254
Views
16
CrossRef citations to date
0
Altmetric
Review Article

Genetic Isolates in Ophthalmic Diseases

, , &
Pages 149-161 | Received 15 May 2008, Accepted 03 Jul 2008, Published online: 08 Jul 2009

REFERENCES

  • Chakravarti A, Little P. Nature, nurture and human disease. Nature 2003; 421: 412–414
  • Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447: 661–678
  • Arcos-Burgos M, Muenke M. Genetics of population isolates. Clin Genet. 2002; 61: 233–247
  • Zlotogora J. High frequencies of human genetic diseases: Founder effect with genetic drift or selection?. Am J Med Genet. 1994; 49: 10–13
  • Shifman S, Darvasi A. The value of isolated populations. Nat Genet. 2001; 28: 309–310
  • Varilo T, Peltonen L. Isolates and their potential use in complex gene mapping efforts. Curr Opin Genet Develop 2004; 14: 316–323
  • Roa B B, Boyd A A, Volcik K, et al. Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat Genet. 1996; 14: 185–187
  • Heon E, Piguet B, Munier F, et al. Linkage of autosomal dominant radial drusen (malattia leventinese) to chromosome 2p16-21. Arch Ophthalmol. 1996; 114: 193–198
  • Stone E M, Lotery A J, Munier F L, et al. A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nat Genet. 1999; 22: 199–202
  • Howell N, Bindoff L A, McCullough D A, et al. Leber hereditary optic neuropathy: identification of the same mitochondrial ND1 mutation in six pedigrees. Am J Hum Genet. 1991; 49: 939–950
  • Macmillan C, Johns T A, Fu K, et al. Predominance of the T14484C mutation in French-Canadian families with Leber hereditary optic neuropathy is due to a founder effect. Am J Hum Genet. 2000; 66: 332–335
  • Laberge A M, Jomphe M, Houde L, et al. A “Fille du Roy” introduced the T14484C Leber hereditary optic neuropathy mutation in French Canadians. Am J Hum Genet. 2005; 77: 313–317
  • Howell N, Oostra R J, Bolhuis P A, et al. Sequence analysis of the mitochondrial genomes from Dutch pedigrees with Leber hereditary optic neuropathy. Am J Hum Genet. 2003; 72: 1460–1469
  • Zlotogora J. Molecular basis of autosomal recessive diseases among the Palestinian Arabs. Am J Med Genet. 2002; 109: 176–182
  • De Braekeleer M, Gauthier S. Autosomal recessive disorders in Saguenay-Lac-St-Jean, Quebec:Study of kinship. Hum Biol. 1996; 68: 371–381
  • Zlotogora J. Multiple mutations responsible for frequent genetic diseases in isolated populations. Eur J Hum Genet. 2007; 15: 272–278
  • Feingold J. Multiple mutations in a specific gene in a small population. C R Acad Sci. III. 1998; 321: 553–555
  • Zlotogora J, Hujerat Y, Barges S, et al. The fate of 12 recessive mutations in a single village. Ann Hum Genet. 2007; 71: 202–208
  • Martinez-Frias M L, Bermejo E. Prevalence of congenital anomaly syndromes in a Spanish gypsy population. J Med Genet. 1992; 29: 483–486
  • Schreyer-Shafir N, Huizing M, Anikster Y, et al. A new genetic isolate with a unique phenotype of syndromic oculocutaneous albinism: clinical, molecular, and cellular characteristics. Hum Mutat 2006; 27: 1158
  • Ramprasad V L, George R J, Sripriya S, et al. Molecular genetic analysis of a consanguineous south Indian family with congenital glaucoma: Relevance of genetic testing and counseling. Ophthalmic Genet. 2007; 28: 17–24
  • Chiang A P, Beck J S, Yen H J, et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proc Natl Acad Sci U S A. 2006; 103: 6287–6292
  • Nirmalan P K, Krishnaiah S, Nutheti R, et al. Consanguinity and eye diseases with a potential genetic etiology. Data from a prevalence study in Andhra Pradesh, India. Ophthalmic Epidemiol. 2006; 13: 7–13
  • Broman K W, Weber J L. Method for constructing confidently ordered linkage maps. Genet Epidemiol. 1999; 16: 337–343
  • O'Brien E, Jorde L B, Ronnlof B, et al. Inbreeding and genetic disease in Sottunga, Finland. Am J Phys Anthropol. 1988; 75: 477–486
  • Norio R, Nevanlinna H R, Perheentupa J. Hereditary diseases in Finland; rare flora in rare soul. Ann Clin Res. 1973; 5: 109–141
  • Joensuu T, Hamalainen R, Yuan B, et al. Mutations in a novel gene with transmembrane domains underlie Usher syndrome type 3. Am J Hum Genet. 2001; 69: 673–684
  • Forsius H, Damsten M, Eriksson A W, et al. Autosomal recessive cornea plana. A clinical and genetic study of 78 cases in Finland. Acta Ophthalmol. Scand. 1998; 76: 196–203
  • Chakrabarti S, Kaur K, Kaur I, et al. Globally, CYP1B1 mutations in primary congenital glaucoma are strongly structured by geographic and haplotype backgrounds. Invest Ophthalmol Vis Sci. 2006; 47: 43–47
  • Vogt G, Horvath-Puho E, Czeizel A E. A population-based case-control study of isolated primary congenital glaucoma. Am J Med Genet. 2006; A140: 1148–1155
  • Gencik A, Gencikova A, Ferak V. Population genetical aspects of primary congenital glaucoma. I. Incidence, prevalence, gene frequency, and age of onset. Hum Genet. 1982; 61: 193–197
  • Gencik A. Epidemiology and genetics of primary congenital glaucoma in Slovakia. Description of a form of primary congenital glaucoma in gypsies with autosomal-recessive inheritance and complete penetrance. Dev Ophthalmol. 1989; 16: 76–115
  • Stoilov I, Akarsu A N, Sarfarazi M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Molec Genet. 1997; 6: 641–647
  • Martin S N, Sutherland J, Levin A V, et al. Molecular characterisation of congenital glaucoma in a consanguineous Canadian community: A step towards preventing glaucoma related blindness. J Med Genet. 2000; 37: 422–427
  • Reddy A B, Kaur K, Mandal A K, et al. Mutation spectrum of the CYP1B1 gene in Indian primary congenital glaucoma patients. Mol Vis. 2004; 10: 696–702
  • Alfadhli S, Behbehani A, Elshafey A, et al. Molecular and clinical evaluation of primary congenital glaucoma in Kuwait. Am J Ophthalmol. 2006; 141: 512–516
  • Bejjani B A, Stockton D W, Lewis R A, et al. Multiple CYP1B1 mutations and incomplete penetrance in an inbred population segregating primary congenital glaucoma suggest frequent de novo events and a dominant modifier locus. Hum Mol Genet. 2000; 9: 367–374
  • Belmouden A, Melki R, Hamdani M, et al. A novel frameshift founder mutation in the cytochrome P450 1B1 (CYP1B1) gene is associated with primary congenital glaucoma in Morocco. Clin Genet. 2002; 62: 334–339
  • Soley G C, Bosse K A, Flikier D, et al. Primary congenital glaucoma: A novel single-nucleotide deletion and varying phenotypic expression for the 1,546–1,555dup mutation in the GLC3A (CYP1B1) gene in 2 families of different ethnic origin. J Glaucoma 2003; 12: 27–30
  • Forsius H, Eriksson A, Vainio-Mattila B. Sex-Related hereditary retinoschisis in 2 families in Finland.]. Klin Monatsbl Augenheilkd. 1963; 143: 806–816
  • Vainio-Mattila B, Eriksson A W, Forsius H. X-chromosomal recessive retinoschisis in the Region of Pori. An ophthalmo-genetical analysis of 103 cases. Acta Ophthalmol (Copenh.) 1969; 47: 1135–1148
  • Eriksson A W, Forsius H, Vainio-Mattila B. X-chromosomal recessive retinoschisis. Duodecim. 1972; 88: 43–51
  • Rudanko S L, Flage T, Hansen E, et al. Visual impairment in Nordic children. V. X-linked juvenile retinoschisis. Acta Ophthalmol (Copenh.) 1993; 71: 586–589
  • Alitalo T, Kruse T A, de la Chapelle A. Refined localization of the gene causing X-linked juvenile retinoschisis. Genomics 1991; 9: 505–510
  • Alitalo T, Forsius H, Karna J, et al. Linkage relationships and gene order around the locus for X-linked retinoschisis. Am J Hum Genet. 1988; 43: 476–483
  • Huopaniemi L, Rantala A, Tahvanainen E, et al. Linkage disequilibrium and physical mapping of X-linked juvenile retinoschisis. Amer J Hum Genet. 1997; 60: 1139–1149
  • Gehrig A, Weber B H, Lorenz B, et al. First molecular evidence for a de novo mutation in RS1 (XLRS1) associated with X linked juvenile retinoschisis. J Med Genet. 1999; 36: 932–934
  • Huopaniemi L, Rantala A, Forsius H, et al. Three widespread founder mutations contribute to high incidence of X-linked juvenile retinoschisis in Finland. Eur J Hum Genet. 1999; 7: 368–376
  • Hewitt A W, Fitz Gerald L M, Scotter L W, et al. Genotypic and phenotypic spectrum of X-linked retinoschisis in Australia. Clin Exper Ophthalmol. 2005; 33: 233–239
  • Ismail M, Abid A, Anwar K, et al. Refinement of the locus for autosomal recessive cone-rod dystrophy (CORD8) linked to chromosome 1q23-q24 in a Pakistani family and exclusion of candidate genes. J Hum Genet. 2006; 51: 827–831
  • Kumar A, Shetty J, Kumar B, et al. Confirmation of linkage and refinement of the RP28 locus for autosomal recessive retinitis pigmentosa on chromosome 2p14-p15 in an Indian family. Mol Vis. 2004; 10: 399–402
  • Hameed A, Khaliq S, Ismail M, et al. A new locus for autosomal recessive RP (RP29) mapping to chromosome 4q32-q34 in a Pakistani family. Invest Ophthalmol Vis Sci. 2001; 42: 1436–1438
  • Katsanis N, Lewis R A, Stockton D W, et al. Delineation of the critical interval of Bardet-Biedl syndrome 1 (BBS1) to a small region of 11q13, through linkage and haplotype analysis of 91 pedigrees. Amer J Humn Genet. 1999; 65: 1672–1679
  • Khaliq S, Hameed A, Ismail M, et al. Refinement of the locus for autosomal recessive Retinitis pigmentosa (RP25) linked to chromosome 6q in a family of Pakistani origin. Amer J Hum Genet. 1999; 65: 571–574
  • Bessant D A, Payne A M, Plant C, et al. Further refinement of the Usher 2A locus at 1q41. J Med Genet. 1998; 35: 773–774
  • Finckh U, Xu S, Kumaramanickavel G, et al. Homozygosity mapping of autosomal recessive retinitis pigmentosa locus (RP22) on chromosome 16p12.1-p12.3. Genomics 1998; 48: 341–345
  • Bayes M, Goldaracena B, Martinez-Mir A, et al. A new autosomal recessive retinitis pigmentosa locus maps on chromosome 2q31-q33. J Med Genet. 1998; 35: 141–145
  • Leutelt J, Oehlmann R, Younus F, et al. Autosomal recessive retinitis pigmentosa locus maps on chromosome 1q in a large consanguineous family from Pakistan. Clin. Genet. 1995; 47: 122–124
  • van Soest S, Ingeborgh van den Born L, Gal A, et al. Assignment of a gene for autosomal recessive retinitis pigmentosa (RP12) to chromosome 1q31-q32.1 in an inbred and genetically heterogeneous disease population. Genomics 1994; 22: 499–504
  • Gerber S, Rozet J M, Takezawa S I, et al. The photoreceptor cell-specific nuclear receptor gene (PNR) accounts for retinitis pigmentosa in the Crypto-Jews from Portugal (Marranos), survivors from the Spanish Inquisition. Hum Genet. 2000; 107: 276–284
  • Dreyer B, Tranebjaerg L, Brox V, et al. A common ancestral origin of the frequent and widespread 2299delG USH2A mutation. Amer J Hum Genet. 2001; 69: 228–234
  • Bessant D A, Payne A M, Plant C, et al. NRL S50T mutation and the importance of ‘founder effects’ in inherited retinal dystrophies. Eur J Hum Genet. 2000; 8: 783–787
  • Maugeri A, van Driel M A, van de Pol D J, et al. The 2588G–>C mutation in the ABCR gene is a mild frequent founder mutation in the Western European population and allows the classification of ABCR mutations in patients with Stargardt disease. Amer Jj Hum Genet. 1999; 64: 1024–1035
  • Mears A J, Gieser L, Yan D, et al. Protein-truncation mutations in the RP2 gene in a North American cohort of families with X-linked retinitis pigmentosa. Amer J Hum Genet.s 1999; 64: 897–900
  • Engle E C. Genetic basis of congenital strabismus. Arch Ophthalmol. 2007; 125: 189–195
  • Wang S M, Zwaan J, Mullaney P B, et al. Congenital fibrosis of the extraocular muscles type 2, an inherited exotropic strabismus fixus, maps to distal 11q13. Am J Hum Genet. 1998; 63: 517–525
  • Nakano M, Yamada K, Fain J, et al. Homozygous mutations in ARIX(PHOX2A) result in congenital fibrosis of the extraocular muscles type 2. Nat Genet. 2001; 29: 315–320
  • Tischfield M A, Bosley T M, Salih M A, et al. Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development. Nat Genet. 2005; 37: 1035–1037
  • Young T L, Metlapally R, Shay A E. Complex trait genetics of refractive error. Arch Ophthalmol. 2007; 125: 38–48
  • Fuchs J, Holm K, Vilhelmsen K, et al. Hereditary high hypermetropia in the Faroe Islands. Ophthalmic Genet. 2005; 26: 9–15
  • Teikari J, Koskenvuo M, Kaprio J, et al. Study of gene-environment effects on development of hyperopia: A study of 191 adult twin pairs from the Finnish Twin Cohort Study. Acta Genet Med Gemellol (Roma) 1990; 39: 133–136
  • Cross H E, Yoder F. Familial nanophthalmos. Am J Ophthalmol. 1976; 81: 300–306
  • Tay T, Smith J E, Berman Y, et al. Nanophthalmos in a Melanesian population. Clin Exper Ophthalmol. 2007; 35: 348–354
  • Eaves I A, Merriman T R, Barber R A, et al. The genetically isolated populations of Finland and Sardinia may not be a panacea for linkage disequilibrium mapping of common disease genes. Nat Genet. 2000; 25: 320–323
  • Ginns E I, Ott J, Egeland J A, et al. A genome-wide search for chromosomal loci linked to bipolar affective disorder in the Old Order Amish. Nature Genet. 1996; 12: 431–435
  • Ober C, Tsalenko A, Parry R, et al. A second-generation genomewide screen for asthma-susceptibility alleles in a founder population. Amer J Hum Genet. 2000; 67: 1154–1162
  • Allikmets R, Shroyer N F, Singh N, et al. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science (New York) 1997; 277: 1805–1807
  • Klein R, Peto T, Bird A, et al. The epidemiology of age-related macular degeneration. Amer J Ophthalmol. 2004; 137: 486–495
  • Jonasson F, Arnarsson A, Peto T, et al. 5-year incidence of age-related maculopathy in the Reykjavik Eye Study. Ophthalmology 2005; 112: 132–138
  • Edwards A O, Ritter R, 3rd, Abel K J, et al. Complement factor H polymorphism and age-related macular degeneration. Science 2005; 308: 421–424
  • Okamoto H, Umeda S, Obazawa M, et al. Complement factor H polymorphisms in Japanese population with age-related macular degeneration. Mol Vis. 2006; 12: 156–158
  • Magnusson K P, Duan S, Sigurdsson H, et al. CFH Y402H confers similar risk of soft drusen and both forms of advanced AMD. PLoS Med. 2006; 3: e5
  • Seitsonen S, Lemmela S, Holopainen J, et al. Analysis of variants in the complement factor H, the elongation of very long chain fatty acids-like 4 and the hemicentin 1 genes of age-related macular degeneration in the Finnish population. Mol Vis. 2006; 12: 796–801
  • Fisher S A, Rivera A, Fritsche L G, et al. Assessment of the contribution of CFH and chromosome 10q26 AMD susceptibility loci in a Russian population isolate. Br J Ophthalmol. 2007; 91: 576–578
  • Mitchell P, Wang J J, Hourihan F. The relationship between glaucoma and pseudoexfoliation: The Blue Mountains Eye Study. Arch Ophthalmol. 1999; 117: 1319–1324
  • Grodum K, Heijl A, Bengtsson B. Risk of glaucoma in ocular hypertension with and without pseudoexfoliation. Ophthalmology 2005; 112: 386–390
  • Tarkkanen A, Voipio H, Koivusalo P. Family study of pseudoexfoliation and glaucoma. Acta Ophthalmol (Copenh.) 1965; 43: 679–683
  • Forsius H, Luukka H. Pseudoexfoliation of the anterior capsule of the lens in Lapps and Eskimos. Can J Ophthalmol. 1973; 8: 274–277
  • Forsius H, Sveinsson K, Als E, et al. Pseudoexfoliation of the lens capsule and depth of anterior chamber in northern Iceland. Acta Ophthalmol (Copenh.) 1974; 52: 421–428
  • Sveinsson K. The frequency of senile exfoliation in Iceland. Fibrillopathy or pseudoexfoliation. Acta Ophthalmol (Copenh.) 1974; 52: 596–602
  • Forsius H. Prevalence of pseudoexfoliation of the lens in Finns, Lapps, Icelanders, Eskimos, and Russians. Trans Ophthalmol Soc U K. 1979; 99: 296–298
  • Jonasson F, Damji K F, Arnarsson A, et al. Prevalence of open-angle glaucoma in Iceland: Reykjavik Eye Study. Eye 2003; 17: 747–753
  • Forsman E, Cantor R M, Lu A, et al. Exfoliation syndrome: Prevalence and inheritance in a subisolate of the Finnish population. Acta Ophthalmol Scand. 2007; 85: 500–507
  • Bedri A, Alemu B. Pseudoexfoliation syndrome in Ethiopian glaucoma patients. E. Afr. Med J 1999; 76: 278–280
  • Benatiya Andaloussi I, Touiza E, Daoudi K, et al. Pseudoexfoliation syndrome in Moroccan patients with cataract scheduled for surgery. Bull Soc Belge Ophthalmol. 2006; 57–64
  • Hardie J G, Mercieca F, Fenech T, et al. Familial pseudoexfoliation in Gozo. Eye 2005; 19: 1280–1285
  • Gasch A T, Aghabayova Z, Seidova S. Exfoliation syndrome among Azerbaijani. Arch Ophthalmol 2003; 121: 920
  • Thorleifsson G, Magnusson K P, Sulem P, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science 2007; 317: 1397–1400
  • Hewitt A W, Sharma S, Burdon K P, et al. Ancestral LOXL1 variants are associated with pseudoexfoliation in Caucasian Australians but with markedly lower penetrance than in Nordic people. Hum Mol Genet. 2008; 17: 710–716
  • Hayashi H, Gotoh N, Ueda Y, et al. Lysyl oxidase-like 1 polymorphisms and exfoliation syndrome in the Japanese population. Amer J Ophthalmol. 2008; 145: 582–585
  • Coleman A L. Glaucoma. Lancet 1999; 354: 1803–1810
  • Laberge A M, Michaud J, Richter A, et al. Population history and its impact on medical genetics in Quebec. Clin Genet. 2005; 68: 287–301
  • Morissette J, Cote G, Anctil J L, et al. A common gene for juvenile and adult-onset primary open-angle glaucomas confined on chromosome 1q. Am J Hum Genet. 1995; 56: 1431–1442
  • Faucher M, Anctil J L, Rodrigue M A, et al. Founder TIGR/myocilin mutations for glaucoma in the Quebec population. Hum Mol Genet. 2002; 11: 2077–2090
  • Sack J, Healey D L, de Graaf A P, et al. The problem of overlapping glaucoma families in the Glaucoma Inheritance Study in Tasmania (GIST). Ophthalmic Genet. 1996; 17: 209–214
  • Baird P N, Craig J E, Richardson A J, et al. Analysis of 15 primary open-angle glaucoma families from Australia identifies a founder effect for the Q368STOP mutation of myocilin. Hum Genet. 2003; 112: 110–116
  • Baird P N, Richardson A J, Mackey D A, et al. A common disease haplotype for the Q368STOP mutation of the myocilin gene in Australian and Canadian glaucoma families. Am J Ophthalmol. 2005; 140: 760–762
  • Puska P, Lemmela S, Kristo P, et al. Penetrance and phenotype of the Thr377Met Myocilin mutation in a large Finnish family with juvenile- and adult-onset primary open-angle glaucoma. Ophthalmic Genet. 2005; 26: 17–23
  • Hewitt A W, Samples J R, Allingham R R, et al. Investigation of founder effects for the Thr377Met Myocilin mutation in glaucoma families from differing ethnic backgrounds. Mol Vis. 2007; 13: 487–492
  • Lemmela S, Ylisaukko-oja T, Forsman E, et al. Exclusion of 14 candidate loci for primary open angle glaucoma in Finnish families. Mol Vis. 2004; 10: 260–264
  • Hulsman C A, Willemse-Assink J J, de Jong P T, et al. Exclusion of candidate gene loci for adult onset primary open-angle glaucoma in a genetically isolated population. Clin Genet. 2002; 61: 160–162
  • van Koolwijk L M, Despriet D D, van Duijn C M, et al. Genetic contributions to glaucoma: Heritability of intraocular pressure, retinal nerve fiber layer thickness, and optic disc morphology. Invest Ophthalmol Vis Sci. 2007; 48: 3669–3676
  • Alsbirk P H. Corneal thickness. II. Environmental and genetic factors. Acta Ophthalmol (Copenh.) 1978; 56: 105–113
  • Stambolian D, Ibay G, Reider L, et al. Genomewide linkage scan for myopia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 22q12. Am J Hum Genet. 2004; 75: 448–459
  • Wojciechowski R, Moy C, Ciner E, et al. Genomewide scan in Ashkenazi Jewish families demonstrates evidence of linkage of ocular refraction to a QTL on chromosome 1p36. Hum Genet. 2006; 119: 389–399
  • Ibay G, Doan B, Reider L, et al. Candidate high myopia loci on chromosomes 18p and 12q do not play a major role in susceptibility to common myopia. BMC Med Genet. 2004; 5: 20
  • Nallasamy S, Paluru P C, Devoto M, et al. Genetic linkage study of high-grade myopia in a Hutterite population from South Dakota. Mol Vis. 2007; 13: 229–236
  • Stambolian D, Ciner E B, Reider L C, et al. Genome-wide scan for myopia in the Old Order Amish. Am J Ophthalmol. 2005; 140: 469–476
  • Peet J A, Cotch M F, Wojciechowski R, et al. Heritability and familial aggregation of refractive error in the Old Order Amish. Invest Ophthalmol Vis Sci. 2007; 48: 4002–4006
  • Angius A, Melis P M, Morelli L, et al. Archival, demographic and genetic studies define a Sardinian sub-isolate as a suitable model for mapping complex traits. Hum Genet. 2001; 109: 198–209
  • Biino G, Palmas M A, Corona C, et al. Ocular refraction: heritability and genome-wide search for eye morphometry traits in an isolated Sardinian population. Hum Genet. 2005; 116: 152–159
  • Fullerton J, Paprocki P, Foote S, et al. Identity-by-descent approach to gene localisation in eight individuals affected by keratoconus from north-west Tasmania, Australia. Hum Genet. 2002; 110: 462–470
  • Tyynismaa H, Sistonen P, Tuupanen S, et al. A locus for autosomal dominant keratoconus: Linkage to 16q22.3-q23.1 in Finnish families. Invest Ophthalmol Vis Sci. 2002; 43: 3160–3164
  • Peltonen L. Identification of disease genes in genetic isolates. Methods 1996; 9: 129–135
  • Falk M J, Feiler H S, Neilson D E, et al. Cohen syndrome in the Ohio Amish. Am J Med Genet. A 2004; 128: 23–28
  • Wijesuriya S D, Evans K, Jay M R, et al. Sorsby's fundus dystrophy in the British Isles: demonstration of a striking founder effect by microsatellite-generated haplotypes. Genome Res 1996; 6: 92–101
  • Payne A M, Downes S M, Bessant D A, et al. Founder effect, seen in the British population, of the 172 peripherin/RDS mutation-and further refinement of genetic positioning of the peripherin/RDS gene. Amer J Hum Genet. 1998; 62: 192–195
  • Samra D, Abraham F A, Treister G. Inherited progressive cone—rod dystrophy and alopecia. Metab Pediatr Syst Ophthalmol. 1988; 11: 83–85
  • Hanein S, Perrault I, Olsen P, et al. Evidence of a founder effect for the RETGC1 (GUCY2D) 2943DelG mutation in Leber congenital amaurosis pedigrees of Finnish origin. Hum Mutat. 2002; 20: 322–323
  • Fossdal R, Jonasson F, Kristjansdottir G T, et al. A novel TEAD1 mutation is the causative allele in Sveinsson's chorioretinal atrophy (helicoid peripapillary chorioretinal degeneration). Hum Mol Genet. 2004; 13: 975–981
  • Fossdal R, Magnusson L, Weber J L, et al. Mapping the locus of atrophia areata, a helicoid peripapillary chorioretinal degeneration with autosomal dominant inheritance, to chromosome 11p15. Hum Molec Genet. 1995; 4: 479–483
  • Magnusson L. Atrophia areata. A variant of peripapillary chorioretinal degeneration. Acta Ophthalmol (Copenh.) 1981; 59: 659–664
  • Vastinsalo H, Isosomppi J, Aittakorpi A, et al. Two Finnish USH1B patients with three novel mutations in myosin VIIA. Mol Vis. 2006; 12: 1093–1097
  • Sankila E M, Joensuu T H, Hamalainen R H, et al. A CRX mutation in a Finnish family with dominant cone-rod retinal dystrophy. Hum Mutat. 2000; 16: 94
  • Mantyjarvi M, Tuppurainen K. Progressive cone-rod dystrophy and high myopia in a Finnish family. Acta Ophthalmol (Copenh.) 1989; 67: 234–242
  • Mitchell G A, Brody L C, Sipila I, et al. At least two mutant alleles of ornithine delta-aminotransferase cause gyrate atrophy of the choroid and retina in Finns. Proc Natl Acad Sci USA. 1989; 86: 197–201
  • Jalkanen R, Demirci F Y, Tyynismaa H, et al. A new genetic locus for X linked progressive cone-rod dystrophy. J Med Genet. 2003; 40: 418–423
  • Felbor U, Suvanto E A, Forsius H R, et al. Autosomal recessive Sorsby fundus dystrophy revisited: molecular evidence for dominant inheritance. Amer J Hum Genet. 1997; 60: 57–62
  • Felbor U, Benkwitz C, Klein M L, et al. Sorsby fundus dystrophy: reevaluation of variable expressivity in patients carrying a TIMP3 founder mutation. Arch Ophthalmol. 1997; 115: 1569–1571
  • Kondo I, Nagataki S, Miyagi N. The Cohen syndrome: does mottled retina separate a Finnish and a Jewish type?. Am J Med Genet. 1990; 37: 109–113
  • Forsius H, Eriksson A, Nuutila A, et al. A genetic study of three rare retinal disorders: dystrophia retinae dysacusis syndrome, x-chromosomal retinoschisis and grouped pigments of the retina. Birth Defects Orig Artic Ser. 1971; 7: 83–98
  • Collin G B, Marshall J D, Cardon L R, et al. Homozygosity mapping at Alstrom syndrome to chromosome 2p. Hum Molec Genet. 1997; 6: 213–219
  • Ebermann I, Lopez I, Bitner-Glindzicz M, et al. Deafblindness in French Canadians from Quebec: a predominant founder mutation in the USH1C gene provides the first genetic link with the Acadian population. Genome Biol. 2007; 8: R47
  • Ouyang X M, Hejtmancik J F, Jacobson S G, et al. USH1C: A rare cause of USH1 in a non-Acadian population and a founder effect of the Acadian allele. Clin Genet. 2003; 63: 150–153
  • Pelias M Z, Lemoine D R, Kossar A L, et al. Linkage studies of Usher syndrome: Analysis of an Acadian kindred in Louisiana. Cytogenet Cell Genet. 1988; 47: 111–112
  • Chakarova C F, Cherninkova S, Tournev I, et al. Molecular genetics of retinitis pigmentosa in two Romani (Gypsy) families. Mol Vis. 2006; 12: 909–914
  • Alagramam K N, Yuan H, Kuehn M H, et al. Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Hum Molec Genet. 2001; 10: 1709–1718
  • Ghiasvand N M, Shirzad E, Naghavi M, et al. High incidence of autosomal recessive nonsyndromal congenital retinal nonattachment (NCRNA) in an Iranian founding population. Amer J Med Genet. 1998; 78: 226–232
  • Ravia Y, Braier-Goldstein O, Bat-Miriam K M, et al. X-linked recessive primary retinal dysplasia is linked to the Norrie disease locus. Hum Molec Genet. 1993; 2: 1295–1297
  • Wada Y, Abe T, Fuse N, et al. A frequent 1085delC/insGAAG mutation in the RDH5 gene in Japanese patients with fundus albipunctatus. Invest Ophthalmol Vis Sci. 2000; 41: 1894–1897
  • Saouda M, Mansour A, Bou Moglabey Y, et al. The Usher syndrome in the Lebanese population and further refinement of the USH2A candidate region. Hum Genet. 1998; 103: 193–198
  • Edwards A O, Miedziak A, Vrabec T, et al. Autosomal dominant Stargardt-like macular dystrophy: I. Clinical characterization, longitudinal follow-up, and evidence for a common ancestry in families linked to chromosome 6q14. Am J Ophthalmol. 1999; 127: 426–435
  • Yzer S, van den Born L I, Schuil J, et al. A Tyr368His RPE65 founder mutation is associated with variable expression and progression of early onset retinal dystrophy in 10 families of a genetically isolated population. J Med Genet. 2003; 40: 709–713
  • Eichers E R, Green J S, Stockton D W, et al. Newfoundland rod-cone dystrophy, an early-onset retinal dystrophy, is caused by splice-junction mutations in RLBP1. Amer J Hum Genet. 2002; 70: 955–964
  • Fan Y, Green J S, Ross A J, et al. Linkage disequilibrium mapping in the Newfoundland population: A re-evaluation of the refinement of the Bardet-Biedl syndrome 1 critical interval. Hum Genet. 2005; 116: 62–71
  • Fan Y, Rahman P, Peddle L, et al. Bardet-Biedl syndrome 1 genotype and obesity in the Newfoundland population. Int J Obes Relat Metab Disord. 2004; 28: 680–684
  • Young T L, Woods M O, Parfrey P S, et al. A founder effect in the Newfoundland population reduces the Bardet-Biedl syndrome I (BBS1) interval to 1 cM. Am J Hum Genet. 1999; 65: 1680–1687
  • Sundin O H, Yang J M, Li Y, et al. Genetic basis of total colourblindness among the Pingelapese islanders. Nat Genet. 2000; 25: 289–293
  • Brody J A, Hussels I, Brink E, et al. Hereditary blindness among Pingelapese people of Eastern Caroline Islands. Lancet 1970; 1: 1253–1257
  • Koenekoop R K, Loyer M, Hand C K, et al. Novel RPGR mutations with distinct retinitis pigmentosa phenotypes in French-Canadian families. Am J Ophthalmol. 2003; 136: 678–687
  • Richter A, Rioux J D, Bouchard J P, et al. Location score and haplotype analyses of the locus for autosomal recessive spastic ataxia of Charlevoix-Saguenay, in chromosome region 13q11. Amer J Hum Genet. 1999; 64: 768–775
  • Bonne-Tamir B, Korostishevsky M, Kalinsky H, et al. Genetic mapping of the gene for Usher syndrome: Linkage analysis in a large Samaritan kindred. Genomics 1994; 20: 36–42
  • Bonne-Tamir B, Nystuen A, Seroussi E, et al. Usher syndrome in the Samaritans: Strengths and limitations of using inbred isolated populations to identify genes causing recessive disorders. Am J Phys Anthropol. 1997; 104: 193–200
  • Rozzo C, Fossarello M, Galleri G, et al. Complete congenital stationary night blindness maps on Xp11.4 in a Sardinian family. Eur J Hum Genet. 1999; 7: 574–578
  • Poehner W J, Fossarello M, Rapoport A L, et al. A homozygous deletion in RPE65 in a small Sardinian family with autosomal recessive retinal dystrophy. Mol Vis. 2000; 6: 192–198
  • Fossarello M, Bertini C, Galantuomo M S, et al. Deletion in the peripherin/RDS gene in two unrelated Sardinian families with autosomal dominant butterfly-shaped macular dystrophy. Arch Ophthalmol. 1996; 114: 448–456
  • Senecky Y, Halpern G J, Inbar D, et al. Ectodermal dysplasia, ectrodactyly and macular dystrophy (EEM syndrome) in siblings. Amer J Medl Genet. 2001; 101: 195–197
  • Stambolian D, Ibay G, Reider L, et al. Genome-wide scan of additional Jewish families confirms linkage of a myopia susceptibility locus to chromosome 22q12. Mol Vis. 2006; 12: 1499–1505
  • Ferak V, Gencik A, Gencikova A. Population genetic aspects of primary congenital glaucoma. II. Fitness, parental consanguinity, founder effect. Hum Genet. 1982; 61: 198–200
  • Thiselton D L, Alexander C, Morris A, et al. A frameshift mutation in exon 28 of the OPA1 gene explains the high prevalence of dominant optic atrophy in the Danish population: Evidence for a founder effect. Hum Genet. 2001; 109: 498–502
  • Puomila A, Hamalainen P, Kivioja S, et al. Epidemiology and penetrance of Leber hereditary optic neuropathy in Finland. Eur J Hum Genet. 2007; 15: 1079–1089
  • Weiss J S. Schnyder's dystrophy of the cornea. A Swede-Finn connection. Cornea 1992; 11: 93–101
  • Tahvanainen E, Forsius H, Karila E, et al. Cornea plana congenita gene assigned to the long arm of chromosome 12 by linkage analysis. Genomics 1995; 26: 290–293
  • Tahvanainen E, Villanueva A S, Forsius H, et al. Dominantly and recessively inherited cornea plana congenita map to the same small region of chromosome 12. Genome Res. 1996; 6: 249–254
  • Forsius H, Arentz-Grastvedt B, Eriksson A W. Juvenile cataract with autosomal recessive inheritance. A study from the Aland Islands, Finland. Acta Ophthalmol (Copenh.) 1992; 70: 26–32
  • Angelicheva D, Turnev I, Dye D, et al. Congenital cataracts facial dysmorphism neuropathy (CCFDN) syndrome: A novel developmental disorder in Gypsies maps to 18qter. Eur J Hum Genet. 1999; 7: 560–566
  • Plasilova M, Gerinec A, Ferak V. Molecular diagnosis of mutations responsible for recurrent and severe forms of primary congenital glaucoma. Cesk Slov Oftalmol. 1998; 54: 281–288
  • Plasilova M, Ferakova E, Kadasi L, et al. Linkage of autosomal recessive primary congenital glaucoma to the GLC3A locus in Roms (Gypsies) from Slovakia. Hum Hered. 1998; 48: 30–33
  • Shokeir M H, Lowry R B. Juvenile cataract in Hutterites. Am J Med Genet. 1985; 22: 495–500
  • Liu N P, Smith C F, Bowling B L, et al. Macular corneal dystrophy types I and II are caused by distinct mutations in the CHST6 gene in Iceland. Mol Vis. 2006; 12: 1148–1152
  • Liu N P, Dew-Knight S, Rayner M, et al. Mutations in corneal carbohydrate sulfotransferase 6 gene (CHST6) cause macular corneal dystrophy in Iceland. Mol Vis. 2000; 6: 261–264
  • Liu N P, Baldwin J, Jonasson F, et al. Haplotype analysis in Icelandic families defines a minimal interval for the macular corneal dystrophy type I gene. Am J Hum Genet. 1998; 63: 912–917
  • Vance J M, Jonasson F, Lennon F, et al. Linkage of a gene for macular corneal dystrophy to chromosome 16. Am J Hum Genet. 1996; 58: 757–762
  • Allingham R R, Loftsdottir M, Gottfredsdottir M S, et al. Pseudoexfoliation syndrome in Icelandic families. Br J Ophthalmol. 2001; 85: 702–707
  • Forsius H, Forsman E, Fellman J, et al. Exfoliation syndrome; frequency, gender distribution and association with climatically induced alterations of the cornea and conjunctiva. Acta Ophthalmol Scand. 2002; 80: 478–484
  • Anikster Y, Huizing M, White J, et al. Mutation of a new gene causes a unique form of Hermansky-Pudlak syndrome in a genetic isolate of central Puerto Rico. Nat Genet. 2001; 28: 376–380
  • Duquette P, Giard N. Hereditary ptosis of late onset: early observations on oculopharyngeal muscular dystrophy in Quebec by Roma Amyot. Neuromuscul Disord. 1997; 7(Suppl 1)S12–14
  • Fossarello M, Zucca I, Galantuomo S, et al. Genetic mapping of autosomal dominant primary open-angle glaucoma (POAG) in Sardinia. Int Ophthalmol. 1996; 20: 1–5
  • El-Ashry M F, Abd El-Aziz M M, Bhattacharya S S. A clinical and molecular genetic study of Egyptian and Saudi Arabian patients with primary congenital glaucoma (PCG). J Glaucoma 2007; 16: 104–111
  • Ness S L, Ben-Yosef T, Bar-Lev A, et al. Genetic homogeneity and phenotypic variability among Ashkenazi Jews with Usher syndrome type III. J Med Genet. 2003; 40: 767–772
  • Rojas C V, Santa Maria L, Santos J L, et al. A frameshift insertion in the cone cyclic nucleotide gated cation channel causes complete achromatopsia in a consanguineous family from a rural isolate. Europ J Hum Genet. 2002; 10: 638–s642

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.