157
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Flow-through imaging and automated analysis of oil-exposed early stage Atlantic cod (Gadus morhua)

, , &
Received 08 Feb 2024, Accepted 26 Mar 2024, Published online: 24 Apr 2024

References

  • Incardona JP, Gardner LD, Linbo TL, Brown TL, Esbaugh AJ, Mager EM, Stieglitz JD, French BL, Labenia JS, Laetz CA, et al. 2014. Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proc Natl Acad Sci U S A. 111(15):E1510–E1518. doi: 10.1073/pnas.1320950111.
  • Incardona JP, Carls MG, Holland L, Linbo TL, Baldwin DH, Myers MS, Peck KA, Tagal M, Rice SD, Scholz NL. 2015. Very low embryonic crude oil exposures cause lasting cardiac defects in salmon and herring. Sci Rep. 5(1):13499. doi: 10.1038/srep13499.
  • Sørhus E, Edvardsen RB, Karlsen Ø, Nordtug T, van der Meeren T, Thorsen A, Harman C, Jentoft S, Meier S. 2015. Unexpected interaction with dispersed crude oil droplets drives severe toxicity in Atlantic haddock embryos. PLoS One. 10(4):e0124376. doi: 10.1371/journal.pone.0124376.
  • Hansen BH, Farkas J, Nordtug T, Altin D, Brakstad OG. 2018. Does microbial biodegradation of water-soluble components of oil reduce the toxicity to early life stages of fish? Environ Sci Technol. 52(7):4358–4366. doi: 10.1021/acs.est.7b06408.
  • Pasparakis C, Esbaugh AJ, Burggren W, Grosell M. 2019. Physiological impacts of Deepwater Horizon oil on fish. Comp Biochem Physiol C Toxicol Pharmacol. 224:108558. (doi: 10.1016/j.cbpc.2019.06.002.
  • Teixidó E, Kießling TR, Krupp E, Quevedo C, Muriana A, Scholz S. 2019. Automated morphological feature assessment for zebrafish embryo developmental toxicity screens. Toxicol Sci. 167(2):438–449. doi: 10.1093/toxsci/kfy250.
  • Rasmussen JH, Moyano M, Fuiman LA, Oomen RA. 2022. FishSizer: software solution for efficiently measuring larval fish size. Ecol Evol. 12(3):e8672. doi: 10.1002/ece3.8672.
  • Kvæstad B, Hansen BH, Davies E. 2022. Automated morphometrics on microscopy images of Atlantic cod larvae using Mask R-CNN and classical machine vision techniques. MethodsX. 9:101598. doi: 10.1016/j.mex.2021.101598.
  • Iwamoto S, Checkley DM, Jr., Trivedi MM. 2001. REFLICS: real-time flow imaging and classification system. Mach Vis Appl. 13(1):1–13. doi: 10.1007/PL00013270.
  • Lelièvre S, Antajan E, Vaz S. 2012. Comparison of traditional microscopy and digitized image analysis to identify and delineate pelagic fish egg spatial distribution. J Plankton Res. 34(6):470–483. doi: 10.1093/plankt/fbs015.
  • Colas F, Tardivel M, Perchoc J, Lunven M, Forest B, Guyader G, Danielou M-M, Le Mestre S, Bourriau P, Antajan E, et al. 2018. The ZooCAM, a new in-flow imaging system for fast onboard counting, sizing and classification of fish eggs and metazooplankton. Prog Oceanogr. 166:54–65. doi: 10.1016/j.pocean.2017.10.014.
  • Williamson DR, Nordtug T, Leirvik F, Kvæstad B, Hansen BH, Ludvigsen M, Davies EJ. 2022. A flow-through imaging system for automated measurement of ichthyoplankton. MethodsX. 9:101773. doi: 10.1016/j.mex.2022.101773.
  • Williamson DR, Togunov RR, Davies EJ, Ludvigsen M, HansenBH. 2024. Automated monitoring of early life-stage development in Atlantic cod (Gadus morhua) embryos exposed to a reference toxicant. Limnol Ocean Methods. 22(3):170–189. doi: 10.1002/lom3.10599.
  • Laurence GC, Rogers CA. 1976. Effects of temperature and salinity on comparative embryo development and mortality of Atlantic cod (Gadus morhua L.) and haddock (Melanogrammus aeglefinus (L.)). J Cons. 36(3):220–228. doi: 10.1093/icesjms/36.3.220.
  • Markle DF, Frost L-A. 1985. Comparative morphology, seasonality, and a key to planktonic fish eggs from the Nova Scotian shelf. Can J Zool. 63(2):246–257. doi: 10.1139/z85-038.
  • Hansen BH, Farkas J, Piarulli S, Vicario S, Kvæstad B, WilliamsonDR, Sørensen L, Davies EJ, Nordtug T. 2021. Atlantic cod (Gadus morhua) embryos are highly sensitive to short-term 3,4-dichloroaniline exposure. Toxicol Rep. 8:1754–1761. doi: 10.1016/j.toxrep.2021.10.006.
  • OECD. 2013. Test No. 236: fish Embryo Acute Toxicity (FET) Test.
  • He K, Gkioxari G, Dollár P, Girshick R. 2017. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, pages, 2961–2969. doi: 10.1109/ICCV.2017.322.
  • Williamson DR. 2023. Fish annotator. Zenodo. doi: 10.5281/zenodo.7934921.
  • Waskom ML. 2021. seaborn: statistical data visualization. JOSS. 6(60):3021. doi: 10.21105/joss.03021.
  • Bland JM, Altman DG. 1986. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 327(8476):307–310. doi: 10.1016/S0140-6736(86)90837-8.
  • Hansen BH, Sørensen L, Størseth TR, Nepstad R, Altin D, Krause D, Meier S, Nordtug T. 2019a. Embryonic exposure to produced water can cause cardiac toxicity and deformations in Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) larvae. Mar Environ Res. 148:81–86. doi: 10.1016/j.marenvres.2019.05.009.
  • Hansen BH, Salaberria I, Read KE, Wold PA, Hammer KM, Olsen AJ, Altin D, Øverjordet IB, Nordtug T, Bardal T, et al. 2019b. Developmental effects in fish embryos exposed to oil dispersions—The impact of crude oil micro-droplets. Mar Environ Res. 150:104753. doi: 10.1016/j.marenvres.2019.104753.
  • Sørhus E, Sørensen L, Grøsvik BE, Le Goff J, Incardona JP, Linbo TL, Baldwin DH, Karlsen Ø, Nordtug T, Hansen BH, et al. 2023. Crude oil exposure of early life stages of Atlantic haddock suggests threshold levels for developmental toxicity as low as 0.1 µg total polyaromatic hydrocarbon (TPAH)/L. Mar Pollut Bull. 190:114843. doi: 10.1016/j.marpolbul.2023.114843.