3,499
Views
11
CrossRef citations to date
0
Altmetric
Article Commentary

Bibliometric analysis of potassium channel research

, , , , , , , & show all
Pages 18-27 | Received 22 Sep 2019, Accepted 14 Oct 2019, Published online: 19 Dec 2019

References

  • Jan LY. Chapter 1 studies of voltage-dependent and inwardly rectifying potassium channels. Curr Top Membr. 1999;46:1–5.
  • Serrano-Novillo C, Capera J, Colomer-Molera M, et al. Implication of voltage-gated potassium channels in neoplastic cell proliferation. Cancers (Basel). 2019;11(3):287.
  • Bean BP. The action potential in mammalian central neurons. Nat Rev Neurosci. 2007;8(6):451.
  • Vyas VK, Parikh P, Ramani J, et al. Medicinal chemistry of potassium channel modulators: an update of recent progress (2011–2017). Curr Med Chem. 2019;26:2062–2084.
  • Chen C, Dubin R, Kim MC. Emerging trends and new developments in regenerative medicine: a scientometric update (2000–2014). Expert Opin Biol Ther. 2014;14(9):1295–1317.
  • Wang Q, Yang Z, Yang Y, et al. A bibliometric analysis of research on the risk of engineering nanomaterials during 1999–2012. SciTotal Environ. 2014;473:483–489.
  • Chen C. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol. 2006;57(3):359–377.
  • Chen C, Hu Z, Liu S, et al. Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opin Biol Ther. 2012;12(5):593–608.
  • Chen C. The centrality of pivotal points in the evolution of scientific networks[C]//Proceedings of the 10th international conference on Intelligent user interfaces. ACM. 2005  January 10 - 13; San Diego, California. p. 98–105.
  • Xie P. Study of international anticancer research trends via co-word and document co-citation visualization analysis[J]. Scientometrics. 2015;105(1):611–622.
  • Zhao D, Li J, Seehus C, et al. Bibliometric analysis of recent sodium channel research. Channels. 2018;12(1):311–325.
  • Liang YD, Li Y, Zhao J, et al. Study of acupuncture for low back pain in recent 20 years: a bibliometric analysis via CiteSpace[J]. J Pain Res. 2017;10:951.
  • Zhou X, Zhao G. Global liposome research in the period of 1995–2014: a bibliometric analysis. Scientometrics. 2015;105(1):231–248.
  • Zongyi Y, Dongying C, Baifeng L. Global regulatory T-cell research from 2000 to 2015: a bibliometric analysis. PLoS One. 2016;11(9):e0162099.
  • Wang S, Lee SJ, Heyman S, et al. Structural rearrangements underlying ligand-gating in Kir channels. Nat Commun. 2012;3:617.
  • Glukhov AV, Flagg TP, Fedorov VV, et al. Differential KATP channel pharmacology in intact mouse heart. J Mol Cell Cardiol. 2010;48(1):152–160.
  • Fedorov VV, Glukhov AV, Ambrosi CM, et al. Effects of KATP channel openers diazoxide and pinacidil in coronary-perfused atria and ventricles from failing and non-failing human hearts. J Mol Cell Cardiol. 2011;51(2):215–225.
  • Inyushin M, Kucheryavykh LY, Kucheryavykh YV, et al. Potassium channel activity and glutamate uptake are impaired in astrocytes of seizure‐susceptible DBA/2 mice[J]. Epilepsia. 2010;51(9):1707–1713.
  • Villareal DT, Koster JC, Robertson H, et al. Kir6. 2 variant E23K increases ATP-sensitive K+ channel activity and is associated with impaired insulin release and enhanced insulin sensitivity in adults with normal glucose tolerance. Diabetes. 2009;58(8):1869–1878.
  • Fan L, Guan X, Wang W, et al. Impaired neuropathic pain and preserved acute pain in rats overexpressing voltage-gated potassium channel subunit Kv1. 2 in primary afferent neurons. Mol Pain. 2014;10(1):8.
  • Wang W, Putra A, Schools GP, et al. The contribution of TWIK-1 channels to astrocyte K+ current is limited by retention in intracellular compartments. Front Cell Neurosci. 2013;7:246.
  • Ma B, Xu G, Wang W, et al. Dual patch voltage clamp study of low membrane resistance astrocytes in situ. Mol Brain. 2014;7(1):18.
  • Sanguinetti MC, Curran ME, Zou A, et al. Coassembly of Kv LQT1 and minK (IsK) proteins to form cardiac I Ks potassium channel. Nature. 1996;384(6604):80.
  • Cahalan MD, Wulff H, Chandy KG. Molecular properties and physiological roles of ion channels in the immune system. J Clin Immunol. 2001;21(4):235–252.
  • Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov. 2009;8(12):982.
  • Bockenhauer D, Feather S, Stanescu HC, et al. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med. 2009;360(19):1960–1970.
  • Vergara C, Latorre R, Marrion NV, et al. Calcium-activated potassium channels. Curr Opin Neurobiol. 1998;8(3):321–329.
  • Wei AD, Gutman GA, Aldrich R, et al. International union of pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev. 2005;57(4):463–472.
  • Musser JB, Bentley TB, Griffith S, et al. Hemorrhagic shock in swine: nitric oxide and potassium sensitive adenosine triphosphate channel activation. Anesthesiol J Am Soc Anesthesiologists. 2004;101(2):399–408.
  • Su D, Riley J, Kiessling WJ, et al. Salvinorin A produces cerebrovasodilation through activation of nitric oxide synthase, κ receptor, and adenosine triphosphate–sensitive potassium channel. Anesthesiol J Am Soc Anesthesiologists. 2011;114(2):374–379.
  • Cox DH. BK Ca-channel structure and function[M]//Biological membrane ion channels. New York, NY: Springer; 2007. p. 171–218.
  • Kaczorowski GJ, Knaus HG, Leonard RJ, et al. High-conductance calcium-activated potassium channels; structure, pharmacology, and function. J Bioenerg Biomembr. 1996;28(3):255–267.
  • Cui J, Yang H, Lee US. Molecular mechanisms of BK channel activation. Cell Mol Life Sci. 2009;66(5):852–875.
  • Sankaranarayanan A, Raman G, Busch C, et al. Naphtho [1, 2-d] thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3. 1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. Mol Pharmacol. 2009;75(2):281–295.
  • Yu G, Cheng M, Wang W, et al. Involvement of WNK1-mediated potassium channels in the sexual dimorphism of blood pressure. Biochem Biophys Res Commun. 2017;485(2):255–260.
  • FAN L, TIAN H, MA A, et al. Altered ATP‐sensitive potassium channels may underscore obesity‐triggered increase in blood pressure 1. Acta Pharmacol Sin. 2008;29(10):1167–1174.
  • Costa ADT, Garlid KD. Intramitochondrial signaling: interactions among mitoKATP, PKCε, ROS, and MPT. Am J Physiol Heart Circ Physiol. 2008;295(2):H874–H882.
  • Rodriguez-Pallares J, Parga JA, Joglar B, et al. Mitochondrial ATP-sensitive potassium channels enhance angiotensin-induced oxidative damage and dopaminergic neuron degeneration. Relevance for aging-associated susceptibility to Parkinson’s disease. Age (Omaha). 2012;34(4):863–880.