820
Views
61
CrossRef citations to date
0
Altmetric
Review

Lipophilicity and biomimetic properties to support drug discovery

, &
Pages 885-896 | Received 11 Mar 2017, Accepted 15 Jun 2017, Published online: 28 Jun 2017

References

  • Satyanarayanajois SD (editor). Drug design and discovery: methods and protocols. Methods in Molecular Biology Vol.716. New York: Humana Press, Springer; 2011.
  • Meanwell NA, Olson RE, Cheng PT. The practice of medicinal chemistry and its contributions to therapy. Med Chem Rev. 2015;50:359−393.
  • Speck-Planche A, Cordeiro MNDS. Multitasking models for quantitative structure–biological effect relationships: current status and future perspectives to speed up drug discovery. Expert Opin Drug Discov. 2015;10:245–256.
  • Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9:203–214.
  • Gaviraghi G, Barnaby RJ, Pellegatti M, et al. Pharmacokinetic challenges in lead optimization. In: Testa B, Van De Waterbeemd H, Folkers G, editors. Pharmacokinetic optimization in drug research. Biological, Physicochemical and Computational Strategies. Zurich: Verlag Helvetica Chimica Acta; 2001. p. 3–14.
  • Swift RV, Amaro RE. Back to the future: can physical models of passive membrane permeability help reduce drug candidate attrition and move us beyond QSPR? Chem Biol Drug Des. 2013;81:61–71.
  • Nicolotti O, Gillet VJ, Fleming PJ, et al. Multiobjective optimization in quantitative structure-activity relationships: deriving accurate and interpretable QSARs. J Med Chem. 2002;45:5069–5080.
  • Nicolaou CA, Brown N. Multi-objective optimization methods in drug design. Drug Discov Today Technol. 2013;10(3):e427–435.
  • Arnott JA, Planey SL. The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov. 2012;7(10):863–875.
  • Liu X, Testa B, Fahr A. Lipophilicity and its relationship with passive drug permeation. Pharm Res. 2011;28:962–977.
  • Gleeson MP, Hersey A, Montanari D, et al. Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat Rev Drug Discov. 2011;10:197–208.
  • Hughes JD, Blagg J, Price DA, et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett. 2008;18:4872–4875.
  • Pidgeon C, Venkataram UV. Immobilized artificial membrane chromatography: supports composed of membrane lipids. Anal Biochem. 1989;176:36–47.
  • Ong S, Liu H, Pidgeon C. Immobilized artificial membrane chromatography: measurements of membrane partition coefficient and predicting drug permeability. J Chromatogr A. 1996;728:113–128.
  • Tsopelas F, Vallianatou T, Tsantili-Kakoulidou A. Advances in immobilized artificial membrane (IAM) chromatography for novel drug discovery. Expert Opin Drug Discov. 2016;11(5):473–488.
  • Chrysanthakopoulos M, Tsopelas F, Tsantili-Kakoulidou A. Biomimetic Chromatography: A useful tool in the drug discovery process. In: Grushka E, Grinberg N, editors. Advances in Chromatography. Vol. 51. CRC Press, 2013.
  • Valko KL. Lipophilicity and biomimetic properties measured by HPLC to support drug discovery. J Pharm Biomed Anal. 2016;130:35–54.
  • Meyer H. Zur Theorie der Alkohol-narkose. Arch Exp Pathol Pharmakol. 1899;42:109–118.
  • Overton E. Studien uber die narkose zugleich ein beitrag zur allgemeinen pharmakologie. Jena: Gustav Fischer; 1901.
  • Gaudette LE, Brodie BB. Relationship between lipid solubility of drugs and their oxidation by liver microsomes. Biochem Pharmacol. 1959;2:89–96.
  • Hansch C, Fujita T. ρ-σ-π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc. 1964;86:1616–1626.
  • Leo A, Hansch C, Elkins D. Partition coefficients and their uses. Chem Rev. 1971;71:525–616.
  • Avdeef A. Absorption and drug development. Solubility, permeability and charge state. Hoboken (NJ): Wiley; 2003.
  • Tsantili-Kakoulidou A, Piperaki S, Panderi I, et al. Prediction of distribution coefficients from structure. The influence of ion pair formation as reflected in experimental and calculated values. QSAR Comb Sci. 1997;16:315–316.
  • Hansch C. Quantitative structure-activity relationships and the unnamed science. Acc Chem Res. 1993;26:147–153.
  • Lien E. Drug design. In: Ariens EJ, editor. Medicinal Chemistry. A series of monographs. Vol. 5. New York: Academic Press; 1975. p. 81–132.
  • Kubinyi H. Lipophilicity and biological activity. Drug transport and drug distribution in model systems and in biological systems. Arzneimittelforschung. 1979;29(8):1067–1080.
  • Buur A, Trier L, Magnusson C, et al. Permeability of 5-fluorouracil and prodrugs in Caco-2 cell monolayers. Int J Pharm. 1996;129(1–2):223–231.
  • Komiya I, Park JY, Kamani A, et al. Quantitative mechanistic studies in simultaneous fluid-flow and intestinal-absorption using steroids as model solutes. Int J Pharm. 1980;4(3):249–262.
  • Hansch C, Bjorkroth JP, Leo A. Hydrophobicity and central nervous system agents: on the principle of minimal hydrophobicity in drug design. J Pharm Sci. 1987;76:663–687.
  • Fichert T, Yazdanian M, Proudfoot JR. A structure-permeability study of small drug-like molecules. Bioorg Med Chem Lett. 2003;13:719–722.
  • Freire E. Isothermal titration calorimetry: controlling binding forces in lead optimization. Drug Discov Today Technol. 2004;1:295–299.
  • Lexa KW, Dolghih E, Jacobson MP. A structure-based model for predicting serum albumin binding. Plos One. 2014;9:e93323.
  • Vallianatou T, Lambrinidis G, Tsantili-Kakoulidou A. In silico prediction of human serum albumin binding for drug leads. Expert Opin Drug Discov. 2013;8:583–595.
  • Smith DA, Jones B, Walker DK. Design of drugs involving the concepts and theories of drug metabolism and pharmacokinetics. Med Res Rev. 1996;16:243–266.
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25.
  • Veber DF, Johnson SR, Cheng HY, et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45:2615–2623.
  • Congreve M, Carr R, Murray C, et al. A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today. 2003;8:876–877.
  • Gleeson MP. Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem. 2008;51:817–834.
  • Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov. 2007;6:881–890.
  • Bocker A, Bonneau PR, Hucke O, et al. Development of specific “drug-like property” rules for carboxylate-containing oral drug candidates. ChemMedChem. 2010;5:2102–2113.
  • Johnson TW, Dress KR, Edwards M. Using the Golden Triangle to optimize clearance and oral absorption. Bioorg Med Chem Lett. 2009;19:5560–5564.
  • Keseru GM, Makara GM. The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov. 2009;8:203–212.
  • Young RJ, Green DVS, Luscombe CN, et al. Getting physical in drug discovery II: the impact of chromatographic hydrophobicity measurements and aromaticity. Drug Discov Today. 2011;16:822–830.
  • Testa B, Carrupt PA, Gaillard P, et al. Intramolecular Interactions encoded in Lipophilicity: their nature and significance. In: Pliska V, Testa B, Van De Waterbeemd H, editors. Lipophilicity in Drug Action and Toxicology. Weinheim: VCH; 1996. p. 49–71.
  • Raevsky OA, Schaper KJ, Seydel JK. H-Bond contribution to octanol-water partition coefficients of polar compounds. Quant Struct-Act Relat. 1995;14:433–436.
  • Tsantili-Kakoulidou A, Varvaresou A, Siatra-Papastaikoudi TH, et al. A comprehensive investigation of the partitioning and hydrogen bonding behavior of Indole containing derivatives of 1,3,4-thiadiazole and 1,2,4-triazole by means of experimental and calculative approaches. Quant Struct-Act. 1999;18:482–489.
  • Abraham M, Chadha H, Whiting G, et al. Hydrogen bonding. 32. An analysis of water-octanol and water-alkane partitioning and the ÉlogP parameter of Seiler. J Pharm Sci. 1994;83:1085–1100.
  • Young RC, Mitchell RC, Brown TH, et al. Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J Med Chem. 1988;31(3):656–671.
  • El Tayar N, Tsai RS, Testa B, et al. Percutaneous penetration of drugs: a quantitative structure-permeability relationship study. J Pharm Sci. 1991;80(8):744–749.
  • Hitzel L, Watt AP, Locker KL. An increased throughput method for the determination of partition coefficients. Pharm Res. 2000;17(11):1389–1395.
  • Chen Z, Weber SG. A high-throughput method for lipophilicity measurement. Anal Chem. 2007;79(3):1043–1049.
  • Avdeef A. pH-Metric logP. 2. Refinement of partition coefficients and ionization constants of multiprotic substances. J Pharm Sci. 1993;82:183–190.
  • Comer J, Tam K., et al. Lipophilicity Profiles. In: Testa B, Waterbeemd HV, Folkers G, editors. Pharmacokinetic optimization in drug research. Zurich: Verlag Helvetica Chimica Acta; 2001. p. 275–304.
  • Zhao Y, Jona J, Chow DR, et al. High-throughput logP measurement using parallel liquid chromatography/ultraviolet/mass spectrometry and sample-pooling. Rapid Commun Mass Spectrom. 2002;16(16):1548–1555.
  • Lombardo F, Shalaeva MY, Tupper KA, et al. ElogDoct: a tool for lipophilicity determination in drug discovery. 2.Basic and neutral compounds. J Med Chem. 2001;44:2490–2497.
  • Giaginis C, Theocharis S, Tsantili-Kakoulidou A. Contribution to the standardization of the chromatographic conditions for the lipophilicity assessment of neutral and basic drugs. Anal Chim Acta. 2006;573:311–318.
  • Liu X, Tanaka H, Yamauchi A, et al. Determination of lipophilicity by reversed-phase high-performance liquid chromatography: influence of 1-octanol in the mobile phase. J Chromatogr A. 2005;1091:51–59.
  • Giaginis C, Theocharis S, Tsantili-Kakoulidou A. Octanol/water partitioning simulation by RP-HPLC for structurally diverse acidic drugs: comparison of three columns in the presence and absence of n-octanol as the mobile phase additive. J Sep Sci. 2013;36(24):3830–3836.
  • Valko K, Bevan C, Reynolds D. Chromatographic hydrophobicity index by fast-gradient RPHPLC: a high-throughput alternative to log P/log D. Anal Chem. 1997;69:2022–2029.
  • Valko K. Application of high-performance liquid chromatography based measurements of lipophilicity to model biological distribution. J Chromatogr A. 2004;1037:299–310.
  • Valko K. Physicochemical and biomimetic properties in drug discovery: chromatographictechniques for lead optimization. Hoboken (NJ): Wiley; 2014.
  • Rekker RF, Mannhold R. Calculation of Drug Lipophilicity- The hydrophobic fragmental approach. Weinheim: VCH; 1992.
  • Mannhold R., et al. Calculation of lipophilicity: a classification of methods. In: Testa B, Sd K, Wunderli-Allenspach H, editors. Pharmacokinetic Profiling in Drug Research. Zürich: Verlag Helvetica Chimica Acta and Weinheim: Wiley-VCH; 2006. p. 333–352.
  • Mannhold R, Poda GI, Ostermann C, et al. Calculation of molecular lipophilicity: state-of-the-art and comparison of log P methods on more than 96,000 compounds. J Pharm Sci. 2009;98(3):861–893.
  • Chou JΤ, Jurs ΡC. Computer-assisted computation of partition coefficients from molecular structures using fragment constants. J Chem Inf Comput Sci. 1979;19:172–178.
  • Leo ΑJ, Hoekman D. Calculating logP(oct) with no missing fragments. The problem of estimating new interaction parameters. Perspect Drug Discov Des. 2000;18:19–38.
  • Csizmadia F, Tsantili-Kakoulidou A, Panderi I, et al. Prediction of distribution coefficient from structure: 1. Estimation method. J Pharm Sci. 1997;86:865–871.
  • Klopman G, Iroff LD. Calculation of partition coefficients by the charge density method. J Comput Chem. 1981;2:157–160.
  • Bodor N, Huang MJ. An extended version of a novel method for the estimation of partition coefficients. J Pharm Sci. 1992;81:272–281.
  • Moriguchi I, Hirono S, Liu Q, et al. Simple method of calculating octanol/water partition coefficient. Chem Pharm Bull. 1992;40:127–130.
  • Beck B, Breindl A, Clark T. QM/NN QSPR models with error estimation: vapor pressure and Log P. J Chem Inf Comput Sci. 2000;40:1046–1051.
  • Tetko IV, Bruneau P. Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house database. J Pharm Sci. 2004;93(12):3103–3110.
  • Japertas P, Didziapetris R, Petrauskas AA. Fragmental methods in the design of new compounds. Applications of the advanced algorithm builder. Quant Struct-Act Relat. 2002;21:23–37.
  • Tetko IV, Tanchuk VY. Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J Chem Inf Comput Sci. 2002;42:1136–1145.
  • Roy K, Kar S, Das RN. Understanding the Basics of QSAR for applications in pharmaceutical sciences and risk assessment. London, U.K San Diego, USA:Academic Press; 2015.
  • Iwahashi M, Hayashi Y, Hachiya N, et al. Self-association of octan-1ol in the pure liquid state and in decane solutions as observed by viscosity, self-diffusion, nuclear magnetic resonance and near-infrared spectroscopy measurements. J Chem Soc. 1993;89:707–712.
  • Franks NP, Abraham MH, Lieb WR. Molecular organization of liquid n-octanol: an X-ray diffraction analysis. J Pharm Sci. 1993;82:466–470.
  • Avdeef A. Physicochemical profiling (solubility, permeability and charge state). Curr Top Med Chem. 2001;1:277–351.
  • Taillardat-Bertschinger A, Galland A, Carrupt PA, et al. Immobilized artificial membrane liquid chromatography: proposed guidelines for technical optimization of retention measurements. J Chromatogr A. 2002;953:39–53.
  • Barbato F. The use of immobilized artificial membrane (IAM) chromatography for determination of lipophilicity. Curr Comput Aided Drug Des. 2006;2:341–352.
  • Valko K, Du CM, Bevan CD, et al. Rapid-gradient HPLC method for measuring drug interactions with immobilized artificial membrane: comparison with other lipophilicity measures. J Pharm Sci. 2000;89:1085–1096.
  • Taillardat-Bertschinger A, Barbato F, Quercia MT, et al. Structural properties governing retention mechanisms on immobilized artificial membrane (IAM) HPLC columns. Helv Chim Acta. 2002;85:519–532.
  • Van Balen GP, Martinet CAM, Caron G, et al. Liposome/water lipophilicity: methods, information content, and pharmaceutical applications. Med Res Rev. 2004;24:299–324.
  • Vrakas D, Giaginis C, Tsantili-Kakoulidou A. Different retention behaviour of structurally diverse basic and neutral drugs in immobilized artificial membrane (IAM) and reversed-phase HPLC. Comparison with octanol- water partitioning. J Chromatogr A. 2006;1116:158–164.
  • Vrakas D, Giaginis C, Tsantili-Kakoulidou A. Electrostatic interactions and ionization effect in IAM retention. A comparative study with octanol- water partitioning. J Chromatogr A. 2008;1187:67–78.
  • Li J, Suna J, Cui S, et al. Quantitative structure-retention relationship studies using immobilized artificial membrane chromatography I: amended linear solvation energy relationships with the introduction of a molecular electronic factor. J Chromatogr A. 2006;1132:174–182.
  • Tsopelas F, Malaki N, Vallianatou T, et al. Insight into the retention mechanism on immobilized artificial membrane chromatography using two stationary phases. J Chromatogr A. 2015;1396:25–33.
  • Barbato F, Di Martino G, Grumetto L, et al. Can protonated beta-blockers interact with biomembranes stronger than neutral isolipophilic compounds? A chromatographic study on three different phospholipid stationary phases. Eur J Pharm Sci 2015;25:379–386.
  • Grumetto L, Russo G, Barbato F. Indexes of polar interactions between ionizable drugs and membrane phospholipids measured by IAM–HPLC: their relationships with data of blood-brain barrier passage. Eur J Pharm Sci. 2014;65:139–146.
  • Barbato F, La Rotonda MI, Quaglia F. Chromatographic indices determined on an immobilized artificial membrane (IAM) column as descriptors of lipophilic and polar interactions of 4-phenyldihydropyridine calcium-channel blockers with biomembranes. Eur J Med Chem. 1996;31:311–318.
  • Vrakas D, Hadjipavlou-Litina D, Tsantili-Kakoulidou A. Retention of substituted coumarins using immobilized artificial membrane (IAM) chromatography: a comparative study with n-octanol partitioning and reversed-phase HPLC and TLC. J Pharm Biomed Anal. 2005;39:908–913.
  • Molero-Monfort M, Escuder-Gilabert L, Villanueva-Camanas RM, et al. Biopartitioning micellar chromatography: anin vitro technique for predicting human drug absorption. J Chromatogr B Biomed Sci Appl. 2001;753:225–236.
  • Cudina O, Markovic B, Karljikovic-Rajic K, et al. Biopartitioning micellar chromatography-Partition coefficient Micelle/Water as a potential descriptor for hydrophobicity in prediction of oral drug absorption. Anal Lett. 2012;45:677–688.
  • Salminen T, Pulli A, Taskinen J. Relationship between immobilised artificial membrane chromatographic retention and the brain penetration of structurally diverse drugs. J Pharm Biomed Anal. 1997;15:469–477.
  • Lazaro E, Rafols C, Abraham MH, et al. Chromatographic estimation of drug disposition properties by means of immobilized artificial membranes (IAM) and C18 columns. J Med Chem. 2006;49:4861–4870.
  • Kotecha J, Shah S, Rathod I, et al. Relationship between immobilized artificial membrane chromatographic retention and human oral absorption of structurally diverse drugs. Int J Pharm. 2007;333:127–135.
  • Kotecha J, Shah S, Rathod I, et al. Prediction of oral absorption in humans by experimental immobilized artificial membrane chromatography indices and physicochemical descriptors. Int J Pharm. 2008;360:96–106.
  • Zhao YH, Le J, Abraham MH, et al. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J Pharm Sci. 2001;90(6):749–784.
  • Tsopelas F, Vallianatou T, Tsantili-Kakoulidou A. The potential of immobilized artificial membrane chromatography to predict human oral absorption. Eur J Pharm Sci. 2016;81:82–93.
  • Pehourcq F, Matoga M, Bannwarth B. Diffusion of arylpropionate non-steroidal anti-inflammatory drugs into the cerebrospinal fluid: a quantitative structure-activity relationship approach. Fundam Clin Pharmacol. 2004;18:65–70.
  • Yoon CH, Kim SJ, Shin BS, et al. Rapid screening of blood-brain barrier penetration of drugs using the immobilized artificial membrane phosphatidylcholine column chromatography. J Biomol Screen. 2006;11:13–20.
  • De Vrieze M, Lynen F, Chen K, et al. Predicting drug penetration across the blood–brain barrier: comparison of micellar liquid chromatography and immobilized artificial membrane liquid chromatography. Anal Bioanal Chem. 2013;405:6029–6041.
  • Russo M, Grumetto L, Szucs R, et al. Determination of in vitro and in silico indexes for the modelling of blood-brain barrier partitioning of drugs via micellar and immobilized artificial membrane liquid chromatography. J Med Chem. 2017;60:3739–3754.
  • Barbato F, Cappello B, Miro A, et al. Chromatographic indexes on immobilized artificial membranes for the prediction of transdermal transport of drugs. Farmaco. 1998;53:655–661.
  • Grumetto L, Russo G, Barbato F. Relationships between human intestinal absorption and polar interactions drug/phospholipids estimated by IAM-HPLC. Int J Pharm. 2015;489:186–194.
  • Chan ECY, Tan WL, Ho PC, et al. Modeling Caco-2 permeability of drugs using immobilized artificial membrane chromatography and physicochemical descriptors. J Chromatogr A. 2005;1072:159–168.
  • Grumetto L, Russo G, Barbato F. Polar interactions drug/phospholipids and comparison of their effectiveness in predicting drug human intestinal absorption. Int J Pharm. 2016;500:275–290.
  • Casartelli A, Bonato M, Cristofori P, et al. A cell-based approach for the early assessment of the phospholipidogenic potential in pharmaceutical research and drug development. Cell Biol Toxicol. 2003;19:161–176.
  • Jiang Z, Reilly J. Chromatography approaches for early screening of the phospholipidosis-inducing potential of pharmaceuticals. J Pharm Biomed Anal. 2012;61:184–190.
  • Zhao X, Chen W, Liu Z, et al. A novel mixed phospholipid functionalized monolithic column for early screening of drug induced phospholipidosis risk. J Chromatogr A. 2014;1367:99–108.
  • Stepanic V, Kosstrun S, Malnar I, et al. Modeling cellular pharmacokinetics of 14- and 15-membered macrolides with physicochemical properties. J Med Chem. 2011;54:719–733.
  • Mateus A, Matsson P, Artursson P. Rapid measurement of intracellular unbound drug concentrations. Mol Pharm. 2013;10:2467–2478.
  • Rogge MC, Taft DR. Preclinical Drug Development. In: editor, Swarbrick J. Drugs and the Pharmaceutical Sciences. Vol. 187. New York: Informa Healthcare Publications; 2010.
  • Smith DA. van de Waterbeemd H. Pharmacokinetics and metabolism in early drug discovery. Curr Opin Chem Biol. 1999;4:373–378.
  • Lambrinidis G, Vallianatou T, Tsantili-Kakoulidou A. In vitro, in silico and integrated strategies for the estimation of plasma protein binding. Review Adv Drug Deliv Rev. 2015;86:27–45.
  • Trainor G. The importance of plasma protein binding in drug discovery. Exp Opin Drug Discov. 2007;2(1):51–64.
  • Israili ZH, Dayton PG. Human alpha-1-glycoprotein and its interactions with drugs. Drug Metab Rev. 2001;33:161–235.
  • Ascoli GA, Bertucci C, Salvadori P. Ligand binding to a human serum albumin stationary phase: use of same-drug competition to discriminate pharmacologically relevant interactions. Biomed Chromatogr. 1998;12:248–254.
  • Noctor TAG, Hage DS, Wainer IW. Allosteric and competitive displacement of drugs from human serum albumin by octanoic acid, as revealed by high-performance liquid affinity chromatography, on a human serum albumin-based stationary phase. J Chromatogr-Biomed Appl. 1992;577:305–315.
  • Domenici E, Bertucci C, Salvadori P, et al. Use of a human serum albumin-based high-performance liquid chromatography chiral stationary phase for the investigation of protein binding: detection of the allosteric interaction between warfarin and benzodiazepine binding sites. J Pharm Sci. 1991;80:164–166.
  • Noctor TAG, Diaz-Perez MJ, Wainer IW. Use of a human serum albumin-based stationary phase for high-performance liquid chromatography as a tool for the rapid determination of drug plasma protein binding. J Pharm Sci. 1993;82:675–676.
  • Tiller PR, Mutton IM, Lane SJ, et al. Immobilized human serum albumin: liquid chromatography/mass spectrometry as a method of determining drug-protein binding. Rapid Commun Mass Spectrom. 1995;9:261–263.
  • Ashton DS, Beddell CR, Cockerill GS, et al. Binding measurements of indolocarbazole derivatives to immobilised human serum albumin by high-performance liquid chromatography. J Chromatog B. 1996;677:194–198.
  • Beaudry F, Coutu M, Brown NK. Determination of drug-plasma protein binding using human serum albumin chromatographic column and multiple linear regression model. Biomed Chromatogr. 1999;13:401–406.
  • Noctor TAG, Pham CD, Kaliszan R, et al. Stereochemical aspects of benzodiazepine binding to human serum albumin. I. Enantioselective high performance liquid affinity chromatographic examination of chiral and achiral binding interactions between 1,4-benzodiazepines and human serum albumin. Mol Pharm. 1992;42:506–511.
  • Kaliszan R, Noctor TAG, Wainer IW. Quantitative structure-enantioselective retention relationships for the chromatography of 1,4-benzodiazepines on a human serum albumin based HPLC chiral stationary phase: an approach to the computational prediction of retention and enantioselectivity. Chromatographia. 1992;33:546–550.
  • Valko K, Nunhuck S, Bevan C, et al. Fast gradient HPLC method to determine compounds binding to human serum albumin. Relationships with octanol-water and immobilized artificial membrane lipophilicity. J Pharm Sci. 2003;9:2236–2248.
  • Vuignier K, Guillarme D, Veuthey JL, et al. High performance affinity chromatography (HPAC) as a high-throughput screening tool in drug discovery to study drug-plasma protein interactions. J Pharm Biomed Anal. 2013;74:205–212.
  • Chrysanthakopoulos M, Giaginis C, Tsantili-Kakoulidou A. Retention of structurally diverse drugs in human serum albumin chromatography and its potential to simulate plasma protein binding. J Chromatogr A. 2010;1217:5761–5768.
  • Colmenarejo G. In silico prediction of drug-binding strengths to human serum albumin. Med Res Rev. 2003;23:275–301.
  • Colmenarejo G, Alvarez-Pedraglio A, Lavandera JL. Cheminformatic models to predict binding affinities to human serum albumin. J Med Chem. 2001;44:4370–4378.
  • Hall LM, Hall LH, Kier LBJ. Modeling drug albumin binding affinity with E-state topological structure representation. Chem Inf Comput Sci. 2003;43:2120–2128.
  • Hajduk PJ, Mendoza R, Petros AM, et al. Ligand binding to domain-3 of human serum albumin: a chemometric analysis. J Comp Aided Mol Des. 2003;17:93–102.
  • Hermansson J, Eriksson M. Direct liquid chromatographic resolution of acidic drugs using a chiral alpha 1-acid glycoprotein column (Enantiopac). J Liq Chromatogr. 1986;9:621–639.
  • Barbato F, Carpentiero C, Grumetto L, La Rotonda MI. Enantioselective retention of β-blocking agents on human serum albumin and α1-acid glycoprotein HPLC columns: relationships with different scales of lipophilicity. Eur J Pharm Sci. 2009;38:472–478.
  • Xuan H, Hage DS. Immobilization of alpha(1)-acid glycoprotein for chromatographic studies of drug-protein binding. Anal Biochem. 2005;346:300–310.
  • Jewell RC, Brouwer KLR, McNamara PJ. α1-Acid glycoprotein high-performance liquid chromatography column (AnantioPAC) as a screening tool for protein binding. J Chromatogr-Biomed Appl. 1989;487:257–264.
  • Kaliszan R, Nasal A, Turowski M. Quantitative structure–retention relationships in the examination of the topography of the binding site of antihistamine drugs on alpha 1-acid glycoprotein. J Chromatogr A. 1996;722:25–32.
  • Chrysanthakopoulos M, Valianatou T, Giaginis C, et al. Investigation of the retention behavior of structurally diverse drugs on alpha1 acid glycoprotein column. Insight on the molecular factors involved and correlation with biological binding data. Eur J Pharm Sci. 2014;60:24–31.
  • Brodie BB, Kurtz H, Schanker LJ. The importance of dissociation constants and lipid solubility on influencing the passage of drugs into the CSF. J Pharmacol Exp Ther. 1960;130:20–25.
  • Hollosy F, Valko K, Hersey A, et al. Estimation of volume of distribution in humans from high throughput HPLC-based measurements of human serum albumin binding and immobilized artificial membrane partitioning. J Med Chem. 2006;49:6958–6971.
  • Valko K, Nunhuck SB, Hill AP. Estimating unbound volume of distribution and tissue binding by in vitro HPLC-based human serum albumin and immobilised artificial membrane-binding measurements. J Pharm Sci. 2011;100:849–862.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.