144
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Does the accounting of the local symmetry fragments in quasi-SMILES improve the predictive potential of the QSAR models of toxicity toward tadpoles?

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 20 Jan 2024, Accepted 14 Mar 2024, Published online: 08 Apr 2024

References

  • Bagri K, Kumar A, Nimbhal M, Kumar P. 2020. Index of ideality of correlation and correlation contradiction index: a confluent perusal on acetylcholinesterase inhibitors. Mol Simul. 46(10):777–786. doi: 10.1080/08927022.2020.1770753.
  • Duhan M, Kumar P, Sindhu J, Singh R, Devi M, Kumar A, Kumar R, Lal S. 2021. Exploring biological efficacy of novel benzothiazole linked 2,5-disubstituted-1,3,4-oxadiazole hybrids as efficient α-amylase inhibitors: synthesis, characterization, inhibition, molecular docking, molecular dynamics and Monte Carlo based QSAR studies. Comput Biol Med. 138:104876. doi: 10.1016/j.compbiomed.2021.104876.
  • Duhan M, Sindhu J, Kumar P, Devi M, Singh R, Kumar R, Lal S, Kumar A, Kumar S, Hussain K. 2022. Quantitative structure activity relationship studies of novel hydrazone derivatives as α-amylase inhibitors with index of ideality of correlation. J Biomol Struct Dyn. 40(11):4933–4953. doi: 10.1080/07391102.2020.1863861.
  • Hamzehali H, Lotfi S, Ahmadi S, Kumar P. 2022. Quantitative structure–activity relationship modeling for predication of inhibition potencies of imatinib derivatives using SMILES attributes. Sci Rep. 12(1):21708. doi: 10.1038/s41598-022-26279-8.
  • Huang H, Wang X, Ou W, Zhao J, Shao Y, Wang L. 2003. Acute toxicity of benzene derivatives to the tadpoles (Rana japonica) and QSAR analyses. Chemosphere. 53(8):963–970. doi: 10.1016/S0045-6535(03)00715-X.
  • Javidfar M, Ahmadi S. 2020. QSAR modelling of larvicidal phytocompounds against Aedes aegypti using index of ideality of correlation. SAR QSAR Environ Res. 31(10):717–739. doi: 10.1080/1062936X.2020.1806922.
  • Khan K, Roy K. 2022. Chemometric modeling of toxicity of chemicals to tadpoles. In: Roy K, editor. Chemometrics and cheminformatics in aquatic toxicology. Hoboken (NJ): Wiley.
  • Kumar P, Kumar A, Sindhu J, Lal S. 2019. QSAR models for nitrogen containing monophosphonate and bisphosphonate derivatives as human farnesyl pyrophosphate synthase inhibitors based on Monte Carlo method. Drug Res. 69(3):159–167. doi: 10.1055/a-0652-5290.
  • Kumar P, Kumar A, Sindhu J, Lal S. 2023. Quasi-SMILES as a basis for the development of QSPR models to predict the CO2 capture capacity of deep eutectic solvents using correlation intensity index and consensus modelling. Fuel. 345:128237. doi: 10.1016/j.fuel.2023.128237.
  • Kumar P, Kumar A. 2023. CORAL: predictions of quality of rice based on retention index using a combination of correlation intensity index and consensus modelling. In: Toropova, AP, Toropov AA, editors. QSPR/QSAR analysis using SMILES and quasi-SMILES. Challenges and advances in computational chemistry and physics. Vol. 33. Cham: Springer. doi: 10.1007/978-3-031-28401-4_17.
  • Lotfi S, Ahmadi S, Azimi A, Kumar P. 2023. Prediction of second-order rate constants of the sulfate radical anion with aromatic contaminants using the Monte Carlo technique. New J Chem. 47(42):19504–19515. doi: 10.1039/D3NJ03696K.
  • Lotfi S, Ahmadi S, Kumar P. 2021. A hybrid descriptor based QSPR model to predict the thermal decomposition temperature of imidazolium ionic liquids using Monte Carlo approach. J Mol Liq. 338:116465. doi: 10.1016/j.molliq.2021.116465.
  • Lotfi S, Ahmadi S, Zohrabi P. 2020. QSAR modeling of toxicities of ionic liquids toward Staphylococcus aureus using SMILES and graph invariants. Struct Chem. 31(6):2257–2270. doi: 10.1007/s11224-020-01568-y.
  • Mekenyan OG, Schultz TW, Veith GD, Kamenska V. 1996. Dynamic’ QSAR for semicarbazide-induced mortality in frog embryos. J Appl Toxicol. 16(4):355–363. doi: 10.1002/(SICI)1099-1263(199607)16:4<355::AID-JAT357>3.0.CO;2-Z.
  • Nath A, Roy K. 2022. Chemometric modeling of acute toxicity of diverse aromatic compounds against Rana japonica. Toxicol In Vitro. 83:105427. doi: 10.1016/j.tiv.2022.105427.
  • Roy K, Ghosh G. 2006. QSTR with extended topochemical atom (ETA) indices. VI. Acute toxicity of benzene derivatives to tadpoles (Rana japonica). J Mol Model. 12(3):306–316. doi: 10.1007/s00894-005-0033-7.
  • Singh R, Kumar P, Devi M, Lal S, Kumar A, Sindhu J, Toropova AP, Toropov AA, Singh D. 2022. Monte Carlo based QSGFEAR: prediction of Gibb’s free energy of activation at different temperatures using SMILES based descriptors. New J Chem. 46(39):19062–19072. doi: 10.1039/D2NJ03515D.
  • Singh R, Kumar P, Sindhu J, Kumar A, Lal S. 2023. CORAL: probing the structural requirements for α-amylase inhibition activity of 5-(3-arylallylidene)-2-(arylimino)thiazolidin-4-one derivatives based on QSAR with correlation intensity index, molecular docking, molecular dynamics, and ADMET studies. J Biomol Struct Dyn. 2023:1–18. doi: 10.1080/07391102.2023.2265490.
  • Tabti K, Elmchichi L, Sbai A, Maghat H, Bouachrine M, Lakhlifi T. 2022. Molecular modelling of antiproliferative inhibitors based on SMILES descriptors using Monte-Carlo method, docking, MD simulations and ADME/Tox studies. Mol Simul. 48(17):1575–1591. doi: 10.1080/08927022.2022.2110246.
  • Toropov AA, Di Nicola MR, Toropova AP, Roncaglioni A, Carnesecchi E, Kramer NI, Williams AJ, Ortiz-Santaliestra ME, Benfenati E, Dorne J-L. 2022. A regression-based QSAR-model to predict acute toxicity of aromatic chemicals in tadpoles of the Japanese brown frog (Rana japonica): calibration, validation, and future developments to support risk assessment of chemicals in amphibians. Sci Total Environ. 830:154795. doi: 10.1016/j.scitotenv.2022.154795.
  • Toropov AA, Di Nicola MR, Toropova AP, Roncaglioni A, Dorne JLCM, Benfenati E. 2023. Quasi-SMILES: self-consistent models for toxicity of organic chemicals to tadpoles. Chemosphere. 312(Pt 1):137224. doi: 10.1016/j.chemosphere.2022.137224.
  • Toropov AA, Toropova AP, Roncaglioni A, Benfenati E. 2023. In silico prediction of the mutagenicity of nitroaromatic compounds using correlation weights of fragments of local symmetry. Mutat Res Genet Toxicol Environ Mutagen. 891:503684. doi: 10.1016/j.mrgentox.2023.503684.
  • Toropov AA, Toropova AP. 2020. Correlation intensity index: building up models for mutagenicity of silver nanoparticles. Sci Total Environ. 737:139720. doi: 10.1016/j.scitotenv.2020.139720.
  • Toropova AP, Toropov AA, Kumar P, Kumar A, Achary PGR. 2023. Fragments of local symmetry in a sequence of amino acids: does one can use for QSPR/QSAR of peptides? J Mol Struct. 1293:136300. doi: 10.1016/j.molstruc.2023.136300.
  • Toropova AP, Toropov AA. 2017. The index of ideality of correlation: a criterion of predictability of QSAR models for skin permeability? Sci Total Environ. 586:466–472. doi: 10.1016/j.scitotenv.2017.01.198.
  • Wang L, Xing P, Wang C, Zhou X, Dai Z, Bai L. 2019. Maximal information coefficient and support vector regression based nonlinear feature selection and QSAR modeling on toxicity of alcohol compounds to tadpoles of Rana temporaria. J Braz Chem Soc. 30(2):279–285. doi: 10.21577/0103-5053.20180176.
  • Wang S, Yan LC, Zheng SS, Li TT, Fan LY, Huang T, Li C, Zhao YH. 2019. Toxicity of some prevalent organic chemicals to tadpoles and comparison with toxicity to fish based on mode of toxic action. Ecotoxicol Environ Saf. 167:138–145. doi: 10.1016/j.ecoenv.2018.09.105.