1,753
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Suppressive function of bone marrow-derived mesenchymal stem cell-derived exosomal microRNA-187 in prostate cancer

ORCID Icon, , & ORCID Icon
Pages 1-14 | Received 17 Jan 2022, Accepted 06 Sep 2022, Published online: 16 Oct 2022

References

  • Ito K. 2014. Prostate cancer in Asian men. Nat Rev Urol. 11(4):197–212. 10.1038/nrurol.2014.42.
  • Rycaj K, Li H, Zhou J, Chen X, Tang DG. 2017. Cellular determinants and microenvironmental regulation of prostate cancer metastasis. Semin Cancer Biol. 44:83–97. 10.1016/j.semcancer.2017.03.009.
  • Ren C, Kumar S, Chanda D, Kallman L, Chen J, Mountz JD, Ponnazhagan S. 2008. Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther. 15(21):1446–1453. 10.1038/gt.2008.101.
  • Chanda D, Isayeva T, Kumar S, Hensel JA, Sawant A, Ramaswamy G, Siegal GP, Beatty MS, Ponnazhagan S. 2009. Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in prostate cancer bone metastasis. Clin Cancer Res. 15(23):7175–7185. 10.1158/1078-0432.CCR-09-1938.
  • Zhang T, Lee YW, Rui YF, Cheng TY, Jiang XH, Li G. 2013. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Ther. 4(3):70. 10.1186/scrt221.
  • Xunian Z, Kalluri R. 2020. Biology and therapeutic potential of mesenchymal stem cell-derived exosomes. Cancer Sci. 111(9):3100–3110. 10.1111/cas.14563.
  • Yeo RW, Lai RC, Zhang B, Tan SS, Yin Y, Teh BJ, Lim SK. 2013. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 65(3):336–341. 10.1016/j.addr.2012.07.001.
  • Lasser C. 2012. Exosomal RNA as biomarkers and the therapeutic potential of exosome vectors. Expert Opin Biol Ther. 12 Suppl 1(sup1):S189–197. 10.1517/14712598.2012.680018.
  • Pegtel DM, Gould SJ. 2019. Exosomes. Annu Rev Biochem. 88(1):487–514. 10.1146/annurev-biochem-013118-111902.
  • Sharma N, Baruah MM. 2019. The microRNA signatures: aberrantly expressed miRNAs in prostate cancer. Clin Transl Oncol. 21(2):126–144. 10.1007/s12094-018-1910-8.
  • Ferguson SW, Wang J, Lee CJ, Liu M, Neelamegham S, Canty JM, Nguyen J. 2018. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep. 8(1):1419. 10.1038/s41598-018-19581-x.
  • Nayak B, Khan N, Garg H, Rustagi Y, Singh P, Seth A, Dinda AK, Kaushal S. 2020. Role of miRNA-182 and miRNA-187 as potential biomarkers in prostate cancer and its correlation with the staging of prostate cancer. Int Braz J Urol. 46(4):614–623. 10.1590/S1677-5538.IBJU.2019.0409.
  • Casanova-Salas I, Rubio-Briones J, Calatrava A, Mancarella C, Masia E, Casanova J, Fernandez-Serra A, Rubio L, Ramirez-Backhaus M, Arminan A, et al. 2014. Identification of miR-187 and miR-182 as biomarkers of early diagnosis and prognosis in patients with prostate cancer treated with radical prostatectomy. J Urol. 192(1):252–259. DOI:10.1016/j.juro.2014.01.107
  • Zhao J, Lei T, Xu C, Li H, Ma W, Yang Y, Fan S, Liu Y. 2013. MicroRNA-187, down-regulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration though targeting B7-H3. Biochem Biophys Res Commun. 438(2):439–444. 10.1016/j.bbrc.2013.07.095.
  • Yang S, Wei W, Zhao Q. 2020. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy. Int J Biol Sci. 16(11):1767–1773. 10.7150/ijbs.41105.
  • Dong P, Xiong Y, Yue J, Hanley SJB, Watari H. B7H3 as a promoter of metastasis and promising therapeutic target. Front Oncol. 2018;8(264). doi:10.3389/fonc.2018.00264.
  • Yuan H, Wei X, Zhang G, Li C, Zhang X, Hou J. 2011. B7-H3 over expression in prostate cancer promotes tumor cell progression. J Urol. 186(3):1093–1099. 10.1016/j.juro.2011.04.103.
  • Lin L, Cao L, Liu Y, Wang K, Zhang X, Qin X, Zhao D, Hao J, Chang Y, Huang X, et al. 2019. B7-H3 promotes multiple myeloma cell survival and proliferation by ROS-dependent activation of Src/STAT3 and c-Cbl-mediated degradation of SOCS3. Leukemia. 33(6):1475–1486. DOI:10.1038/s41375-018-0331-6
  • Kang FB, Wang L, Jia HC, Li D, Li HJ, Zhang YG, Sun DX. B7-H3 promotes aggression and invasion of hepatocellular carcinoma by targeting epithelial-to-mesenchymal transition via JAK2/STAT3/Slug signaling pathway. Cancer Cell Int. 2015;15(45). doi:10.1186/s12935-015-0195-z.
  • Zhou C, Chen L, Chen R, Xu F, Huang Z, Huang R, Wang W, Xu Q. 2022. miR-4486 enhances cisplatin sensitivity of gastric cancer cells by restraining the JAK3/STAT3 signalling pathway. J Chemother. 34(1):35–44. 10.1080/1120009X.2021.1936957.
  • Liu JB, Chen D, Bao TT, Fan FT, Yu C. 2019. The anticancer effects of atractylenolide III associate with the downregulation of Jak3/Stat3-Dependent Ido expression. Front Pharmacol. 10:1505. 10.3389/fphar.2019.01505.
  • Zhao J, Wu J, Qin Y, Zhang W, Huang G, Qin L. 2020. LncRNA PVT1 induces aggressive vasculogenic mimicry formation through activating the STAT3/Slug axis and epithelial-to-mesenchymal transition in gastric cancer. Cell Oncol (Dordr). 43(5):863–876. 10.1007/s13402-020-00532-6.
  • Lin JC, Tsai JT, Chao TY, Ma HI, Liu WH. 2018. The STAT3/slug axis enhances radiation-induced tumor invasion and cancer stem-like properties in radioresistant glioblastoma. Cancers (Basel). 10(12):512. 10.3390/cancers10120512.
  • He L, Zhu W, Chen Q, Yuan Y, Wang Y, Wang J, Wu X. 2019. Ovarian cancer cell-secreted exosomal miR-205 promotes metastasis by inducing angiogenesis. Theranostics. 9(26):8206–8220. 10.7150/thno.37455.
  • Zhou L, Song Z, Hu J, Liu L, Hou Y, Zhang X, Yang X, Chen K. 2021. ACSS3 represses prostate cancer progression through downregulating lipid droplet-associated protein PLIN3. Theranostics. 11(2):841–860. 10.7150/thno.49384.
  • Modder UI, Roforth MM, Nicks KM, Peterson JM, McCready LK, Monroe DG, Khosla S. 2012. Characterization of mesenchymal progenitor cells isolated from human bone marrow by negative selection. Bone. 50(3):804–810. 10.1016/j.bone.2011.12.014.
  • Baghaei K, Hashemi SM, Tokhanbigli S, Asadi Rad A, Assadzadeh-Aghdaei H, Sharifian A, Zali MR. Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterol Hepatol Bed Bench. 2017;10(3):208–213.
  • Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, Azab F, Flores LM, Campigotto F, Weller E, et al. 2013. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest. 123(4):1542–1555. DOI:10.1172/JCI66517
  • Wu HJ, Yiu WH, Li RX, Wong DW, Leung JC, Chan LY, Zhang Y, Lian Q, Lin M, Tse HF, et al. 2014. Mesenchymal stem cells modulate albumin-induced renal tubular inflammation and fibrosis. PLoS One. 9(3):e90883. DOI:10.1371/journal.pone.0090883
  • Fang T, Lv H, Lv G, Li T, Wang C, Han Q, Yu L, Su B, Guo L, Huang S, et al. 2018. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 9(1):191. DOI:10.1038/s41467-017-02583-0
  • Ayuk SM, Abrahamse H, Houreld NN. 2016. The role of photobiomodulation on gene expression of cell adhesion molecules in diabetic wounded fibroblasts in vitro. J Photochem Photobiol B. 161:368–374. 10.1016/j.jphotobiol.2016.05.027.
  • Cheng R, Chen Y, Zhou H, Wang B, Du Q, Chen Y. 2018. B7-H3 expression and its correlation with clinicopathologic features, angiogenesis, and prognosis in intrahepatic cholangiocarcinoma. APMIS. 126(5):396–402. 10.1111/apm.12837.
  • Naseri Z, Oskuee RK, Jaafari MR, Forouzandeh Moghadam M. 2018. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nanomedicine. 13:7727–7747. 10.2147/IJN.S182384.
  • Li Y, Zhang J, Han S, Qian Q, Chen Q, Liu L, Zhang Y. 2017. B7-H3 promotes the proliferation, migration and invasiveness of cervical cancer cells and is an indicator of poor prognosis. Oncol Rep. 38(2):1043–1050. 10.3892/or.2017.5730.
  • Purvis IJ, Avilala J, Guda MR, Venkataraman S, Vibhakar R, Tsung AJ, Velpula KK, Asuthkar S. Role of MYC-miR-29-B7-H3 in medulloblastoma growth and Angiogenesis. J Clin Med. 2019;8(8). doi:10.3390/jcm8081158.
  • Ye H, Cheng J, Tang Y, Liu Z, Xu C, Liu Y, Sun Y. 2012. Human bone marrow-derived mesenchymal stem cells produced TGFbeta contributes to progression and metastasis of prostate cancer. Cancer Invest. 30(7):513–518. 10.3109/07357907.2012.692171.
  • Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F, Takahashi RU, Yoshida M, Tsuda H, Tamura K, Ochiya T. 2014. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal. 7(332):ra63. 10.1126/scisignal.2005231.
  • Yan T, Wu M, Lv S, Hu Q, Xu W, Zeng A, Huang K, Zhu X. 2021. Exosomes derived from microRNA-512-5p-transfected bone mesenchymal stem cells inhibit glioblastoma progression by targeting JAG1. Aging (Albany NY). 13(7):9911–9926. 10.18632/aging.202747.
  • Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, Xu J. 2018. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther. 9(1):320. 10.1186/s13287-018-1069-9.
  • Chen L, Lu FB, Chen DZ, Wu JL, Hu ED, Xu LM, Zheng MH, Li H, Huang Y, Jin XY, et al. 2018. BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis. Mol Immunol. 93:38–46. 10.1016/j.molimm.2017.11.008.
  • Mormile R. 2020. MSC-Exos overexpressing miR-126 in prostate cancer: a possible strategy to checkmate cell proliferation and metastasis? Clin Ther. 42(4):722–723. 10.1016/j.clinthera.2020.01.024.
  • Coppola V, De Maria R, Bonci D. 2010. MicroRNAs and prostate cancer. Endocr Relat Cancer. 17(1):F1–17. 10.1677/ERC-09-0172.
  • Casanova-Salas I, Masia E, Arminan A, Calatrava A, Mancarella C, Rubio-Briones J, Scotlandi K, Vicent MJ, Lopez-Guerrero JA, Culig Z. 2015. MiR-187 targets the androgen-regulated gene ALDH1A3 in prostate cancer. PLoS One. 10(5):e0125576. 10.1371/journal.pone.0125576.
  • Benzon B, Zhao SG, Haffner MC, Takhar M, Erho N, Yousefi K, Hurley P, Bishop JL, Tosoian J, Ghabili K, et al. 2017. Correlation of B7-H3 with androgen receptor, immune pathways and poor outcome in prostate cancer: an expression-based analysis. Prostate Cancer Prostatic Dis. 20(1):28–35. DOI:10.1038/pcan.2016.49
  • Zang X, Thompson RH, Al-Ahmadie HA, Serio AM, Reuter VE, Eastham JA, Scardino PT, Sharma P, Allison JP. 2007. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc Natl Acad Sci U S A. 104(49):19458–19463. 10.1073/pnas.0709802104.
  • Barile L, Vassalli G. 2017. Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther. 174:63–78. 10.1016/j.pharmthera.2017.02.020.
  • Zhu W, Huang L, Li Y, Zhang X, Gu J, Yan Y, Xu X, Wang M, Qian H, Xu W. 2012. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett. 315(1):28–37. 10.1016/j.canlet.2011.10.002.
  • Hessvik NP, Sandvig K, Llorente A. Exosomal miRNAs as biomarkers for prostate cancer. Front Genet. 2013;4(36). doi:10.3389/fgene.2013.00036.
  • Lin M, Xue XY, Liang SZ, Li YX, Lv YY, He LH, Xu KC, Zhang LF, Chen JB, Niu LZ. 2017. MiR-187 overexpression inhibits cervical cancer progression by targeting HPV16 E6. Oncotarget. 8(38):62914–62926. 10.18632/oncotarget.17516.
  • Liang H, Luo R, Chen X, Zhao Y, Tan A. 2017. miR-187 inhibits the growth of cervical cancer cells by targeting FGF9. Oncol Rep. 38(4):1977–1984. 10.3892/or.2017.5916.
  • Cui C, Shi X. 2017. miR-187 inhibits tumor growth and invasion by directly targeting MAPK12 in osteosarcoma. Exp Ther Med. 14(2):1045–1050. 10.3892/etm.2017.4624.