconus patients in Brazilian population. BMC Res Notes. 2020;13(1):328. doi:10.1186/s13104-020-05166-3.
  • Awd-Allah NA, Ismail SM, Salah El-Dine MM, Mohammed MM.Association between POLG and XRCC1 gene polymorphisms and keratoconus occurrence among Egyptian patients. Arch Soc Esp Oftalmol. 2020;95(9):439–46. doi:10.1016/j.oftal.2020.03.019.
  • Xu X, Zhang X, Cui Y, Yang H, Ping X, Wu J, Yu X, Jin X, Huang X, Shentu X, et al. Three novel variants identified within ECM-related genes in Chinese Han keratoconus patients. Sci Rep. 2020;10(1):5844. doi:10.1038/s41598-020-62572-0.
  • Froukh T, Hawwari A, Al Zubi K.Whole exome sequencing highlights variants in association with Keratoconus in Jordanian families. BMC Med Genet. 2020;21(1):177. doi:10.1186/s12881-020-01112-z.
  • McComish BJ, Sahebjada S, Bykhovskaya Y, Willoughby CE, Richardson AJ, Tenen A, Charlesworth JC, MacGregor S, Mitchell P, Lucas SEM, et al. Association of genetic variation with keratoconus. JAMA Ophthalmol. 2020;138(2):174–81. doi:10.1001/jamaophthalmol.2019.5293.
  • Zhang J, Li Y, Dai Y, Xu J. Replication of the association between keratoconus and polymorphisms in PNPLA2 and MAML2 in a Han Chinese population. Front Genet. 2020;11:827. doi:10.3389/fgene.2020.00827.
  • Khaled ML, Bykhovskaya Y, Gu C, Liu A, Drewry MD, Chen Z, Mysona BA, Parker E, McNabb RP, Yu H, et al. PPIP5K2 and PCSK1 are candidate genetic contributors to familial keratoconus. Sci Rep 2019;9:19406.
  • Abdullah OA, El Gazzar WB, Salem TI, Al-Kamil EA.Role of extracellular matrix remodelling gene SNPs in keratoconus. Br J Biomed Sci. 2020;77(1):13–18. doi:10.1080/09674845.2019.1654346.
  • Yari D, Ehsanbakhsh Z, Validad MH, Langroudi FH.Association of TIMP-1 and COL4A4 gene polymorphisms with keratoconus in an Iranian population. J Ophthalmic Vis Res. 2020;15(3):299–307. doi:10.18502/jovr.v15i3.7448.
  • Xu L, Yang K, Fan Q, Gu Y, Zhang B, Pang C, Ren S. Exome sequencing identification of susceptibility genes in Chinese patients with keratoconus. Ophthalmic Genet. 2020;41(6):518–25. doi:10.1080/13816810.2020.1799415.
  • Karolak JA, Gambin T, Rydzanicz M, Polakowski P, Ploski R, Szaflik JP, Gajecka M. Accumulation of sequence variants in genes of Wnt signaling and focal adhesion pathways in human corneas further explains their involvement in keratoconus. PeerJ. 2020;8:e8982.
  • Choquet H, Melles RB, Yin J, Hoffmann TJ, Thai KK, Kvale MN, Banda Y, Hardcastle AJ, Tuft SJ, Glymour MM, et al. A multiethnic genome-wide analysis of 44,039 individuals identifies 41 new loci associated with central corneal thickness. Commun Biol. 2020;3(1):301. doi:10.1038/s42003-020-1037-7.
  • Hosoda Y, Miyake M, Meguro A, Tabara Y, Iwai S, Ueda-Arakawa N, Nakano E, Mori Y, Yoshikawa M, Nakanishi H, et al. Keratoconus-susceptibility gene identification by corneal thickness genome-wide association study and artificial intelligence IBM Watson. Commun Biol. 2020;3(1):410. doi:10.1038/s42003-020-01137-3.
  • Li H, Chen J, Huang A, Stinson J, Heldens S, Foster J, Dowd P, Gurney AL, Wood WI. Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family. Proc Natl Acad Sci U S A. 2000;97(2):773–78. doi:10.1073/pnas.97.2.773.
  • Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10(6):771–85. doi:10.1016/j.stem.2012.05.009.
  • Xing F, Liu Y, Sharma S, Wu K, Chan MD, Lo HW, Carpenter RL, Metheny-Barlow LJ, Zhou X, Qasem SA, et al. Activation of the c-met pathway mobilizes an inflammatory network in the brain microenvironment to promote brain metastasis of breast cancer. Cancer Res. 2016;76(17):4970–80. doi:10.1158/0008-5472.CAN-15-3541.
  • Paduch R, Jakubowicz-Gil J, Niedziela P.Hepatocyte growth factor (HGF), heat shock proteins (HSPs) and multidrug resistance protein (MRP) expression in co-culture of colon tumor spheroids with normal cells after incubation with interleukin-1beta (IL-1beta) and/or camptothecin (CPT-11). Indian J Exp Biol. 2010;48(4):354–64.
  • Ghatak S, Bogatkevich GS, Atnelishvili I, Akter T, Feghali-Bostwick C, Hoffman S, Fresco VM, Fuchs JC, Visconti RP, Markwald RR, et al. Overexpression of c-Met and CD44v6 receptors contributes to autocrine TGF-beta1 signaling in interstitial lung disease. J Biol Chem. 2014;289(11):7856–72. doi:10.1074/jbc.M113.505065.
  • Sanchez-Morgan N, Kirsch KH, Trackman PC, Sonenshein GE.The lysyl oxidase propeptide interacts with the receptor-type protein tyrosine phosphatase kappa and inhibits beta-catenin transcriptional activity in lung cancer cells. Mol Cell Biol. 2011;31(16):3286–97. doi:10.1128/MCB.01426-10.
  • Oganesian A, Au S, Horst JA, Holzhausen LC, Macy AJ, Pace JM, Bornstein P. The NH2 -terminal propeptide of type I procollagen acts intracellularly to modulate cell function. J Biol Chem. 2006;281(50):38507–18. doi:10.1074/jbc.M607536200.
  • von Marschall Z, Fisher LW.Dentin sialophosphoprotein (DSPP) is cleaved into its two natural dentin matrix products by three isoforms of bone morphogenetic protein-1 (BMP1). Matrix Biol. 2010;29(4):295–303. doi:10.1016/j.matbio.2010.01.002.
  • Gopalakrishnan B, Wang WM, Greenspan DS.Biosynthetic processing of the Pro-alpha1(V)Pro-alpha2(V)Pro-alpha3(V) procollagen heterotrimer. J Biol Chem. 2004;279(29):30904–12. doi:10.1074/jbc.M402252200.
  • Kalluri R, Cosgrove D.Assembly of type IV collagen. Insights from alpha3(IV) Collagen-deficient Mice J Biol Chem. 2000;275(17):12719–24.
  • Choung J, Taylor L, Thomas K, Zhou X, Kagan H, Yang X, Polgar P. Role of EP2 receptors and cAMP in prostaglandin E2 regulated expression of type I collagen alpha1, lysyl oxidase, and cyclooxygenase-1 genes in human embryo lung fibroblasts. J Cell Biochem. 1998;71(2):254–63. doi:10.1002/(SICI)1097-4644(19981101)71:2<254::AID-JCB10>3.0.CO;2-L.
  • Rae MT, Niven D, Ross A, Forster T, Lathe R, Critchley HO, Ghazal P, Hillier SG. Steroid signalling in human ovarian surface epithelial cells: the response to interleukin-1alpha determined by microarray analysis. J Endocrinol. 2004;183(1):19–28. doi:10.1677/joe.1.05754.
  • Fettelschoss A, Kistowska M, LeibundGut-Landmann S, Beer HD, Johansen P, Senti G, Contassot E, Bachmann MF, French LE, Oxenius A, et al. Inflammasome activation and IL-1beta target IL-1alpha for secretion as opposed to surface expression. Proc Natl Acad Sci U S A. 2011;108(44):18055–60. doi:10.1073/pnas.1109176108.
  • Kobayashi Y, Yamamoto K, Saido T, Kawasaki H, Oppenheim JJ, Matsushima K.Identification of calcium-activated neutral protease as a processing enzyme of human interleukin 1 alpha. Proc Natl Acad Sci U S A. 1990;87(14):5548–52. doi:10.1073/pnas.87.14.5548.
  • Uri-Belapolsky S, Shaish A, Eliyahu E, Grossman H, Levi M, Chuderland D, Ninio-Many L, Hasky N, Shashar D, Almog T, et al. Interleukin-1 deficiency prolongs ovarian lifespan in mice. Proc Natl Acad Sci U S A. 2014;111(34):12492–97. doi:10.1073/pnas.1323955111.
  • Ali S, Mohs A, Thomas M, Klare J, Ross R, Schmitz ML, Martin MU. The dual function cytokine IL-33 interacts with the transcription factor NF-kappaB to dampen NF-kappaB-stimulated gene transcription. J Immunol. 2011;187(4):1609–16. doi:10.4049/jimmunol.1003080.
  • Kong J, Grando SA, Li YC.Regulation of IL-1 family cytokines IL-1alpha, IL-1 receptor antagonist, and IL-18 by 1,25-dihydroxyvitamin D3 in primary keratinocytes. J Immunol. 2006;176(6):3780–87. doi:10.4049/jimmunol.176.6.3780.
  • Malty RH, Aoki H, Kumar A, Phanse S, Amin S, Zhang Q, Minic Z, Goebels F, Musso G, Wu Z, et al. A map of human mitochondrial protein interactions linked to neurodegeneration reveals new mechanisms of redox homeostasis and NF-kappaB signaling. Cell Syst. 2017;5(6):564–77 e12. doi:10.1016/j.cels.2017.10.010.
  • Borg LA, Cagliero E, Sandler S, Welsh N, Eizirik DL.Interleukin-1 beta increases the activity of superoxide dismutase in rat pancreatic islets. Endocrinology. 1992;130(5):2851–57. doi:10.1210/endo.130.5.1533363.
  • Stifanese R, Averna M, De Tullio R, Pedrazzi M, Beccaria F, Salamino F, Milanese M, Bonanno G, Pontremoli S, Melloni E, et al. Adaptive modifications in the calpain/calpastatin system in brain cells after persistent alteration in Ca2+ homeostasis. J Biol Chem. 2010;285(1):631–43. doi:10.1074/jbc.M109.031674.
  • Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, Colby G, Gebreab F, Gygi MP, Parzen H, et al. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017;545(7655):505–09. doi:10.1038/nature22366.
  • Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, Tam S, Zarraga G, Colby G, Baltier K, et al. The BioPlex network: a systematic exploration of the human interactome. Cell. 2015;162(2):425–40. doi:10.1016/j.cell.2015.06.043.
  • Vogel MJ, Xie L, Guan H, Tooze RM, Maier T, Kostezka U, Maier HJ, Holzmann K, Chan FC, Steidl C, et al. FOXO1 repression contributes to block of plasma cell differentiation in classical Hodgkin lymphoma. Blood. 2014;124(20):3118–29. doi:10.1182/blood-2014-07-590570.
  • Katoh K, Omori Y, Onishi A, Sato S, Kondo M, Blimp FT.suppresses Chx10 expression in differentiating retinal photoreceptor precursors to ensure proper photoreceptor development. J Neurosci. 2010;30(19):6515–26. doi:10.1523/JNEUROSCI.0771-10.2010.
  • Gearhart MD, Corcoran CM, Wamstad JA, Bardwell VJ.Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol Cell Biol. 2006;26(18):6880–89. doi:10.1128/MCB.00630-06.
  • Li J, Zhang W, Yang H, Howrigan DP, Wilkinson B, Souaiaia T, Evgrafov OV, Genovese G, Clementel VA, Tudor JC, et al. Spatiotemporal profile of postsynaptic interactomes integrates components of complex brain disorders. Nat Neurosci. 2017;20(8):1150–61. doi:10.1038/nn.4594.
  • Yang S, Du J, Wang Z, Yan J, Yuan W, Zhang J, Zhu T. Dual mechanism of deltaEF1 expression regulated by bone morphogenetic protein-6 in breast cancer. Int J Biochem Cell Biol. 2009;41(4):853–61. doi:10.1016/j.biocel.2008.08.030.
  • Hoffmann E, Thiefes A, Buhrow D, Dittrich-Breiholz O, Schneider H, Resch K, Kracht M. MEK1-dependent delayed expression of Fos-related antigen-1 counteracts c-Fos and p65 NF-kappaB-mediated interleukin-8 transcription in response to cytokines or growth factors. J Biol Chem. 2005;280(10):9706–18. doi:10.1074/jbc.M407071200.
  • Johnston IM, Spence HJ, Winnie JN, McGarry L, Vass JK, Meagher L, Stapleton G, Ozanne BW. Regulation of a multigenic invasion programme by the transcription factor, AP-1: re-expression of a down-regulated gene, TSC-36, inhibits invasion. Oncogene. 2000;19(47):5348–58. doi:10.1038/sj.onc.1203927.
  • Cao Y, Kamioka Y, Yokoi N, Kobayashi T, Hino O, Onodera M, Mochizuki N, Nakae J. Interaction of FoxO1 and TSC2 induces insulin resistance through activation of the mammalian target of rapamycin/p70 S6K pathway. J Biol Chem. 2006;281(52):40242–51. doi:10.1074/jbc.M608116200.
  • Gan B, Lim C, Chu G, Hua S, Ding Z, Collins M, Hu J, Jiang S, Fletcher-Sananikone E, Zhuang L, et al. FoxOs enforce a progression checkpoint to constrain mTORC1-activated renal tumorigenesis. Cancer Cell. 2010;18(5):472–84. doi:10.1016/j.ccr.2010.10.019.
  • Rodriguez J, Pilkington R, Garcia Munoz A, Nguyen LK, Rauch N, Kennedy S, Monsefi N, Herrero A, Taylor C, von Kriegsheim A, et al. Substrate-trapped interactors of PHD3 and FIH cluster in distinct signaling pathways. Cell Rep. 2016;14(11):2745–60. doi:10.1016/j.celrep.2016.02.043.
  • Abu A, Frydman M, Marek D, Pras E, Stolovitch C, Aviram-Goldring A, et al. Mapping of a gene causing brittle cornea syndrome in Tunisian jews to 16q24. Invest Ophthalmol Vis Sci. 2006;47(12):5283–7.
  • Christensen AE, Knappskog PM, Midtbo M, Gjesdal CG, Mengel-From J, Morling N, et al. Brittle cornea syndrome associated with a missense mutation in the zinc-finger 469 gene. Invest Ophthalmol Vis Sci. 2010;51(1):47–52.
  • Lu Y, Dimasi DP, Hysi PG, Hewitt AW, Burdon KP, Toh T, et al. Common genetic variants near the Brittle Cornea Syndrome locus ZNF469 influence the blinding disease risk factor central corneal thickness. PLoS Genet. 2010;6(5):e1000947.
  • Khan AO, Aldahmesh MA, Mohamed JN, Alkuraya FS. Blue sclera with and without corneal fragility (brittle cornea syndrome) in a consanguineous family harboring ZNF469 mutation (p.E1392X). Arch Ophthalmol. 2010;128(1):128–9.
  • Al-Owain M, Al-Dosari MS, Sunker A, Shuaib T, Alkuraya FS. Identification of a novel ZNF469 mutation in a large family with Ehlers-Danlos phenotype. Gene. 2012;511(2):447–50.
  • De Baere E. Heterozygous coding ZNF469 variants enriched in New Zealand patients with isolated keratoconus. Invest Ophthalmol Vis Sci. 2014;55(9):5636.
  • Korvatska E, Munier FL, Djemai A, Wang MX, Frueh B, Chiou AG, et al. Mutation hot spots in 5q31-linked corneal dystrophies. Am J Hum Genet. 1998;62(2):320–4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.