62
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A QSAR study for predicting malformation in zebrafish embryo

ORCID Icon, ORCID Icon &
Received 01 Mar 2024, Accepted 30 Mar 2024, Published online: 15 Apr 2024

References

  • Arena VC, Sussman NB, Mazumdar S, Yu S, Macina OT. 2004. The utility of structure–activity relationship (SAR) models for prediction and covariate selection in developmental toxicity: comparative analysis of logistic regression and decision tree models. SAR QSAR Environ Res. 15(1):1–18. doi: 10.1080/1062936032000169633.
  • Bae SY, Lee J, Jeong J, Lim C, Choi J. 2021. Effective data-balancing methods for class-imbalanced genotoxicity datasets using machine learning algorithms and molecular fingerprints. Comput Toxicol. 20:100178. doi: 10.1016/j.comtox.2021.100178.
  • Bassan A, Alves VM, Amberg A, Anger LT, Auerbach S, Beilke L, Bender A, Cronin MTD, Cross KP, Hsieh JH, et al. 2021. In silico approaches in organ toxicity hazard assessment: current status and future needs in predicting liver toxicity. Comput Toxicol. 20:100187. doi: 10.1016/j.comtox.2021.100187.
  • Bentéjac C, Csörgő A, Martínez-Muñoz G. 2021. A comparative analysis of gradient boosting algorithms. In: Artificial intelligence review. Vol. 54. Issue 3. Netherlands: Springer. doi: 10.1007/s10462-020-09896-5.
  • Bondue T, Berlingerio SP, van den Heuvel L, Levtchenko E. 2023. The zebrafish embryo as a model organism for testing mRNA-based therapeutics. Int J Mol Sci. 24(13):11224. doi: 10.3390/ijms241311224.
  • Carnesecchi E, Toma C, Roncaglioni A, Kramer N, Benfenati E, Dorne JLCM. 2020. Integrating QSAR models predicting acute contact toxicity and mode of action profiling in honey bees (A. mellifera): data curation using open source databases, performance testing and validation. Sci Total Environ. 735:139243. doi: 10.1016/j.scitotenv.2020.139243.
  • Consonni V, Todeschini R, Orlandi M, Ballabio D. 2024. Kernel-based mapping of reliability in predictions for consensus modelling. Chemometr Intell Lab Syst. 246:105085. doi: 10.1016/j.chemolab.2024.105085.
  • Corsello G, Giuffrè M. 2012. Congenital malformations. J Matern Fetal Neonat Med. 25(Supp. 1):25–29. doi: 10.3109/14767058.2012.664943.
  • Craig EA, Wang NC, Zhao QJ. 2014. Using quantitative structure–activity relationship modeling to quantitatively predict the developmental toxicity of halogenated azole compounds. J Appl Toxicol. 34(7):787–794. doi: 10.1002/jat.2940.
  • Cronin MTD, Enoch SJ, Madden JC, Rathman JF, Richarz AN, Yang C. 2022. A review of in silico toxicology approaches to support the safety assessment of cosmetics-related materials. Comput Toxicol. 21:100213. doi: 10.1016/j.comtox.2022.100213.
  • Cronin MTD, Richarz AN, Schultz TW. 2019. Identification and description of the uncertainty, variability, bias and influence in quantitative structure–activity relationships (QSARs) for toxicity prediction. Regul Toxicol Pharmacol. 106:90–104. doi: 10.1016/j.yrtph.2019.04.007.
  • Ertam F, Aydın G. 2017. Data classification with deep learning using TensorFlow. 2017 International Conference on Computer Science and Engineering (UBMK), Antalya, Turkey. p. 755–758. doi: 10.1109/UBMK.2017.8093521.
  • European Commission Environment Directorate General. 2014. Guidance document on the validation of (quantitative)structure–activity relationships [(Q)Sar] models; February. https://www.oecd-ilibrary.org/environment/detailed-review-paper-drp-on-molluscs-life-cycle-toxicity-testing_9789264221468-en.
  • Feng H, Zhang L, Li S, Liu L, Yang T, Yang P, Zhao J, Arkin IT, Liu H. 2021. Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints. Toxicol Lett. 340(66):4–14. doi: 10.1016/j.toxlet.2021.01.002.
  • Goodarzi M, Dejaegher B, Heyden YV. 2012. Feature selection methods in QSAR studies. J AOAC Int. 95(3):636–651. doi: 10.5740/jaoacint.SGE_Goodarzi.
  • Gunturi SB, Ramamurthi N. 2014. A novel approach to generate robust classification models to predict developmental toxicity from imbalanced datasets. SAR QSAR Environ Res. 25(9):711–727. doi: 10.1080/1062936X.2014.942357.
  • Han Y, Ma Y, Yao S, Zhang J, Hu C. 2021. In vivo and in silico evaluations of survival and cardiac developmental toxicity of quinolone antibiotics in zebrafish embryos (Danio rerio). Environ Pollut. 277:116779. doi: 10.1016/j.envpol.2021.116779.
  • Hemmerich J, Troger F, Füzi B, Ecker GF. 2020. Using machine learning methods and structural alerts for prediction of mitochondrial toxicity. Mol Inform. 39(5):e2000005. doi: 10.1002/minf.202000005.
  • Hewitt M, Ellison CM, Enoch SJ, Madden JC, Cronin MTD. 2010. Integrating (Q)SAR models, expert systems and read-across approaches for the prediction of developmental toxicity. Reprod Toxicol. 30(1):147–160. doi: 10.1016/j.reprotox.2009.12.003.
  • Ibrahim MT, Uzairu A, Shallangwa GA, Uba S. 2020. Structure-based design and activity modeling of novel epidermal growth factor receptor kinase inhibitors; an in silico approach. Sci Afr. 9:e00503. doi: 10.1016/j.sciaf.2020.e00503.
  • Karim A, Mishra A, Newton MAH, Sattar A. 2019. Efficient toxicity prediction via simple features using shallow neural networks and decision trees. ACS Omega. 4(1):1874–1888. doi: 10.1021/acsomega.8b03173.
  • Kotzabasaki MI, Sotiropoulos I, Sarimveis H. 2020. QSAR modeling of the toxicity classification of superparamagnetic iron oxide nanoparticles (SPIONs) in stem-cell monitoring applications: an integrated study from data curation to model development. RSC Adv. 10(9):5385–5391. doi: 10.1039/c9ra09475j.
  • Lavado GJ, Gadaleta D, Toma C, Golbamaki A, Toropov AA, Toropova AP, Marzo M, Baderna D, Arning J, Benfenati E. 2020. Zebrafish AC50 modelling: (Q)SAR models to predict developmental toxicity in zebrafish embryo. Ecotoxicol Environ Saf. 202:110936. doi: 10.1016/j.ecoenv.2020.110936.
  • Lovrić M, Malev O, Klobučar G, Kern R, Liu JJ, Lučić B. 2021. Predictive capability of QSAR models based on the CompTox zebrafish embryo assays: an imbalanced classification problem. Molecules. 26(6):1617. doi: 10.3390/molecules26061617.
  • MacRae CA, Peterson RT. 2023. Zebrafish as a mainstream model for in vivo systems pharmacology and toxicology. Annu Rev Pharmacol Toxicol. 63(1):43–64. doi: 10.1146/annurev-pharmtox-051421-105617.
  • Mechanisms of Developmental Toxicity. 2000. 41 – National Research Council (US) Committee on Developmental Toxicology. Scientific frontiers in developmental toxicology and risk assessment. Washington (DC): National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK225674/.
  • Mekonnen AG, Hordofa AG, Kitila TT, Sav A. 2020. Modifiable risk factors of congenital malformations in bale zone hospitals, Southeast Ethiopia: an unmatched case-control study. BMC Pregnancy Childbirth. 20(1):129. doi: 10.1186/s12884-020-2827-0.
  • Melanda VS, Galiciolli MEA, Lima LS, Figueiredo BC, Oliveira CS. 2022. Impact of pesticides on cancer and congenital malformation: a systematic review. Toxics. 10(11):676. doi: 10.3390/toxics10110676.
  • Murray FJ, Roth RN, Nicolich MJ, Gray TM, Simpson BJ. 2013. The relationship between developmental toxicity and aromatic-ring class profile of high-boiling petroleum substances. Regul Toxicol Pharmacol. 67(2 Suppl.):S46–S59. doi: 10.1016/j.yrtph.2013.05.003.
  • Myatt GJ, Bassan A, Bower D, Johnson C, Miller S, Pavan M, Cross KP. 2022. Implementation of in silico toxicology protocols within a visual and interactive hazard assessment platform. Comput Toxicol. 21:100201. doi: 10.1016/j.comtox.2021.100201.
  • Rücker G, Rücker C. 1993. Counts of all walks as atomic and molecular descriptors. J Chem Inform Comput Sci. 33(5):683–695. doi: 10.1021/ci00015a005.
  • Saavedra LM, Duchowicz PR. 2021. Predicting zebrafish (Danio rerio) embryo developmental toxicity through a non-conformational QSAR approach. Sci Total Environ. 796:148820. doi: 10.1016/j.scitotenv.2021.148820.
  • Singhal SS, Garg R, Mohanty A, Garg P, Ramisetty SK, Mirzapoiazova T, Soldi R, Sharma S, Kulkarni P, Salgia R. 2023. Recent advancement in breast cancer research: insights from model organisms—mouse models to zebrafish. Cancers. 15(11):2961. doi: 10.3390/cancers15112961.
  • Van Der Ven LTM, Van Ommeren P, Zwart EP, Gremmer ER, Hodemaekers HM, Heusinkveld HJ, Van Klaveren JD, Rorije E. 2022. Dose addition in the induction of craniofacial malformations in zebrafish embryos exposed to a complex mixture of food-relevant chemicals with dissimilar modes of action. Environ Health Perspect. 130(4):47003. doi: 10.1289/EHP9888.
  • Veldman MB, Lin S. 2008. Zebrafish as a developmental model organism for pediatric research. Pediatr Res. 64(5):470–476. doi: 10.1203/PDR.0b013e318186e609.
  • Wang Y, Chen X. 2020. A joint optimization QSAR model of fathead minnow acute toxicity based on a radial basis function neural network and its consensus modeling. RSC Adv. 10(36):21292–21308. doi: 10.1039/d0ra02701d.
  • White AD. 2022. Deep learning for molecules and materials. Living J Comput Mol Sci. 3(1):1499–1501. doi: 10.33011/livecoms.3.1.1499.
  • Yadav R, Nandi S. 2014. QSAR and anticancer drug design of β-carboline compounds utilizing computed molecular descriptors. J Comput Methods Mol Des. 4(3):92–105.
  • Yazdani K, Jordan D, Yang M, Fullenkamp CR, Calabrese DR, Boer R, Hilimire T, Allen TEH, Khan TR, Schneekloth JSJr. 2023. Machine learning informs RNA‐binding chemical space. Angew Chem Int Ed Engl. 62(11):e202211358. doi: 10.1002/anie.202211358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.