2,453
Views
102
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk

, &
Pages 802-810 | Received 18 May 2014, Accepted 25 Jul 2014, Published online: 26 Aug 2014

References

  • Ahmad MS, Ashraf M, Ali Q. 2010. Soil salinity as a selection pressure is a key determinant for the evolution of salt tolerance in Blue Panic grass (Panicum antidotale Retz.). Flora. 205:37–45. 10.1016/j.flora.2008.12.002
  • Ahmad P, Ashraf M, Hakeem KR, Azooz MM, Rasool S, Chandna R, Akram NA. 2014. Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea. J Plant Interact. 9:1–9. 10.1080/17429145.2012.747629
  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA. 2012. Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol. 11:2694–2703.
  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S. 2010. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol. 30:161–175. 10.3109/07388550903524243
  • Ahmad P, Jaleel CA, Sharma S. 2010. Antioxidant defense system, lipid peroxidation, proline metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russian J Plant Physiol. 57:509–517.
  • Alexander M. 1982. Most probable number method for microbial populations. In: Black CA, editor. Methods of soil analysis. Madison (WI): American Society of Agronomy; p. 815–820.
  • Al-Karaki GN. 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza. 10:51–54. 10.1007/s005720000055
  • Alqarawi AA, Hashem A, Abd-Allah EF, Alshahrani TS, Huqail AA. 2014. Effect of salinity on moisture content, pigment system, and lipid composition in Ephedra alata Decne. Acta Biol Hung. 65:61–71. 10.1556/ABiol.65.2014.1.6
  • Arya A, Buch H. 2013. Response of arbuscular mycorrhizal fungi on growth and chlorophyll content of three varieties of Gossypium herbaceum L. Plant Pathol Quar. 3:54–57.
  • Ashraf MA, Ashraf M, Ali Q. 2010. Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pak J Bot. 42:559–565.
  • Assaeed AM 2001. Effect of temperature and water potential on germination of Salsola villosa DEL. EX ROEM Et Schult. Assiut J Agric Sci. 32:173–183.
  • Audet P, Charest C. 2006. Effects of AM colonization on “wild tobacco” plants grown in zinc-contaminated soil. Mycorrhiza. 16:277–283. 10.1007/s00572-006-0045-x
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water stress studies. Plant Sci. 39:205–207.
  • Bethemfalvay GJ, Yoder JF. 1981. The Glycine-Glomus-Rhizobium symbiosis. I. Phosphorus effect on nitrogen fixation and mycorrhizal infection. Physiol Plant. 52:141–145. 10.1111/j.1399-3054.1981.tb06047.x
  • Bhosale KS, Shinde BP. 2011. Influence of arbuscular mycorrhizal fungi on proline and chlorophyll content in Zingiber officinale Rosc grown under water stress. Indian J Fundam Appl Life Sci. 1:172–176.
  • Brady N, Weil R. 2002. The nature and properties of soils. 13th ed. Upper Saddle River (NJ): Prentice Hall; p. 960.
  • Carter MR, Gregorich EG, editors. 2008. Soil sampling and methods of analysis. 2nd ed. Canadian Society of Soil Science. Boca Raton (FL): Taylor & Francis Group; p. 198. Available from: http://www.planta.cn/forum/files_planta/methods_of_analysis_212.pdf
  • Cęlik Ö, Atak C. 2012. The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties. Turk J Biol. 36:339–356.
  • Chance B, Maehly C. 1955. Assay of catalase and peroxidases. Methods Enzymol. 11:764–775. 10.1016/S0076-6879(55)02300-8
  • Creus CM, Sueldo RJ, Barassi CA. 1998. Water relations in Azospirillum inoculated wheat seedlings under osmotic stress. Can J Bot. 76:238–244.
  • Daniels BA, Skipper HD. 1982. Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC, editor. Methods and principles of Mycorrhizal research. St. Paul (MN): The American Phytopathological Society; p. 29–36.
  • Evelin H, Kapoor R. 2013. Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza. 24:197–208. 10.1007/s00572-013-0529-4
  • Farkhondeh R, Nabizadeh E, Jalilnezhad N. 2012. Effect of salinity stress on proline content, membrane stability and water relations in two sugar beet cultivars. Int J Agri Sci. 2:385–392.
  • Foyer CH, Halliwell B. 1976. The presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta. 133:21–25. 10.1007/BF00386001
  • García-Garrido JM, Ocampo JA. 2002. Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot. 53:1377–1386. 10.1093/jexbot/53.373.1377
  • Ghogdi EA, Izadi-Darbandi A, Borzouei A. 2012. Effects of salinity on some physiological traits in wheat (Triticum aestivum L.) cultivars. Indian J Sci Technol. 5:1901–906.
  • Giannopolitis CN, Ries SK. 1977. Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 59:309–314. 10.1104/pp.59.2.309
  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C. 2012. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicon L.) plants. Plant Soil. 331:313–327. 10.1007/s11104-009-0255-z
  • Hassine AB, Lutts S. 2010. Differential responses of saltbush Atriplex halimus L. exposed to salinity and water stress in relation to senescing hormones abscisic acid and ethylene. J Plant Physiol. 167:1448–1456. 10.1016/j.jplph.2010.05.017
  • He ZQ, He CX, Zhang ZB. 2007. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloid Surf B. 59:128–133. 10.1016/j.colsurfb.2007.04.023
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125:189–198. 10.1016/0003-9861(68)90654-1
  • Heidari M. 2012. Effects of salinity stress on growth, chlorophyll content and osmotic components of two basil (Ocimum basilicum L.) genotypes. Afr J Biotechnol. 11:379–384.
  • Hejazi MM, Shariatmadari H, Khoshgoftarmanesh AH, Dehghani F. 2012. Copper effects on growth, lipid Peroxidation, and total phenolic content of rosemary leaves under salinity stress. J Agr Sci Tech. 14:205–212.
  • Hiscox JD, Israelstam GF. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot. 57:1332–1334. 10.1139/b79-163
  • Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. California Agric Exp Station Circ. 347:1–32.
  • Huang LL, Yang C, Zhao Y, Xu X, Xu Q, Li GZ, Cao J, Herbert SJ, Hao L. 2008. Antioxidant defenses of mycorrhizal fungus infection against SO2-induced oxidative stress in Avena nuda seedlings. Bull Environ Contam Toxicol. 81:440–444. 10.1007/s00128-008-9521-7
  • Iqbal M, Ashraf M. 2013. Alleviation of salinity-induced perturbations in ionic and hormonal concentrations in spring wheat through seed preconditioning in synthetic auxins. Acta Physiol Plant. 35:1093–1112.
  • Jackson ML. 1962. Soil chemical analysis. New York (NY): Prentice Hall; p. 263–268.
  • Julkunen-Tiitto R. 1985. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem. 33:213–217. 10.1021/jf00062a013
  • Kadian N, Yadav K, Badda N, Aggarwal A. 2013. Application of arbuscular Mycorrhizal fungi in improving growth and nutrient of Cyamopsis tetragonoloba (L.) Taub. under saline soil. Int J Agron Plant Prod. 4:2796–2805.
  • Lim JH, Park KJ, Kim BK, Jeong JW, Kim HJ. 2012. Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem. 135:1065–1070. 10.1016/j.foodchem.2012.05.068
  • Lowry OH, Rosenbough NJ, Farr AL, Randall RJ. 1951. Protein measurement with folin reagent. J Biol Chem. 193:269–275.
  • Mehr ZS, Khajeh H, Bahabadi SE, Sabbagh SK. 2012. Changes on proline, phenolic compounds and activity of antioxidant enzymes in Anethum graveolens L. under salt stress. Int J Agron Plant Prod. 3(S): 710–715.
  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33:453–467. 10.1111/j.1365-3040.2009.02041.x
  • Mohammad MJ, Hamad SR, Malkawi HI. 2003. Population of arbuscular mycorrhizal fungi in semi-arid environment of Jordan as influenced by biotic and abiotic factors. J Arid Environ. 53:409–417. 10.1006/jare.2002.1046
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880.
  • Nounjan N, Nghia PT, Theerakulpisut P. 2012. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol. 169:596–604. 10.1016/j.jplph.2012.01.004
  • Petridis A, Therios I, Samouris G, Koundouras S, Giannakoula A. 2012. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiol Biochem. 60:1–11.
  • Pohjala L, Tammela P. 2012. Aggregating Behavior of Phenolic Compounds – A Source of False Bioassay Results? Molecules. 17:10774–10790. 10.3390/molecules170910774
  • Rasool R, Hameed A, Azooz MM, Rehman M, Siddiqi TO, Ahmad P. 2013. Salt stress: causes, types and responses of plants. Ecophysiology and responses of plants under salt stress. New York (NY): Springer
  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P. 2013. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant. 35:1039–1050.
  • Rice-Evans C, Miller N, Paganga G. 1997. Antioxidant properties of phenolic compounds. Trends in Plant Science. 2:152–159. 10.1016/S1360-1385(97)01018-2
  • Schenck NC, Perez Y. 1990. Manual for the identification of VA mycorrhizal fungi. 3rd edition. Gainesville (FL): Synergistic.
  • Shaheen S, Naseer S, Ashraf M, Akram NA. 2013. Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. J Plant Interact. 8:85–96. 10.1080/17429145.2012.718376
  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y. 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza. 18:287–296. 10.1007/s00572-008-0180-7
  • Stewart CR. 1981. Proline accumulation: biochemical aspects. In: Paleg LG, Aspinall D, editors. Physiology and biochemistry of drought resistance in plants. p. 243–251.
  • Sultana N, Ikeda T, Itoh R. 1999. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ Exp Bot. 42:211–220. 10.1016/S0098-8472(99)00035-0
  • Tsao R. 2010. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2:1231–1246. 10.3390/nu2121231
  • Utobo EB, Ogbodo EN, Nwogbaga AC. 2011. Techniques for extraction and quantification of arbuscular mycorrhizal fungi. Libyan Agric Res Center Int. 2:68–78.
  • Wolf B. 1982. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Comm Soil Sci Plant Anal. 13:1035–1059. 10.1080/00103628209367332
  • Wu QS, Zou YN, Liu W, Ye XF, Zai HF, Zhao LJ. 2010. Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant Soil Environ. 56:470–475.
  • Zheng Y, Wang Z, Sun X, Jia A, Jiang G, Li Z. 2008. Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage. Environ Exp Bot. 62:129–138. 10.1016/j.envexpbot.2007.07.011
  • Zörb C, Herbst R, Forreiter C, Schubert S. 2009. Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics. 9:4209–4220. 10.1002/pmic.200800791