63
Views
0
CrossRef citations to date
0
Altmetric
Case Report

Broadening the ocular phenotypic spectrum of ultra-rare BRPF1 variants: report of two cases

ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 01 Aug 2023, Accepted 27 Mar 2024, Published online: 08 Apr 2024

References

  • Mattioli F, Schaefer E, Magee A, Mark P, Mancini GM, Dieterich K, Von Allmen G, Alders M, Coutton C, van Slegtenhorst M, et al. Mutations in histone acetylase modifier BRPF1 cause an autosomal-dominant form of intellectual disability with associated ptosis. Am J Hum Genet. 2017;100(1):105–16. doi:10.1016/j.ajhg.2016.11.010.
  • Yan K, Rousseau J, Littlejohn RO, Kiss C, Lehman A, Rosenfeld JA, Stumpel CTR, Stegmann APA, Robak L, Scaglia F, et al. Mutations in the chromatin regulator gene BRPF1 cause syndromic intellectual disability and deficient histone acetylation. Am J Hum Genet. 2017;100(1):91–104. doi:10.1016/j.ajhg.2016.11.011.
  • Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017 Feb 23;542(7642):433–8. doi:10.1038/nature21062. Epub 2017 Jan 25. PMID: 28135719; PMCID: PMC6016744.
  • Demeulenaere S, Beysen D, De Veuster I, Reyniers E, Kooy F, Meuwissen M. Novel BRPF1 mutation in a boy with intellectual disability, coloboma, facial nerve palsy and hypoplasia of the corpus callosum. Eur J Med Genet. 2019 Aug;62(8):103691. doi:10.1016/j.ejmg.2019.103691. Epub 2019 Jun 6. PMID: 31176769.
  • Haug P, Koller S, Maggi J, Lang E, Feil S, Wlodarczyk A, Bähr L, Steindl K, Rohrbach M, Gerth-Kahlert C, et al. Whole exome sequencing in coloboma/microphthalmia: identification of novel and recurrent variants in seven genes. Genes. 2021 Jan 6;12(1):65. doi:10.3390/genes12010065. PMID: 33418956; PMCID: PMC7825129.
  • Rocca C, Tiberi L, Bargiacchi S, Palazzo V, Landini S, Marziali E, Caputo R, Tinelli F, Marchi V, Benedetto A, et al. Expanding the spectrum of oculocutaneous albinism: does isolated foveal hypoplasia really exist? Int J Mol Sci. 2022 Jul 15;23(14). 7825. doi:10.3390/ijms23147825.
  • Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. doi:10.1038/gim.2015.30.
  • Provenzano A, La Barbera A, Scagnet M, Pagliazzi A, Traficante G, Pantaleo M, Tiberi L, Vergani D, Kurtas NE, Guarducci S, et al. Chiari 1 malformation and exome sequencing in 51 trios: the emerging role of rare missense variants in chromatin-remodeling genes. Hum Genet. 2021;140(4):625–47. doi:10.1007/s00439-020-02231-6.
  • You L, Zou J, Zhao H, Bertos NR, Park M, Wang E, Yang XJ. Deficiency of the chromatin regulator Brpf1 causes abnormal brain development. J Biol Chem. 2015;290(11):7114–29. doi:10.1074/jbc.M114.635250.
  • Souza J, Do Valle DA, Santos MLSF, Colomé FB, Teive HAG, da Silva Freitas R, Herai RH. BRPF1-associated syndrome: a patient with congenital ptosis, neurological findings, and normal intellectual development. Am J Med Genet A. 2022 Jun;188(6):1875–80. doi:10.1002/ajmg.a.62706. Epub 2022 Mar 3. PMID: 35243762.
  • Keywan C, Holm IA, Poduri A, Brownstein CA, Alexandrescu S, Chen J, Geffre C, Goldstein RD. A de novo BRPF1 variant in a case of sudden unexplained death in childhood. Eur J Med Genet. 2020 Sep;63(9):104002. doi:10.1016/j.ejmg.2020.104002. Epub 2020 Jul 8. PMID: 32652122; PMCID: PMC7469702.
  • Young L, Brooks B, Traboulsi EI. Ocular findings in a patient with KAT6A mutation. J Pediatr Ophthalmol Strabismus. 2021 May-Jun;58(3):9–11. doi:10.3928/01913913-20210205-02. Epub 2021 May 1. PMID: 34039162.
  • Zhang LX, Lemire G, Gonzaga-Jauregui C, Molidperee S, Galaz-Montoya C, Liu DS, Verloes A, Shillington AG, Izumi K, Ritter AL, et al. Further delineation of the clinical spectrum of KAT6B disorders and allelic series of pathogenic variants. Genet Med. 2020 Aug;22(8):1338–47. doi:10.1038/s41436-020-0811-8. Epub 2020 May 19. PMID: 32424177; PMCID: PMC7737399.
  • Liu X, Shen M, Huang S, Leng L, Zhu D, Lu F. Repeatability and reproducibility of eight macular intra-retinal layer thicknesses determined by an automated segmentation algorithm using two SD-OCT instruments. PLoS One. 2014;9(2):e87996.
  • Altemir I, Pueyo V, Elia N, Polo V, Larrosa JM, Oros D. Reproducibility of optical coherence tomography measurements in children. Am J Ophthalmol. 2013;155(1):171–6.
  • Ghasia FF, El-Dairi M, Freedman SF, Rajani A, Asrani S. Reproducibility of spectral-domain optical coherence tomography measurements in adult and pediatric glaucoma. J Glaucoma. 2015;24:55–63. doi:10.1097/IJG.0b013e31829521db.
  • Runge AK, Remlinger J, Abegg M, Ferrazzini T, Brügger D, Weigt-Usinger K, Lücke T, Gold R, Salmen A, Paul F. Retinal layer segmentation in a cohort of healthy children via optical coherence tomography. PLoS One. 2022 Nov 3;17(11):e0276958. doi:10.1371/journal.pone.0276958. PMID: 36327296; PMCID: PMC9632928.
  • Chung HK, Han YK, Oh S, Kim SH. Comparison of optical coherence tomography measurement reproducibility between children and adults. PLoS One. 2016;11(1):e0147448.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.